qemu/util/qemu-thread-win32.c
<<
>>
Prefs
   1/*
   2 * Win32 implementation for mutex/cond/thread functions
   3 *
   4 * Copyright Red Hat, Inc. 2010
   5 *
   6 * Author:
   7 *  Paolo Bonzini <pbonzini@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13#include "qemu-common.h"
  14#include "qemu/thread.h"
  15#include <process.h>
  16#include <assert.h>
  17#include <limits.h>
  18
  19static bool name_threads;
  20
  21void qemu_thread_naming(bool enable)
  22{
  23    /* But note we don't actually name them on Windows yet */
  24    name_threads = enable;
  25
  26    fprintf(stderr, "qemu: thread naming not supported on this host\n");
  27}
  28
  29static void error_exit(int err, const char *msg)
  30{
  31    char *pstr;
  32
  33    FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
  34                  NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
  35    fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
  36    LocalFree(pstr);
  37    abort();
  38}
  39
  40void qemu_mutex_init(QemuMutex *mutex)
  41{
  42    mutex->owner = 0;
  43    InitializeCriticalSection(&mutex->lock);
  44}
  45
  46void qemu_mutex_destroy(QemuMutex *mutex)
  47{
  48    assert(mutex->owner == 0);
  49    DeleteCriticalSection(&mutex->lock);
  50}
  51
  52void qemu_mutex_lock(QemuMutex *mutex)
  53{
  54    EnterCriticalSection(&mutex->lock);
  55
  56    /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
  57     * using them as such.
  58     */
  59    assert(mutex->owner == 0);
  60    mutex->owner = GetCurrentThreadId();
  61}
  62
  63int qemu_mutex_trylock(QemuMutex *mutex)
  64{
  65    int owned;
  66
  67    owned = TryEnterCriticalSection(&mutex->lock);
  68    if (owned) {
  69        assert(mutex->owner == 0);
  70        mutex->owner = GetCurrentThreadId();
  71    }
  72    return !owned;
  73}
  74
  75void qemu_mutex_unlock(QemuMutex *mutex)
  76{
  77    assert(mutex->owner == GetCurrentThreadId());
  78    mutex->owner = 0;
  79    LeaveCriticalSection(&mutex->lock);
  80}
  81
  82void qemu_cond_init(QemuCond *cond)
  83{
  84    memset(cond, 0, sizeof(*cond));
  85
  86    cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
  87    if (!cond->sema) {
  88        error_exit(GetLastError(), __func__);
  89    }
  90    cond->continue_event = CreateEvent(NULL,    /* security */
  91                                       FALSE,   /* auto-reset */
  92                                       FALSE,   /* not signaled */
  93                                       NULL);   /* name */
  94    if (!cond->continue_event) {
  95        error_exit(GetLastError(), __func__);
  96    }
  97}
  98
  99void qemu_cond_destroy(QemuCond *cond)
 100{
 101    BOOL result;
 102    result = CloseHandle(cond->continue_event);
 103    if (!result) {
 104        error_exit(GetLastError(), __func__);
 105    }
 106    cond->continue_event = 0;
 107    result = CloseHandle(cond->sema);
 108    if (!result) {
 109        error_exit(GetLastError(), __func__);
 110    }
 111    cond->sema = 0;
 112}
 113
 114void qemu_cond_signal(QemuCond *cond)
 115{
 116    DWORD result;
 117
 118    /*
 119     * Signal only when there are waiters.  cond->waiters is
 120     * incremented by pthread_cond_wait under the external lock,
 121     * so we are safe about that.
 122     */
 123    if (cond->waiters == 0) {
 124        return;
 125    }
 126
 127    /*
 128     * Waiting threads decrement it outside the external lock, but
 129     * only if another thread is executing pthread_cond_broadcast and
 130     * has the mutex.  So, it also cannot be decremented concurrently
 131     * with this particular access.
 132     */
 133    cond->target = cond->waiters - 1;
 134    result = SignalObjectAndWait(cond->sema, cond->continue_event,
 135                                 INFINITE, FALSE);
 136    if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
 137        error_exit(GetLastError(), __func__);
 138    }
 139}
 140
 141void qemu_cond_broadcast(QemuCond *cond)
 142{
 143    BOOLEAN result;
 144    /*
 145     * As in pthread_cond_signal, access to cond->waiters and
 146     * cond->target is locked via the external mutex.
 147     */
 148    if (cond->waiters == 0) {
 149        return;
 150    }
 151
 152    cond->target = 0;
 153    result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
 154    if (!result) {
 155        error_exit(GetLastError(), __func__);
 156    }
 157
 158    /*
 159     * At this point all waiters continue. Each one takes its
 160     * slice of the semaphore. Now it's our turn to wait: Since
 161     * the external mutex is held, no thread can leave cond_wait,
 162     * yet. For this reason, we can be sure that no thread gets
 163     * a chance to eat *more* than one slice. OTOH, it means
 164     * that the last waiter must send us a wake-up.
 165     */
 166    WaitