qemu/util/uri.c
<<
>>
Prefs
   1/**
   2 * uri.c: set of generic URI related routines
   3 *
   4 * Reference: RFCs 3986, 2732 and 2373
   5 *
   6 * Copyright (C) 1998-2003 Daniel Veillard.  All Rights Reserved.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
  21 * DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
  22 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  24 *
  25 * Except as contained in this notice, the name of Daniel Veillard shall not
  26 * be used in advertising or otherwise to promote the sale, use or other
  27 * dealings in this Software without prior written authorization from him.
  28 *
  29 * daniel@veillard.com
  30 *
  31 **
  32 *
  33 * Copyright (C) 2007, 2009-2010 Red Hat, Inc.
  34 *
  35 * This library is free software; you can redistribute it and/or
  36 * modify it under the terms of the GNU Lesser General Public
  37 * License as published by the Free Software Foundation; either
  38 * version 2.1 of the License, or (at your option) any later version.
  39 *
  40 * This library is distributed in the hope that it will be useful,
  41 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  43 * Lesser General Public License for more details.
  44 *
  45 * You should have received a copy of the GNU Lesser General Public
  46 * License along with this library; if not, write to the Free Software
  47 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA
  48 *
  49 * Authors:
  50 *    Richard W.M. Jones <rjones@redhat.com>
  51 *
  52 */
  53
  54#include "qemu/osdep.h"
  55
  56#include "qemu/uri.h"
  57
  58static void uri_clean(URI *uri);
  59
  60/*
  61 * Old rule from 2396 used in legacy handling code
  62 * alpha    = lowalpha | upalpha
  63 */
  64#define IS_ALPHA(x) (IS_LOWALPHA(x) || IS_UPALPHA(x))
  65
  66/*
  67 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
  68 *            "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
  69 *            "u" | "v" | "w" | "x" | "y" | "z"
  70 */
  71
  72#define IS_LOWALPHA(x) (((x) >= 'a') && ((x) <= 'z'))
  73
  74/*
  75 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
  76 *           "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
  77 *           "U" | "V" | "W" | "X" | "Y" | "Z"
  78 */
  79#define IS_UPALPHA(x) (((x) >= 'A') && ((x) <= 'Z'))
  80
  81#ifdef IS_DIGIT
  82#undef IS_DIGIT
  83#endif
  84/*
  85 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
  86 */
  87#define IS_DIGIT(x) (((x) >= '0') && ((x) <= '9'))
  88
  89/*
  90 * alphanum = alpha | digit
  91 */
  92
  93#define IS_ALPHANUM(x) (IS_ALPHA(x) || IS_DIGIT(x))
  94
  95/*
  96 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
  97 */
  98
  99#define IS_MARK(x) (((x) == '-') || ((x) == '_') || ((x) == '.') ||            \
 100    ((x) == '!') || ((x) == '~') || ((x) == '*') || ((x) == '\'') ||           \
 101    ((x) == '(') || ((x) == ')'))
 102
 103/*
 104 * unwise = "{" | "}" | "|" | "\" | "^" | "`"
 105 */
 106
 107#define IS_UNWISE(p)                                                           \
 108    (((*(p) == '{')) || ((*(p) == '}')) || ((*(p) == '|')) ||                  \
 109     ((*(p) == '\\')) || ((*(p) == '^')) || ((*(p) == '[')) ||                 \
 110     ((*(p) == ']')) || ((*(p) == '`')))
 111/*
 112 * reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | "," |
 113 *            "[" | "]"
 114 */
 115
 116#define IS_RESERVED(x) (((x) == ';') || ((x) == '/') || ((x) == '?') ||        \
 117    ((x) == ':') || ((x) == '@') || ((x) == '&') || ((x) == '=') ||            \
 118    ((x) == '+') || ((x) == '$') || ((x) == ',') || ((x) == '[') ||            \
 119    ((x) == ']'))
 120
 121/*
 122 * unreserved = alphanum | mark
 123 */
 124
 125#define IS_UNRESERVED(x) (IS_ALPHANUM(x) || IS_MARK(x))
 126
 127/*
 128 * Skip to next pointer char, handle escaped sequences
 129 */
 130
 131#define NEXT(p) ((*p == '%') ? p += 3 : p++)
 132
 133/*
 134 * Productions from the spec.
 135 *
 136 *    authority     = server | reg_name
 137 *    reg_name      = 1*( unreserved | escaped | "$" | "," |
 138 *                        ";" | ":" | "@" | "&" | "=" | "+" )
 139 *
 140 * path          = [ abs_path | opaque_part ]
 141 */
 142
 143/************************************************************************
 144 *                                                                      *
 145 *                         RFC 3986 parser                              *
 146 *                                                                      *
 147 ************************************************************************/
 148
 149#define ISA_DIGIT(p) ((*(p) >= '0') && (*(p) <= '9'))
 150#define ISA_ALPHA(p) (((*(p) >= 'a') && (*(p) <= 'z')) ||                      \
 151                      ((*(p) >= 'A') && (*(p) <= 'Z')))
 152#define ISA_HEXDIG(p)                                                          \
 153    (ISA_DIGIT(p) || ((*(p) >= 'a') && (*(p) <= 'f')) ||                       \
 154     ((*(p) >= 'A') && (*(p) <= 'F')))
 155
 156/*
 157 *    sub-delims    = "!" / "$" / "&" / "'" / "(" / ")"
 158 *                     / "*" / "+" / "," / ";" / "="
 159 */
 160#define ISA_SUB_DELIM(p)                                                       \
 161    (((*(p) == '!')) || ((*(p) == '$')) || ((*(p) == '&')) ||                  \
 162     ((*(p) == '(')) || ((*(p) == ')')) || ((*(p) == '*')) ||                  \
 163     ((*(p) == '+')) || ((*(p) == ',')) || ((*(p) == ';')) ||                  \
 164     ((*(p) == '=')) || ((*(p) == '\'')))
 165
 166/*
 167 *    gen-delims    = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 168 */
 169#define ISA_GEN_DELIM(p)                                                       \
 170    (((*(p) == ':')) || ((*(p) == '/')) || ((*(p) == '?')) ||                  \
 171     ((*(p) == '#')) || ((*(p) == '[')) || ((*(p) == ']')) ||                  \
 172     ((*(p) == '@')))
 173
 174/*
 175 *    reserved      = gen-delims / sub-delims
 176 */
 177#define ISA_RESERVED(p) (ISA_GEN_DELIM(p) || (ISA_SUB_DELIM(p)))
 178
 179/*
 180 *    unreserved    = ALPHA / DIGIT / "-" / "." / "_" / "~"
 181 */
 182#define ISA_UNRESERVED(p)                                                      \
 183    ((ISA_ALPHA(p)) || (ISA_DIGIT(p)) || ((*(p) == '-')) ||                    \
 184     ((*(p) == '.')) || ((*(p) == '_')) || ((*(p) == '~')))
 185
 186/*
 187 *    pct-encoded   = "%" HEXDIG HEXDIG
 188 */
 189#define ISA_PCT_ENCODED(p)                                                     \
 190    ((*(p) == '%') && (ISA_HEXDIG(p + 1)) && (ISA_HEXDIG(p + 2)))
 191
 192/*
 193 *    pchar         = unreserved / pct-encoded / sub-delims / ":" / "@"
 194 */
 195#define ISA_PCHAR(p)                                                           \
 196    (ISA_UNRESERVED(p) || ISA_PCT_ENCODED(p) || ISA_SUB_DELIM(p) ||            \
 197     ((*(p) == ':')) || ((*(p) == '@')))
 198
 199/**
 200 * rfc3986_parse_scheme:
 201 * @uri:  pointer to an URI structure
 202 * @str:  pointer to the string to analyze
 203 *
 204 * Parse an URI scheme
 205 *
 206 * ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
 207 *
 208 * Returns 0 or the error code
 209 */
 210static int rfc3986_parse_scheme(URI *uri, const char **str)
 211{
 212    const char *cur;
 213
 214    if (str == NULL) {
 215        return -1;
 216    }
 217
 218    cur = *str;
 219    if (!ISA_ALPHA(cur)) {
 220        return 2;
 221    }
 222    cur++;
 223    while (ISA_ALPHA(cur) || ISA_DIGIT(cur) || (*cur == '+') || (*cur == '-') ||
 224           (*cur == '.')) {
 225        cur++;
 226    }
 227    if (uri != NULL) {
 228        g_free(uri->scheme);
 229        uri->scheme = g_strndup(*str, cur - *str);
 230    }
 231    *str = cur;
 232    return 0;
 233}
 234
 235/**
 236 * rfc3986_parse_fragment:
 237 * @uri:  pointer to an URI structure
 238 * @str:  pointer to the string to analyze
 239 *
 240 * Parse the query part of an URI
 241 *
 242 * fragment      = *( pchar / "/" / "?" )
 243 * NOTE: the strict syntax as defined by 3986 does not allow '[' and ']'
 244 *       in the fragment identifier but this is used very broadly for
 245 *       xpointer scheme selection, so we are allowing it here to not break
 246 *       for example all the DocBook processing chains.
 247 *
 248 * Returns 0 or the error code
 249 */
 250static int rfc3986_parse_fragment(URI *uri, const char **str)
 251{
 252    const char *cur;
 253
 254    if (str == NULL) {
 255        return -1;
 256    }
 257
 258    cur = *str;
 259
 260    while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
 261           (*cur == '[') || (*cur == ']') ||
 262           ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
 263        NEXT(cur);
 264    }
 265    if (uri != NULL) {
 266        g_free(uri->fragment);
 267        if (uri->cleanup & 2) {
 268            uri->fragment = g_strndup(*str, cur - *str);
 269        } else {
 270            uri->fragment = uri_string_unescape(*str, cur - *str, NULL);
 271        }
 272    }
 273    *str = cur;
 274    return 0;
 275}
 276
 277/**
 278 * rfc3986_parse_query:
 279 * @uri:  pointer to an URI structure
 280 * @str:  pointer to the string to analyze
 281 *
 282 * Parse the query part of an URI
 283 *
 284 * query = *uric
 285 *
 286 * Returns 0 or the error code
 287 */
 288static int rfc3986_parse_query(URI *uri, const char **str)
 289{
 290    const char *cur;
 291
 292    if (str == NULL) {
 293        return -1;
 294    }
 295
 296    cur = *str;
 297
 298    while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
 299           ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
 300        NEXT(cur);
 301    }
 302    if (uri != NULL) {
 303        g_free(uri->query);
 304        uri->query = g_strndup(*str, cur - *str);
 305    }
 306    *str = cur;
 307    return 0;
 308}
 309
 310/**
 311 * rfc3986_parse_port:
 312 * @uri:  pointer to an URI structure
 313 * @str:  the string to analyze
 314 *
 315 * Parse a port  part and fills in the appropriate fields
 316 * of the @uri structure
 317 *
 318 * port          = *DIGIT
 319 *
 320 * Returns 0 or the error code
 321 */
 322static int rfc3986_parse_port(URI *uri, const char **str)
 323{
 324    const char *cur = *str;
 325    int port = 0;
 326
 327    if (ISA_DIGIT(cur)) {
 328        while (ISA_DIGIT(cur)) {
 329            port = port * 10 + (*cur - '0');
 330            if (port > 65535) {
 331                return 1;
 332            }
 333            cur++;
 334        }
 335        if (uri) {
 336            uri->port = port;
 337        }
 338        *str = cur;
 339        return 0;
 340    }
 341    return 1;
 342}
 343
 344/**
 345 * rfc3986_parse_user_info:
 346 * @uri:  pointer to an URI structure
 347 * @str:  the string to analyze
 348 *
 349 * Parse a user information part and fill in the appropriate fields
 350 * of the @uri structure
 351 *
 352 * userinfo      = *( unreserved / pct-encoded / sub-delims / ":" )
 353 *
 354 * Returns 0 or the error code
 355 */
 356static int rfc3986_parse_user_info(URI *uri, const char **str)
 357{
 358    const char *cur;
 359
 360    cur = *str;
 361    while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur) ||
 362           (*cur == ':')) {
 363        NEXT(cur);
 364    }
 365    if (*cur == '@') {
 366        if (uri != NULL) {
 367            g_free(uri->user);
 368            if (uri->cleanup & 2) {
 369                uri->user = g_strndup(*str, cur - *str);
 370            } else {
 371                uri->user = uri_string_unescape(*str, cur - *str, NULL);
 372            }
 373        }
 374        *str = cur;
 375        return 0;
 376    }
 377    return 1;
 378}
 379
 380/**
 381 * rfc3986_parse_dec_octet:
 382 * @str:  the string to analyze
 383 *
 384 *    dec-octet     = DIGIT                 ; 0-9
 385 *                  / %x31-39 DIGIT         ; 10-99
 386 *                  / "1" 2DIGIT            ; 100-199
 387 *                  / "2" %x30-34 DIGIT     ; 200-249
 388 *                  / "25" %x30-35          ; 250-255
 389 *
 390 * Skip a dec-octet.
 391 *
 392 * Returns 0 if found and skipped, 1 otherwise
 393 */
 394static int rfc3986_parse_dec_octet(const char **str)
 395{
 396    const char *cur = *str;
 397
 398    if (!(ISA_DIGIT(cur))) {
 399        return 1;
 400    }
 401    if (!ISA_DIGIT(cur + 1)) {
 402        cur++;
 403    } else if ((*cur != '0') && (ISA_DIGIT(cur + 1)) && (!ISA_DIGIT(cur + 2))) {
 404        cur += 2;
 405    } else if ((*cur == '1') && (ISA_DIGIT(cur + 1)) && (ISA_DIGIT(cur + 2))) {
 406        cur += 3;
 407    } else if ((*cur == '2') && (*(cur + 1) >= '0') && (*(cur + 1) <= '4') &&
 408             (ISA_DIGIT(cur + 2))) {
 409        cur += 3;
 410    } else if ((*cur == '2') && (*(cur + 1) == '5') && (*(cur + 2) >= '0') &&
 411             (*(cur + 1) <= '5')) {
 412        cur += 3;
 413    } else {
 414        return 1;
 415    }
 416    *str = cur;
 417    return 0;
 418}
 419/**
 420 * rfc3986_parse_host:
 421 * @uri:  pointer to an URI structure
 422 * @str:  the string to analyze
 423 *
 424 * Parse an host part and fills in the appropriate fields
 425 * of the @uri structure
 426 *
 427 * host          = IP-literal / IPv4address / reg-name
 428 * IP-literal    = "[" ( IPv6address / IPvFuture  ) "]"
 429 * IPv4address   = dec-octet "." dec-octet "." dec-octet "." dec-octet
 430 * reg-name      = *( unreserved / pct-encoded / sub-delims )
 431 *
 432 * Returns 0 or the error code
 433 */
 434static int rfc3986_parse_host(URI *uri, const char **str)
 435{
 436    const char *cur = *str;
 437    const char *host;
 438
 439    host = cur;
 440    /*
 441     * IPv6 and future addressing scheme are enclosed between brackets
 442     */
 443    if (*cur == '[') {
 444        cur++;
 445        while ((*cur != ']') && (*cur != 0)) {
 446            cur++;
 447        }
 448        if (*cur != ']') {
 449            return 1;
 450        }
 451        cur++;
 452        goto found;
 453    }
 454    /*
 455     * try to parse an IPv4
 456     */
 457    if (ISA_DIGIT(cur)) {
 458        if (rfc3986_parse_dec_octet(&cur) != 0) {
 459            goto not_ipv4;
 460        }
 461        if (*cur != '.') {
 462            goto not_ipv4;
 463        }
 464        cur++;
 465        if (rfc3986_parse_dec_octet(&cur) != 0) {
 466            goto not_ipv4;
 467        }
 468        if (*cur != '.') {
 469            goto not_ipv4;
 470        }
 471        if (rfc3986_parse_dec_octet(&cur) != 0) {
 472            goto not_ipv4;
 473        }
 474        if (*cur != '.') {
 475            goto not_ipv4;
 476        }
 477        if (rfc3986_parse_dec_octet(&cur) != 0) {
 478            goto not_ipv4;
 479        }
 480        goto found;
 481    not_ipv4:
 482        cur = *str;
 483    }
 484    /*
 485     * then this should be a hostname which can be empty
 486     */
 487    while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur)) {
 488        NEXT(cur);
 489    }
 490found:
 491    if (uri != NULL) {
 492        g_free(uri->authority);
 493        uri->authority = NULL;
 494        g_free(uri->server);
 495        if (cur != host) {
 496            if (uri->cleanup & 2) {
 497                uri->server = g_strndup(host, cur - host);
 498            } else {
 499                uri->server = uri_string_unescape(host, cur - host, NULL);
 500            }
 501        } else {
 502            uri->server = NULL;
 503        }
 504    }
 505    *str = cur;
 506    return 0;
 507}
 508
 509/**
 510 * rfc3986_parse_authority:
 511 * @uri:  pointer to an URI structure
 512 * @str:  the string to analyze
 513 *
 514 * Parse an authority part and fills in the appropriate fields
 515 * of the @uri structure
 516 *
 517 * authority     = [ userinfo "@" ] host [ ":" port ]
 518 *
 519 * Returns 0 or the error code
 520 */
 521static int rfc3986_parse_authority(URI *uri, const char **str)
 522{
 523    const char *cur;
 524    int ret;
 525
 526    cur = *str;
 527    /*
 528     * try to parse a userinfo and check for the trailing @
 529     */
 530    ret = rfc3986_parse_user_info(uri, &cur);
 531    if ((ret != 0) || (*cur != '@')) {
 532        cur = *str;
 533    } else {
 534        cur++;
 535    }
 536    ret = rfc3986_parse_host(uri, &cur);
 537    if (ret != 0) {
 538        return ret;
 539    }
 540    if (*cur == ':') {
 541        cur++;
 542        ret = rfc3986_parse_port(uri, &cur);
 543        if (ret != 0) {
 544            return ret;
 545        }
 546    }
 547    *str = cur;
 548    return 0;
 549}
 550
 551/**
 552 * rfc3986_parse_segment:
 553 * @str:  the string to analyze
 554 * @forbid: an optional forbidden character
 555 * @empty: allow an empty segment
 556 *
 557 * Parse a segment and fills in the appropriate fields
 558 * of the @uri structure
 559 *
 560 * segment       = *pchar
 561 * segment-nz    = 1*pchar
 562 * segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" )
 563 *               ; non-zero-length segment without any colon ":"
 564 *
 565 * Returns 0 or the error code
 566 */
 567static int rfc3986_parse_segment(const char **str, char forbid, int empty)
 568{
 569    const char *cur;
 570
 571    cur = *str;
 572    if (!ISA_PCHAR(cur)) {
 573        if (empty) {
 574            return 0;
 575        }
 576        return 1;
 577    }
 578    while (ISA_PCHAR(cur) && (*cur != forbid)) {
 579        NEXT(cur);
 580    }
 581    *str = cur;
 582    return 0;
 583}
 584
 585/**
 586 * rfc3986_parse_path_ab_empty:
 587 * @uri:  pointer to an URI structure
 588 * @str:  the string to analyze
 589 *
 590 * Parse an path absolute or empty and fills in the appropriate fields
 591 * of the @uri structure
 592 *
 593 * path-abempty  = *( "/" segment )
 594 *
 595 * Returns 0 or the error code
 596 */
 597static int rfc3986_parse_path_ab_empty(URI *uri, const char **str)
 598{
 599    const char *cur;
 600    int ret;
 601
 602    cur = *str;
 603
 604    while (*cur == '/') {
 605        cur++;
 606        ret = rfc3986_parse_segment(&cur, 0, 1);
 607        if (ret != 0) {
 608            return ret;
 609        }
 610    }
 611    if (uri != NULL) {
 612        g_free(uri->path);
 613        if (*str != cur) {
 614            if (uri->cleanup & 2) {
 615                uri->path = g_strndup(*str, cur - *str);
 616            } else {
 617                uri->path = uri_string_unescape(*str, cur - *str, NULL);
 618            }
 619        } else {
 620            uri->path = NULL;
 621        }
 622    }
 623    *str = cur;
 624    return 0;
 625}
 626
 627/**
 628 * rfc3986_parse_path_absolute:
 629 * @uri:  pointer to an URI structure
 630 * @str:  the string to analyze
 631 *
 632 * Parse an path absolute and fills in the appropriate fields
 633 * of the @uri structure
 634 *
 635 * path-absolute = "/" [ segment-nz *( "/" segment ) ]
 636 *
 637 * Returns 0 or the error code
 638 */
 639static int rfc3986_parse_path_absolute(URI *uri, const char **str)
 640{
 641    const char *cur;
 642    int ret;
 643
 644    cur = *str;
 645
 646    if (*cur != '/') {
 647        return 1;
 648    }
 649    cur++;
 650    ret = rfc3986_parse_segment(&cur, 0, 0);
 651    if (ret == 0) {
 652        while (*cur == '/') {
 653            cur++;
 654            ret = rfc3986_parse_segment(&cur, 0, 1);
 655            if (ret != 0) {
 656                return ret;
 657            }
 658        }
 659    }
 660    if (uri != NULL) {
 661        g_free(uri->path);
 662        if (cur != *str) {
 663            if (uri->cleanup & 2) {
 664                uri->path = g_strndup(*str, cur - *str);
 665            } else {
 666                uri->path = uri_string_unescape(*str, cur - *str, NULL);
 667            }
 668        } else {
 669            uri->path = NULL;
 670        }
 671    }
 672    *str = cur;
 673    return 0;
 674}
 675
 676/**
 677 * rfc3986_parse_path_rootless:
 678 * @uri:  pointer to an URI structure
 679 * @str:  the string to analyze
 680 *
 681 * Parse an path without root and fills in the appropriate fields
 682 * of the @uri structure
 683 *
 684 * path-rootless = segment-nz *( "/" segment )
 685 *
 686 * Returns 0 or the error code
 687 */
 688static int rfc3986_parse_path_rootless(URI *uri, const char **str)
 689{
 690    const char *cur;
 691    int ret;
 692
 693    cur = *str;
 694
 695    ret = rfc3986_parse_segment(&cur, 0, 0);
 696    if (ret != 0) {
 697        return ret;
 698    }
 699    while (*cur == '/') {
 700        cur++;
 701        ret = rfc3986_parse_segment(&cur, 0, 1);
 702        if (ret != 0) {
 703            return ret;
 704        }
 705    }
 706    if (uri != NULL) {
 707        g_free(uri->path);
 708        if (cur != *str) {
 709            if (uri->cleanup & 2) {
 710                uri->path = g_strndup(*str, cur - *str);
 711            } else {
 712                uri->path = uri_string_unescape(*str, cur - *str, NULL);
 713            }
 714        } else {
 715            uri->path = NULL;
 716        }
 717    }
 718    *str = cur;
 719    return 0;
 720}
 721
 722/**
 723 * rfc3986_parse_path_no_scheme:
 724 * @uri:  pointer to an URI structure
 725 * @str:  the string to analyze
 726 *
 727 * Parse an path which is not a scheme and fills in the appropriate fields
 728 * of the @uri structure
 729 *
 730 * path-noscheme = segment-nz-nc *( "/" segment )
 731 *
 732 * Returns 0 or the error code
 733 */
 734static int rfc3986_parse_path_no_scheme(URI *uri, const char **str)
 735{
 736    const char *cur;
 737    int ret;
 738
 739    cur = *str;
 740
 741    ret = rfc3986_parse_segment(&cur, ':', 0);
 742    if (ret != 0) {
 743        return ret;
 744    }
 745    while (*cur == '/') {
 746        cur++;
 747        ret = rfc3986_parse_segment(&cur, 0, 1);
 748        if (ret != 0) {
 749            return ret;
 750        }
 751    }
 752    if (uri != NULL) {
 753        g_free(uri->path);
 754        if (cur != *str) {
 755            if (uri->cleanup & 2) {
 756                uri->path = g_strndup(*str, cur - *str);
 757            } else {
 758                uri->path = uri_string_unescape(*str, cur - *str, NULL);
 759            }
 760        } else {
 761            uri->path = NULL;
 762        }
 763    }
 764    *str = cur;
 765    return 0;
 766}
 767
 768/**
 769 * rfc3986_parse_hier_part:
 770 * @uri:  pointer to an URI structure
 771 * @str:  the string to analyze
 772 *
 773 * Parse an hierarchical part and fills in the appropriate fields
 774 * of the @uri structure
 775 *
 776 * hier-part     = "//" authority path-abempty
 777 *                / path-absolute
 778 *                / path-rootless
 779 *                / path-empty
 780 *
 781 * Returns 0 or the error code
 782 */
 783static int rfc3986_parse_hier_part(URI *uri, const char **str)
 784{
 785    const char *cur;
 786    int ret;
 787
 788    cur = *str;
 789
 790    if ((*cur == '/') && (*(cur + 1) == '/')) {
 791        cur += 2;
 792        ret = rfc3986_parse_authority(uri, &cur);
 793        if (ret != 0) {
 794            return ret;
 795        }
 796        ret = rfc3986_parse_path_ab_empty(uri, &cur);
 797        if (ret != 0) {
 798            return ret;
 799        }
 800        *str = cur;
 801        return 0;
 802    } else if (*cur == '/') {
 803        ret = rfc3986_parse_path_absolute(uri, &cur);
 804        if (ret != 0) {
 805            return ret;
 806        }
 807    } else if (ISA_PCHAR(cur)) {
 808        ret = rfc3986_parse_path_rootless(uri, &cur);
 809        if (ret != 0) {
 810            return ret;
 811        }
 812    } else {
 813        /* path-empty is effectively empty */
 814        if (uri != NULL) {
 815            g_free(uri->path);
 816            uri->path = NULL;
 817        }
 818    }
 819    *str = cur;
 820    return 0;
 821}
 822
 823/**
 824 * rfc3986_parse_relative_ref:
 825 * @uri:  pointer to an URI structure
 826 * @str:  the string to analyze
 827 *
 828 * Parse an URI string and fills in the appropriate fields
 829 * of the @uri structure
 830 *
 831 * relative-ref  = relative-part [ "?" query ] [ "#" fragment ]
 832 * relative-part = "//" authority path-abempty
 833 *               / path-absolute
 834 *               / path-noscheme
 835 *               / path-empty
 836 *
 837 * Returns 0 or the error code
 838 */
 839static int rfc3986_parse_relative_ref(URI *uri, const char *str)
 840{
 841    int ret;
 842
 843    if ((*str == '/') && (*(str + 1) == '/')) {
 844        str += 2;
 845        ret = rfc3986_parse_authority(uri, &str);
 846        if (ret != 0) {
 847            return ret;
 848        }
 849        ret = rfc3986_parse_path_ab_empty(uri, &str);
 850        if (ret != 0) {
 851            return ret;
 852        }
 853    } else if (*str == '/') {
 854        ret = rfc3986_parse_path_absolute(uri, &str);
 855        if (ret != 0) {
 856            return ret;
 857        }
 858    } else if (ISA_PCHAR(str)) {
 859        ret = rfc3986_parse_path_no_scheme(uri, &str);
 860        if (ret != 0) {
 861            return ret;
 862        }
 863    } else {
 864        /* path-empty is effectively empty */
 865        if (uri != NULL) {
 866            g_free(uri->path);
 867            uri->path = NULL;
 868        }
 869    }
 870
 871    if (*str == '?') {
 872        str++;
 873        ret = rfc3986_parse_query(uri, &str);
 874        if (ret != 0) {
 875            return ret;
 876        }
 877    }
 878    if (*str == '#') {
 879        str++;
 880        ret = rfc3986_parse_fragment(uri, &str);
 881        if (ret != 0) {
 882            return ret;
 883        }
 884    }
 885    if (*str != 0) {
 886        uri_clean(uri);
 887        return 1;
 888    }
 889    return 0;
 890}
 891
 892/**
 893 * rfc3986_parse:
 894 * @uri:  pointer to an URI structure
 895 * @str:  the string to analyze
 896 *
 897 * Parse an URI string and fills in the appropriate fields
 898 * of the @uri structure
 899 *
 900 * scheme ":" hier-part [ "?" query ] [ "#" fragment ]
 901 *
 902 * Returns 0 or the error code
 903 */
 904static int rfc3986_parse(URI *uri, const char *str)
 905{
 906    int ret;
 907
 908    ret = rfc3986_parse_scheme(uri, &str);
 909    if (ret != 0) {
 910        return ret;
 911    }
 912    if (*str != ':') {
 913        return 1;
 914    }
 915    str++;
 916    ret = rfc3986_parse_hier_part(uri, &str);
 917    if (ret != 0) {
 918        return ret;
 919    }
 920    if (*str == '?') {
 921        str++;
 922        ret = rfc3986_parse_query(uri, &str);
 923        if (ret != 0) {
 924            return ret;
 925        }
 926    }
 927    if (*str == '#') {
 928        str++;
 929        ret = rfc3986_parse_fragment(uri, &str);
 930        if (ret != 0) {
 931            return ret;
 932        }
 933    }
 934    if (*str != 0) {
 935        uri_clean(uri);
 936        return 1;
 937    }
 938    return 0;
 939}
 940
 941/**
 942 * rfc3986_parse_uri_reference:
 943 * @uri:  pointer to an URI structure
 944 * @str:  the string to analyze
 945 *
 946 * Parse an URI reference string and fills in the appropriate fields
 947 * of the @uri structure
 948 *
 949 * URI-reference = URI / relative-ref
 950 *
 951 * Returns 0 or the error code
 952 */
 953static int rfc3986_parse_uri_reference(URI *uri, const char *str)
 954{
 955    int ret;
 956
 957    if (str == NULL) {
 958        return -1;
 959    }
 960    uri_clean(uri);
 961
 962    /*
 963     * Try first to parse absolute refs, then fallback to relative if
 964     * it fails.
 965     */
 966    ret = rfc3986_parse(uri, str);
 967    if (ret != 0) {
 968        uri_clean(uri);
 969        ret = rfc3986_parse_relative_ref(uri, str);
 970        if (ret != 0) {
 971            uri_clean(uri);
 972            return ret;
 973        }
 974    }
 975    return 0;
 976}
 977
 978/**
 979 * uri_parse:
 980 * @str:  the URI string to analyze
 981 *
 982 * Parse an URI based on RFC 3986
 983 *
 984 * URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
 985 *
 986 * Returns a newly built URI or NULL in case of error
 987 */
 988URI *uri_parse(const char *str)
 989{
 990    URI *uri;
 991    int ret;
 992
 993    if (str == NULL) {
 994        return NULL;
 995    }
 996    uri = uri_new();
 997    ret = rfc3986_parse_uri_reference(uri, str);
 998    if (ret) {
 999        uri_free(uri);
1000        return NULL;
1001    }
1002    return uri;
1003}
1004
1005/**
1006 * uri_parse_into:
1007 * @uri:  pointer to an URI structure
1008 * @str:  the string to analyze
1009 *
1010 * Parse an URI reference string based on RFC 3986 and fills in the
1011 * appropriate fields of the @uri structure
1012 *
1013 * URI-reference = URI / relative-ref
1014 *
1015 * Returns 0 or the error code
1016 */
1017int uri_parse_into(URI *uri, const char *str)
1018{
1019    return rfc3986_parse_uri_reference(uri, str);
1020}
1021
1022/**
1023 * uri_parse_raw:
1024 * @str:  the URI string to analyze
1025 * @raw:  if 1 unescaping of URI pieces are disabled
1026 *
1027 * Parse an URI but allows to keep intact the original fragments.
1028 *
1029 * URI-reference = URI / relative-ref
1030 *
1031 * Returns a newly built URI or NULL in case of error
1032 */
1033URI *uri_parse_raw(const char *str, int raw)
1034{
1035    URI *uri;
1036    int ret;
1037
1038    if (str == NULL) {
1039        return NULL;
1040    }
1041    uri = uri_new();
1042    if (raw) {
1043        uri->cleanup |= 2;
1044    }
1045    ret = uri_parse_into(uri, str);
1046    if (ret) {
1047        uri_free(uri);
1048        return NULL;
1049    }
1050    return uri;
1051}
1052
1053/************************************************************************
1054 *                                                                      *
1055 *                    Generic URI structure functions                   *
1056 *                                                                      *
1057 ************************************************************************/
1058
1059/**
1060 * uri_new:
1061 *
1062 * Simply creates an empty URI
1063 *
1064 * Returns the new structure or NULL in case of error
1065 */
1066URI *uri_new(void)
1067{
1068    URI *ret;
1069
1070    ret = g_new0(URI, 1);
1071    return ret;
1072}
1073
1074/**
1075 * realloc2n:
1076 *
1077 * Function to handle properly a reallocation when saving an URI
1078 * Also imposes some limit on the length of an URI string output
1079 */
1080static char *realloc2n(char *ret, int *max)
1081{
1082    char *temp;
1083    int tmp;
1084
1085    tmp = *max * 2;
1086    temp = g_realloc(ret, (tmp + 1));
1087    *max = tmp;
1088    return temp;
1089}
1090
1091/**
1092 * uri_to_string:
1093 * @uri:  pointer to an URI
1094 *
1095 * Save the URI as an escaped string
1096 *
1097 * Returns a new string (to be deallocated by caller)
1098 */
1099char *uri_to_string(URI *uri)
1100{
1101    char *ret = NULL;
1102    char *temp;
1103    const char *p;
1104    int len;
1105    int max;
1106
1107    if (uri == NULL) {
1108        return NULL;
1109    }
1110
1111    max = 80;
1112    ret = g_malloc(max + 1);
1113    len = 0;
1114
1115    if (uri->scheme != NULL) {
1116        p = uri->scheme;
1117        while (*p != 0) {
1118            if (len >= max) {
1119                temp = realloc2n(ret, &max);
1120                ret = temp;
1121            }
1122            ret[len++] = *p++;
1123        }
1124        if (len >= max) {
1125            temp = realloc2n(ret, &max);
1126            ret = temp;
1127        }
1128        ret[len++] = ':';
1129    }
1130    if (uri->opaque != NULL) {
1131        p = uri->opaque;
1132        while (*p != 0) {
1133            if (len + 3 >= max) {
1134                temp = realloc2n(ret, &max);
1135                ret = temp;
1136            }
1137            if (IS_RESERVED(*(p)) || IS_UNRESERVED(*(p))) {
1138                ret[len++] = *p++;
1139            } else {
1140                int val = *(unsigned char *)p++;
1141                int hi = val / 0x10, lo = val % 0x10;
1142                ret[len++] = '%';
1143                ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1144                ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1145            }
1146        }
1147    } else {
1148        if (uri->server != NULL) {
1149            if (len + 3 >= max) {
1150                temp = realloc2n(ret, &max);
1151                ret = temp;
1152            }
1153            ret[len++] = '/';
1154            ret[len++] = '/';
1155            if (uri->user != NULL) {
1156                p = uri->user;
1157                while (*p != 0) {
1158                    if (len + 3 >= max) {
1159                        temp = realloc2n(ret, &max);
1160                        ret = temp;
1161                    }
1162                    if ((IS_UNRESERVED(*(p))) || ((*(p) == ';')) ||
1163                        ((*(p) == ':')) || ((*(p) == '&')) || ((*(p) == '=')) ||
1164                        ((*(p) == '+')) || ((*(p) == '$')) || ((*(p) == ','))) {
1165                        ret[len++] = *p++;
1166                    } else {
1167                        int val = *(unsigned char *)p++;
1168                        int hi = val / 0x10, lo = val % 0x10;
1169                        ret[len++] = '%';
1170                        ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1171                        ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1172                    }
1173                }
1174                if (len + 3 >= max) {
1175                    temp = realloc2n(ret, &max);
1176                    ret = temp;
1177                }
1178                ret[len++] = '@';
1179            }
1180            p = uri->server;
1181            while (*p != 0) {
1182                if (len >= max) {
1183                    temp = realloc2n(ret, &max);
1184                    ret = temp;
1185                }
1186                ret[len++] = *p++;
1187            }
1188            if (uri->port > 0) {
1189                if (len + 10 >= max) {
1190                    temp = realloc2n(ret, &max);
1191                    ret = temp;
1192                }
1193                len += snprintf(&ret[len], max - len, ":%d", uri->port);
1194            }
1195        } else if (uri->authority != NULL) {
1196            if (len + 3 >= max) {
1197                temp = realloc2n(ret, &max);
1198                ret = temp;
1199            }
1200            ret[len++] = '/';
1201            ret[len++] = '/';
1202            p = uri->authority;
1203            while (*p != 0) {
1204                if (len + 3 >= max) {
1205                    temp = realloc2n(ret, &max);
1206                    ret = temp;
1207                }
1208                if ((IS_UNRESERVED(*(p))) || ((*(p) == '$')) ||
1209                    ((*(p) == ',')) || ((*(p) == ';')) || ((*(p) == ':')) ||
1210                    ((*(p) == '@')) || ((*(p) == '&')) || ((*(p) == '=')) ||
1211                    ((*(p) == '+'))) {
1212                    ret[len++] = *p++;
1213                } else {
1214                    int val = *(unsigned char *)p++;
1215                    int hi = val / 0x10, lo = val % 0x10;
1216                    ret[len++] = '%';
1217                    ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1218                    ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1219                }
1220            }
1221        } else if (uri->scheme != NULL) {
1222            if (len + 3 >= max) {
1223                temp = realloc2n(ret, &max);
1224                ret = temp;
1225            }
1226            ret[len++] = '/';
1227            ret[len++] = '/';
1228        }
1229        if (uri->path != NULL) {
1230            p = uri->path;
1231            /*
1232             * the colon in file:///d: should not be escaped or
1233             * Windows accesses fail later.
1234             */
1235            if ((uri->scheme != NULL) && (p[0] == '/') &&
1236                (((p[1] >= 'a') && (p[1] <= 'z')) ||
1237                 ((p[1] >= 'A') && (p[1] <= 'Z'))) &&
1238                (p[2] == ':') && (!strcmp(uri->scheme, "file"))) {
1239                if (len + 3 >= max) {
1240                    temp = realloc2n(ret, &max);
1241                    ret = temp;
1242                }
1243                ret[len++] = *p++;
1244                ret[len++] = *p++;
1245                ret[len++] = *p++;
1246            }
1247            while (*p != 0) {
1248                if (len + 3 >= max) {
1249                    temp = realloc2n(ret, &max);
1250                    ret = temp;
1251                }
1252                if ((IS_UNRESERVED(*(p))) || ((*(p) == '/')) ||
1253                    ((*(p) == ';')) || ((*(p) == '@')) || ((*(p) == '&')) ||
1254                    ((*(p) == '=')) || ((*(p) == '+')) || ((*(p) == '$')) ||
1255                    ((*(p) == ','))) {
1256                    ret[len++] = *p++;
1257                } else {
1258                    int val = *(unsigned char *)p++;
1259                    int hi = val / 0x10, lo = val % 0x10;
1260                    ret[len++] = '%';
1261                    ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1262                    ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1263                }
1264            }
1265        }
1266        if (uri->query != NULL) {
1267            if (len + 1 >= max) {
1268                temp = realloc2n(ret, &max);
1269                ret = temp;
1270            }
1271            ret[len++] = '?';
1272            p = uri->query;
1273            while (*p != 0) {
1274                if (len + 1 >= max) {
1275                    temp = realloc2n(ret, &max);
1276                    ret = temp;
1277                }
1278                ret[len++] = *p++;
1279            }
1280        }
1281    }
1282    if (uri->fragment != NULL) {
1283        if (len + 3 >= max) {
1284            temp = realloc2n(ret, &max);
1285            ret = temp;
1286        }
1287        ret[len++] = '#';
1288        p = uri->fragment;
1289        while (*p != 0) {
1290            if (len + 3 >= max) {
1291                temp = realloc2n(ret, &max);
1292                ret = temp;
1293            }
1294            if ((IS_UNRESERVED(*(p))) || (IS_RESERVED(*(p)))) {
1295                ret[len++] = *p++;
1296            } else {
1297                int val = *(unsigned char *)p++;
1298                int hi = val / 0x10, lo = val % 0x10;
1299                ret[len++] = '%';
1300                ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1301                ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1302            }
1303        }
1304    }
1305    if (len >= max) {
1306        temp = realloc2n(ret, &max);
1307        ret = temp;
1308    }
1309    ret[len] = 0;
1310    return ret;
1311}
1312
1313/**
1314 * uri_clean:
1315 * @uri:  pointer to an URI
1316 *
1317 * Make sure the URI struct is free of content
1318 */
1319static void uri_clean(URI *uri)
1320{
1321    if (uri == NULL) {
1322        return;
1323    }
1324
1325    g_free(uri->scheme);
1326    uri->scheme = NULL;
1327    g_free(uri->server);
1328    uri->server = NULL;
1329    g_free(uri->user);
1330    uri->user = NULL;
1331    g_free(uri->path);
1332    uri->path = NULL;
1333    g_free(uri->fragment);
1334    uri->fragment = NULL;
1335    g_free(uri->opaque);
1336    uri->opaque = NULL;
1337    g_free(uri->authority);
1338    uri->authority = NULL;
1339    g_free(uri->query);
1340    uri->query = NULL;
1341}
1342
1343/**
1344 * uri_free:
1345 * @uri:  pointer to an URI
1346 *
1347 * Free up the URI struct
1348 */
1349void uri_free(URI *uri)
1350{
1351    uri_clean(uri);
1352    g_free(uri);
1353}
1354
1355/************************************************************************
1356 *                                                                      *
1357 *                           Helper functions                           *
1358 *                                                                      *
1359 ************************************************************************/
1360
1361/**
1362 * normalize_uri_path:
1363 * @path:  pointer to the path string
1364 *
1365 * Applies the 5 normalization steps to a path string--that is, RFC 2396
1366 * Section 5.2, steps 6.c through 6.g.
1367 *
1368 * Normalization occurs directly on the string, no new allocation is done
1369 *
1370 * Returns 0 or an error code
1371 */
1372static int normalize_uri_path(char *path)
1373{
1374    char *cur, *out;
1375
1376    if (path == NULL) {
1377        return -1;
1378    }
1379
1380    /* Skip all initial "/" chars.  We want to get to the beginning of the
1381     * first non-empty segment.
1382     */
1383    cur = path;
1384    while (cur[0] == '/') {
1385        ++cur;
1386    }
1387    if (cur[0] == '\0') {
1388        return 0;
1389    }
1390
1391    /* Keep everything we've seen so far.  */
1392    out = cur;
1393
1394    /*
1395     * Analyze each segment in sequence for cases (c) and (d).
1396     */
1397    while (cur[0] != '\0') {
1398        /*
1399         * c) All occurrences of "./", where "." is a complete path segment,
1400         *    are removed from the buffer string.
1401         */
1402        if ((cur[0] == '.') && (cur[1] == '/')) {
1403            cur += 2;
1404            /* '//' normalization should be done at this point too */
1405            while (cur[0] == '/') {
1406                cur++;
1407            }
1408            continue;
1409        }
1410
1411        /*
1412         * d) If the buffer string ends with "." as a complete path segment,
1413         *    that "." is removed.
1414         */
1415        if ((cur[0] == '.') && (cur[1] == '\0')) {
1416            break;
1417        }
1418
1419        /* Otherwise keep the segment.  */
1420        while (cur[0] != '/') {
1421            if (cur[0] == '\0') {
1422                goto done_cd;
1423            }
1424            (out++)[0] = (cur++)[0];
1425        }
1426        /* nomalize // */
1427        while ((cur[0] == '/') && (cur[1] == '/')) {
1428            cur++;
1429        }
1430
1431        (out++)[0] = (cur++)[0];
1432    }
1433done_cd:
1434    out[0] = '\0';
1435
1436    /* Reset to the beginning of the first segment for the next sequence.  */
1437    cur = path;
1438    while (cur[0] == '/') {
1439        ++cur;
1440    }
1441    if (cur[0] == '\0') {
1442        return 0;
1443    }
1444
1445    /*
1446     * Analyze each segment in sequence for cases (e) and (f).
1447     *
1448     * e) All occurrences of "<segment>/../", where <segment> is a
1449     *    complete path segment not equal to "..", are removed from the
1450     *    buffer string.  Removal of these path segments is performed
1451     *    iteratively, removing the leftmost matching pattern on each
1452     *    iteration, until no matching pattern remains.
1453     *
1454     * f) If the buffer string ends with "<segment>/..", where <segment>
1455     *    is a complete path segment not equal to "..", that
1456     *    "<segment>/.." is removed.
1457     *
1458     * To satisfy the "iterative" clause in (e), we need to collapse the
1459     * string every time we find something that needs to be removed.  Thus,
1460     * we don't need to keep two pointers into the string: we only need a
1461     * "current position" pointer.
1462     */
1463    while (1) {
1464        char *segp, *tmp;
1465
1466        /* At the beginning of each iteration of this loop, "cur" points to
1467         * the first character of the segment we want to examine.
1468         */
1469
1470        /* Find the end of the current segment.  */
1471        segp = cur;
1472        while ((segp[0] != '/') && (segp[0] != '\0')) {
1473            ++segp;
1474        }
1475
1476        /* If this is the last segment, we're done (we need at least two
1477         * segments to meet the criteria for the (e) and (f) cases).
1478         */
1479        if (segp[0] == '\0') {
1480            break;
1481        }
1482
1483        /* If the first segment is "..", or if the next segment _isn't_ "..",
1484         * keep this segment and try the next one.
1485         */
1486        ++segp;
1487        if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur + 3)) ||
1488            ((segp[0] != '.') || (segp[1] != '.') ||
1489             ((segp[2] != '/') && (segp[2] != '\0')))) {
1490            cur = segp;
1491            continue;
1492        }
1493
1494        /* If we get here, remove this segment and the next one and back up
1495         * to the previous segment (if there is one), to implement the
1496         * "iteratively" clause.  It's pretty much impossible to back up
1497         * while maintaining two pointers into the buffer, so just compact
1498         * the whole buffer now.
1499         */
1500
1501        /* If this is the end of the buffer, we're done.  */
1502        if (segp[2] == '\0') {
1503            cur[0] = '\0';
1504            break;
1505        }
1506        /* Valgrind complained, strcpy(cur, segp + 3); */
1507        /* string will overlap, do not use strcpy */
1508        tmp = cur;
1509        segp += 3;
1510        while ((*tmp++ = *segp++) != 0) {
1511            /* No further work */
1512        }
1513
1514        /* If there are no previous segments, then keep going from here.  */
1515        segp = cur;
1516        while ((segp > path) && ((--segp)[0] == '/')) {
1517            /* No further work */
1518        }
1519        if (segp == path) {
1520            continue;
1521        }
1522
1523        /* "segp" is pointing to the end of a previous segment; find it's
1524         * start.  We need to back up to the previous segment and start
1525         * over with that to handle things like "foo/bar/../..".  If we
1526         * don't do this, then on the first pass we'll remove the "bar/..",
1527         * but be pointing at the second ".." so we won't realize we can also
1528         * remove the "foo/..".
1529         */
1530        cur = segp;
1531        while ((cur > path) && (cur[-1] != '/')) {
1532            --cur;
1533        }
1534    }
1535    out[0] = '\0';
1536
1537    /*
1538     * g) If the resulting buffer string still begins with one or more
1539     *    complete path segments of "..", then the reference is
1540     *    considered to be in error. Implementations may handle this
1541     *    error by retaining these components in the resolved path (i.e.,
1542     *    treating them as part of the final URI), by removing them from
1543     *    the resolved path (i.e., discarding relative levels above the
1544     *    root), or by avoiding traversal of the reference.
1545     *
1546     * We discard them from the final path.
1547     */
1548    if (path[0] == '/') {
1549        cur = path;
1550        while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.') &&
1551               ((cur[3] == '/') || (cur[3] == '\0'))) {
1552            cur += 3;
1553        }
1554
1555        if (cur != path) {
1556            out = path;
1557            while (cur[0] != '\0') {
1558                (out++)[0] = (cur++)[0];
1559            }
1560            out[0] = 0;
1561        }
1562    }
1563
1564    return 0;
1565}
1566
1567static int is_hex(char c)
1568{
1569    if (((c >= '0') && (c <= '9')) || ((c >= 'a') && (c <= 'f')) ||
1570        ((c >= 'A') && (c <= 'F'))) {
1571        return 1;
1572    }
1573    return 0;
1574}
1575
1576/**
1577 * uri_string_unescape:
1578 * @str:  the string to unescape
1579 * @len:   the length in bytes to unescape (or <= 0 to indicate full string)
1580 * @target:  optional destination buffer
1581 *
1582 * Unescaping routine, but does not check that the string is an URI. The
1583 * output is a direct unsigned char translation of %XX values (no encoding)
1584 * Note that the length of the result can only be smaller or same size as
1585 * the input string.
1586 *
1587 * Returns a copy of the string, but unescaped, will return NULL only in case
1588 * of error
1589 */
1590char *uri_string_unescape(const char *str, int len, char *target)
1591{
1592    char *ret, *out;
1593    const char *in;
1594
1595    if (str == NULL) {
1596        return NULL;
1597    }
1598    if (len <= 0) {
1599        len = strlen(str);
1600    }
1601    if (len < 0) {
1602        return NULL;
1603    }
1604
1605    if (target == NULL) {
1606        ret = g_malloc(len + 1);
1607    } else {
1608        ret = target;
1609    }
1610    in = str;
1611    out = ret;
1612    while (len > 0) {
1613        if ((len > 2) && (*in == '%') && (is_hex(in[1])) && (is_hex(in[2]))) {
1614            in++;
1615            if ((*in >= '0') && (*in <= '9')) {
1616                *out = (*in - '0');
1617            } else if ((*in >= 'a') && (*in <= 'f')) {
1618                *out = (*in - 'a') + 10;
1619            } else if ((*in >= 'A') && (*in <= 'F')) {
1620                *out = (*in - 'A') + 10;
1621            }
1622            in++;
1623            if ((*in >= '0') && (*in <= '9')) {
1624                *out = *out * 16 + (*in - '0');
1625            } else if ((*in >= 'a') && (*in <= 'f')) {
1626                *out = *out * 16 + (*in - 'a') + 10;
1627            } else if ((*in >= 'A') && (*in <= 'F')) {
1628                *out = *out * 16 + (*in - 'A') + 10;
1629            }
1630            in++;
1631            len -= 3;
1632            out++;
1633        } else {
1634            *out++ = *in++;
1635            len--;
1636        }
1637    }
1638    *out = 0;
1639    return ret;
1640}
1641
1642/**
1643 * uri_string_escape:
1644 * @str:  string to escape
1645 * @list: exception list string of chars not to escape
1646 *
1647 * This routine escapes a string to hex, ignoring reserved characters (a-z)
1648 * and the characters in the exception list.
1649 *
1650 * Returns a new escaped string or NULL in case of error.
1651 */
1652char *uri_string_escape(const char *str, const char *list)
1653{
1654    char *ret, ch;
1655    char *temp;
1656    const char *in;
1657    int len, out;
1658
1659    if (str == NULL) {
1660        return NULL;
1661    }
1662    if (str[0] == 0) {
1663        return g_strdup(str);
1664    }
1665    len = strlen(str);
1666    if (!(len > 0)) {
1667        return NULL;
1668    }
1669
1670    len += 20;
1671    ret = g_malloc(len);
1672    in = str;
1673    out = 0;
1674    while (*in != 0) {
1675        if (len - out <= 3) {
1676            temp = realloc2n(ret, &len);
1677            ret = temp;
1678        }
1679
1680        ch = *in;
1681
1682        if ((ch != '@') && (!IS_UNRESERVED(ch)) && (!strchr(list, ch))) {
1683            unsigned char val;
1684            ret[out++] = '%';
1685            val = ch >> 4;
1686            if (val <= 9) {
1687                ret[out++] = '0' + val;
1688            } else {
1689                ret[out++] = 'A' + val - 0xA;
1690            }
1691            val = ch & 0xF;
1692            if (val <= 9) {
1693                ret[out++] = '0' + val;
1694            } else {
1695                ret[out++] = 'A' + val - 0xA;
1696            }
1697            in++;
1698        } else {
1699            ret[out++] = *in++;
1700        }
1701    }
1702    ret[out] = 0;
1703    return ret;
1704}
1705
1706/************************************************************************
1707 *                                                                      *
1708 *                           Public functions                           *
1709 *                                                                      *
1710 ************************************************************************/
1711
1712/**
1713 * uri_resolve:
1714 * @URI:  the URI instance found in the document
1715 * @base:  the base value
1716 *
1717 * Computes he final URI of the reference done by checking that
1718 * the given URI is valid, and building the final URI using the
1719 * base URI. This is processed according to section 5.2 of the
1720 * RFC 2396
1721 *
1722 * 5.2. Resolving Relative References to Absolute Form
1723 *
1724 * Returns a new URI string (to be freed by the caller) or NULL in case
1725 *         of error.
1726 */
1727char *uri_resolve(const char *uri, const char *base)
1728{
1729    char *val = NULL;
1730    int ret, len, indx, cur, out;
1731    URI *ref = NULL;
1732    URI *bas = NULL;
1733    URI *res = NULL;
1734
1735    /*
1736     * 1) The URI reference is parsed into the potential four components and
1737     *    fragment identifier, as described in Section 4.3.
1738     *
1739     *    NOTE that a completely empty URI is treated by modern browsers
1740     *    as a reference to "." rather than as a synonym for the current
1741     *    URI.  Should we do that here?
1742     */
1743    if (uri == NULL) {
1744        ret = -1;
1745    } else {
1746        if (*uri) {
1747            ref = uri_new();
1748            ret = uri_parse_into(ref, uri);
1749        } else {
1750            ret = 0;
1751        }
1752    }
1753    if (ret != 0) {
1754        goto done;
1755    }
1756    if ((ref != NULL) && (ref->scheme != NULL)) {
1757        /*
1758         * The URI is absolute don't modify.
1759         */
1760        val = g_strdup(uri);
1761        goto done;
1762    }
1763    if (base == NULL) {
1764        ret = -1;
1765    } else {
1766        bas = uri_new();
1767        ret = uri_parse_into(bas, base);
1768    }
1769    if (ret != 0) {
1770        if (ref) {
1771            val = uri_to_string(ref);
1772        }
1773        goto done;
1774    }
1775    if (ref == NULL) {
1776        /*
1777         * the base fragment must be ignored
1778         */
1779        g_free(bas->fragment);
1780        bas->fragment = NULL;
1781        val = uri_to_string(bas);
1782        goto done;
1783    }
1784
1785    /*
1786     * 2) If the path component is empty and the scheme, authority, and
1787     *    query components are undefined, then it is a reference to the
1788     *    current document and we are done.  Otherwise, the reference URI's
1789     *    query and fragment components are defined as found (or not found)
1790     *    within the URI reference and not inherited from the base URI.
1791     *
1792     *    NOTE that in modern browsers, the parsing differs from the above
1793     *    in the following aspect:  the query component is allowed to be
1794     *    defined while still treating this as a reference to the current
1795     *    document.
1796     */
1797    res = uri_new();
1798    if ((ref->scheme == NULL) && (ref->path == NULL) &&
1799        ((ref->authority == NULL) && (ref->server == NULL))) {
1800        res->scheme = g_strdup(bas->scheme);
1801        if (bas->authority != NULL) {
1802            res->authority = g_strdup(bas->authority);
1803        } else if (bas->server != NULL) {
1804            res->server = g_strdup(bas->server);
1805            res->user = g_strdup(bas->user);
1806            res->port = bas->port;
1807        }
1808        res->path = g_strdup(bas->path);
1809        if (ref->query != NULL) {
1810            res->query = g_strdup(ref->query);
1811        } else {
1812            res->query = g_strdup(bas->query);
1813        }
1814        res->fragment = g_strdup(ref->fragment);
1815        goto step_7;
1816    }
1817
1818    /*
1819     * 3) If the scheme component is defined, indicating that the reference
1820     *    starts with a scheme name, then the reference is interpreted as an
1821     *    absolute URI and we are done.  Otherwise, the reference URI's
1822     *    scheme is inherited from the base URI's scheme component.
1823     */
1824    if (ref->scheme != NULL) {
1825        val = uri_to_string(ref);
1826        goto done;
1827    }
1828    res->scheme = g_strdup(bas->scheme);
1829
1830    res->query = g_strdup(ref->query);
1831    res->fragment = g_strdup(ref->fragment);
1832
1833    /*
1834     * 4) If the authority component is defined, then the reference is a
1835     *    network-path and we skip to step 7.  Otherwise, the reference
1836     *    URI's authority is inherited from the base URI's authority
1837     *    component, which will also be undefined if the URI scheme does not
1838     *    use an authority component.
1839     */
1840    if ((ref->authority != NULL) || (ref->server != NULL)) {
1841        if (ref->authority != NULL) {
1842            res->authority = g_strdup(ref->authority);
1843        } else {
1844            res->server = g_strdup(ref->server);
1845            res->user = g_strdup(ref->user);
1846            res->port = ref->port;
1847        }
1848        res->path = g_strdup(ref->path);
1849        goto step_7;
1850    }
1851    if (bas->authority != NULL) {
1852        res->authority = g_strdup(bas->authority);
1853    } else if (bas->server != NULL) {
1854        res->server = g_strdup(bas->server);
1855        res->user = g_strdup(bas->user);
1856        res->port = bas->port;
1857    }
1858
1859    /*
1860     * 5) If the path component begins with a slash character ("/"), then
1861     *    the reference is an absolute-path and we skip to step 7.
1862     */
1863    if ((ref->path != NULL) && (ref->path[0] == '/')) {
1864        res->path = g_strdup(ref->path);
1865        goto step_7;
1866    }
1867
1868    /*
1869     * 6) If this step is reached, then we are resolving a relative-path
1870     *    reference.  The relative path needs to be merged with the base
1871     *    URI's path.  Although there are many ways to do this, we will
1872     *    describe a simple method using a separate string buffer.
1873     *
1874     * Allocate a buffer large enough for the result string.
1875     */
1876    len = 2; /* extra / and 0 */
1877    if (ref->path != NULL) {
1878        len += strlen(ref->path);
1879    }
1880    if (bas->path != NULL) {
1881        len += strlen(bas->path);
1882    }
1883    res->path = g_malloc(len);
1884    res->path[0] = 0;
1885
1886    /*
1887     * a) All but the last segment of the base URI's path component is
1888     *    copied to the buffer.  In other words, any characters after the
1889     *    last (right-most) slash character, if any, are excluded.
1890     */
1891    cur = 0;
1892    out = 0;
1893    if (bas->path != NULL) {
1894        while (bas->path[cur] != 0) {
1895            while ((bas->path[cur] != 0) && (bas->path[cur] != '/')) {
1896                cur++;
1897            }
1898            if (bas->path[cur] == 0) {
1899                break;
1900            }
1901
1902            cur++;
1903            while (out < cur) {
1904                res->path[out] = bas->path[out];
1905                out++;
1906            }
1907        }
1908    }
1909    res->path[out] = 0;
1910
1911    /*
1912     * b) The reference's path component is appended to the buffer
1913     *    string.
1914     */
1915    if (ref->path != NULL && ref->path[0] != 0) {
1916        indx = 0;
1917        /*
1918         * Ensure the path includes a '/'
1919         */
1920        if ((out == 0) && (bas->server != NULL)) {
1921            res->path[out++] = '/';
1922        }
1923        while (ref->path[indx] != 0) {
1924            res->path[out++] = ref->path[indx++];
1925        }
1926    }
1927    res->path[out] = 0;
1928
1929    /*
1930     * Steps c) to h) are really path normalization steps
1931     */
1932    normalize_uri_path(res->path);
1933
1934step_7:
1935
1936    /*
1937     * 7) The resulting URI components, including any inherited from the
1938     *    base URI, are recombined to give the absolute form of the URI
1939     *    reference.
1940     */
1941    val = uri_to_string(res);
1942
1943done:
1944    if (ref != NULL) {
1945        uri_free(ref);
1946    }
1947    if (bas != NULL) {
1948        uri_free(bas);
1949    }
1950    if (res != NULL) {
1951        uri_free(res);
1952    }
1953    return val;
1954}
1955
1956/**
1957 * uri_resolve_relative:
1958 * @URI:  the URI reference under consideration
1959 * @base:  the base value
1960 *
1961 * Expresses the URI of the reference in terms relative to the
1962 * base.  Some examples of this operation include:
1963 *     base = "http://site1.com/docs/book1.html"
1964 *        URI input                        URI returned
1965 *     docs/pic1.gif                    pic1.gif
1966 *     docs/img/pic1.gif                img/pic1.gif
1967 *     img/pic1.gif                     ../img/pic1.gif
1968 *     http://site1.com/docs/pic1.gif   pic1.gif
1969 *     http://site2.com/docs/pic1.gif   http://site2.com/docs/pic1.gif
1970 *
1971 *     base = "docs/book1.html"
1972 *        URI input                        URI returned
1973 *     docs/pic1.gif                    pic1.gif
1974 *     docs/img/pic1.gif                img/pic1.gif
1975 *     img/pic1.gif                     ../img/pic1.gif
1976 *     http://site1.com/docs/pic1.gif   http://site1.com/docs/pic1.gif
1977 *
1978 *
1979 * Note: if the URI reference is really weird or complicated, it may be
1980 *       worthwhile to first convert it into a "nice" one by calling
1981 *       uri_resolve (using 'base') before calling this routine,
1982 *       since this routine (for reasonable efficiency) assumes URI has
1983 *       already been through some validation.
1984 *
1985 * Returns a new URI string (to be freed by the caller) or NULL in case
1986 * error.
1987 */
1988char *uri_resolve_relative(const char *uri, const char *base)
1989{
1990    char *val = NULL;
1991    int ret;
1992    int ix;
1993    int pos = 0;
1994    int nbslash = 0;
1995    int len;
1996    URI *ref = NULL;
1997    URI *bas = NULL;
1998    char *bptr, *uptr, *vptr;
1999    int remove_path = 0;
2000
2001    if ((uri == NULL) || (*uri == 0)) {
2002        return NULL;
2003    }
2004
2005    /*
2006     * First parse URI into a standard form
2007     */
2008    ref = uri_new();
2009    /* If URI not already in "relative" form */
2010    if (uri[0] != '.') {
2011        ret = uri_parse_into(ref, uri);
2012        if (ret != 0) {
2013            goto done; /* Error in URI, return NULL */
2014        }
2015    } else {
2016        ref->path = g_strdup(uri);
2017    }
2018
2019    /*
2020     * Next parse base into the same standard form
2021     */
2022    if ((base == NULL) || (*base == 0)) {
2023        val = g_strdup(uri);
2024        goto done;
2025    }
2026    bas = uri_new();
2027    if (base[0] != '.') {
2028        ret = uri_parse_into(bas, base);
2029        if (ret != 0) {
2030            goto done; /* Error in base, return NULL */
2031        }
2032    } else {
2033        bas->path = g_strdup(base);
2034    }
2035
2036    /*
2037     * If the scheme / server on the URI differs from the base,
2038     * just return the URI
2039     */
2040    if ((ref->scheme != NULL) &&
2041        ((bas->scheme == NULL) || (strcmp(bas->scheme, ref->scheme)) ||
2042         (strcmp(bas->server, ref->server)))) {
2043        val = g_strdup(uri);
2044        goto done;
2045    }
2046    if (bas->path == ref->path ||
2047        (bas->path && ref->path && !strcmp(bas->path, ref->path))) {
2048        val = g_strdup("");
2049        goto done;
2050    }
2051    if (bas->path == NULL) {
2052        val = g_strdup(ref->path);
2053        goto done;
2054    }
2055    if (ref->path == NULL) {
2056        ref->path = (char *)"/";
2057        remove_path = 1;
2058    }
2059
2060    /*
2061     * At this point (at last!) we can compare the two paths
2062     *
2063     * First we take care of the special case where either of the
2064     * two path components may be missing (bug 316224)
2065     */
2066    if (bas->path == NULL) {
2067        if (ref->path != NULL) {
2068            uptr = ref->path;
2069            if (*uptr == '/') {
2070                uptr++;
2071            }
2072            /* exception characters from uri_to_string */
2073            val = uri_string_escape(uptr, "/;&=+$,");
2074        }
2075        goto done;
2076    }
2077    bptr = bas->path;
2078    if (ref->path == NULL) {
2079        for (ix = 0; bptr[ix] != 0; ix++) {
2080            if (bptr[ix] == '/') {
2081                nbslash++;
2082            }
2083        }
2084        uptr = NULL;
2085        len = 1; /* this is for a string terminator only */
2086    } else {
2087        /*
2088         * Next we compare the two strings and find where they first differ
2089         */
2090        if ((ref->path[pos] == '.') && (ref->path[pos + 1] == '/')) {
2091            pos += 2;
2092        }
2093        if ((*bptr == '.') && (bptr[1] == '/')) {
2094            bptr += 2;
2095        } else if ((*bptr == '/') && (ref->path[pos] != '/')) {
2096            bptr++;
2097        }
2098        while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0)) {
2099            pos++;
2100        }
2101
2102        if (bptr[pos] == ref->path[pos]) {
2103            val = g_strdup("");
2104            goto done; /* (I can't imagine why anyone would do this) */
2105        }
2106
2107        /*
2108         * In URI, "back up" to the last '/' encountered.  This will be the
2109         * beginning of the "unique" suffix of URI
2110         */
2111        ix = pos;
2112        if ((ref->path[ix] == '/') && (ix > 0)) {
2113            ix--;
2114        } else if ((ref->path[ix] == 0) && (ix > 1)
2115                && (ref->path[ix - 1] == '/')) {
2116            ix -= 2;
2117        }
2118        for (; ix > 0; ix--) {
2119            if (ref->path[ix] == '/') {
2120                break;
2121            }
2122        }
2123        if (ix == 0) {
2124            uptr = ref->path;
2125        } else {
2126            ix++;
2127            uptr = &ref->path[ix];
2128        }
2129
2130        /*
2131         * In base, count the number of '/' from the differing point
2132         */
2133        if (bptr[pos] != ref->path[pos]) { /* check for trivial URI == base */
2134            for (; bptr[ix] != 0; ix++) {
2135                if (bptr[ix] == '/') {
2136                    nbslash++;
2137                }
2138            }
2139        }
2140        len = strlen(uptr) + 1;
2141    }
2142
2143    if (nbslash == 0) {
2144        if (uptr != NULL) {
2145            /* exception characters from uri_to_string */
2146            val = uri_string_escape(uptr, "/;&=+$,");
2147        }
2148        goto done;
2149    }
2150
2151    /*
2152     * Allocate just enough space for the returned string -
2153     * length of the remainder of the URI, plus enough space
2154     * for the "../" groups, plus one for the terminator
2155     */
2156    val = g_malloc(len + 3 * nbslash);
2157    vptr = val;
2158    /*
2159     * Put in as many "../" as needed
2160     */
2161    for (; nbslash > 0; nbslash--) {
2162        *vptr++ = '.';
2163        *vptr++ = '.';
2164        *vptr++ = '/';
2165    }
2166    /*
2167     * Finish up with the end of the URI
2168     */
2169    if (uptr != NULL) {
2170        if ((vptr > val) && (len > 0) && (uptr[0] == '/') &&
2171            (vptr[-1] == '/')) {
2172            memcpy(vptr, uptr + 1, len - 1);
2173            vptr[len - 2] = 0;
2174        } else {
2175            memcpy(vptr, uptr, len);
2176            vptr[len - 1] = 0;
2177        }
2178    } else {
2179        vptr[len - 1] = 0;
2180    }
2181
2182    /* escape the freshly-built path */
2183    vptr = val;
2184    /* exception characters from uri_to_string */
2185    val = uri_string_escape(vptr, "/;&=+$,");
2186    g_free(vptr);
2187
2188done:
2189    /*
2190     * Free the working variables
2191     */
2192    if (remove_path != 0) {
2193        ref->path = NULL;
2194    }
2195    if (ref != NULL) {
2196        uri_free(ref);
2197    }
2198    if (bas != NULL) {
2199        uri_free(bas);
2200    }
2201
2202    return val;
2203}
2204
2205/*
2206 * Utility functions to help parse and assemble query strings.
2207 */
2208
2209struct QueryParams *query_params_new(int init_alloc)
2210{
2211    struct QueryParams *ps;
2212
2213    if (init_alloc <= 0) {
2214        init_alloc = 1;
2215    }
2216
2217    ps = g_new(QueryParams, 1);
2218    ps->n = 0;
2219    ps->alloc = init_alloc;
2220    ps->p = g_new(QueryParam, ps->alloc);
2221
2222    return ps;
2223}
2224
2225/* Ensure there is space to store at least one more parameter
2226 * at the end of the set.
2227 */
2228static int query_params_append(struct QueryParams *ps, const char *name,
2229                               const char *value)
2230{
2231    if (ps->n >= ps->alloc) {
2232        ps->p = g_renew(QueryParam, ps->p, ps->alloc * 2);
2233        ps->alloc *= 2;
2234    }
2235
2236    ps->p[ps->n].name = g_strdup(name);
2237    ps->p[ps->n].value = g_strdup(value);
2238    ps->p[ps->n].ignore = 0;
2239    ps->n++;
2240
2241    return 0;
2242}
2243
2244void query_params_free(struct QueryParams *ps)
2245{
2246    int i;
2247
2248    for (i = 0; i < ps->n; ++i) {
2249        g_free(ps->p[i].name);
2250        g_free(ps->p[i].value);
2251    }
2252    g_free(ps->p);
2253    g_free(ps);
2254}
2255
2256struct QueryParams *query_params_parse(const char *query)
2257{
2258    struct QueryParams *ps;
2259    const char *end, *eq;
2260
2261    ps = query_params_new(0);
2262    if (!query || query[0] == '\0') {
2263        return ps;
2264    }
2265
2266    while (*query) {
2267        char *name = NULL, *value = NULL;
2268
2269        /* Find the next separator, or end of the string. */
2270        end = strchr(query, '&');
2271        if (!end) {
2272            end = strchr(query, ';');
2273        }
2274        if (!end) {
2275            end = query + strlen(query);
2276        }
2277
2278        /* Find the first '=' character between here and end. */
2279        eq = strchr(query, '=');
2280        if (eq && eq >= end) {
2281            eq = NULL;
2282        }
2283
2284        /* Empty section (eg. "&&"). */
2285        if (end == query) {
2286            goto next;
2287        }
2288
2289        /* If there is no '=' character, then we have just "name"
2290         * and consistent with CGI.pm we assume value is "".
2291         */
2292        else if (!eq) {
2293            name = uri_string_unescape(query, end - query, NULL);
2294            value = NULL;
2295        }
2296        /* Or if we have "name=" here (works around annoying
2297         * problem when calling uri_string_unescape with len = 0).
2298         */
2299        else if (eq + 1 == end) {
2300            name = uri_string_unescape(query, eq - query, NULL);
2301            value = g_new0(char, 1);
2302        }
2303        /* If the '=' character is at the beginning then we have
2304         * "=value" and consistent with CGI.pm we _ignore_ this.
2305         */
2306        else if (query == eq) {
2307            goto next;
2308        }
2309
2310        /* Otherwise it's "name=value". */
2311        else {
2312            name = uri_string_unescape(query, eq - query, NULL);
2313            value = uri_string_unescape(eq + 1, end - (eq + 1), NULL);
2314        }
2315
2316        /* Append to the parameter set. */
2317        query_params_append(ps, name, value);
2318        g_free(name);
2319        g_free(value);
2320
2321    next:
2322        query = end;
2323        if (*query) {
2324            query++; /* skip '&' separator */
2325        }
2326    }
2327
2328    return ps;
2329}
2330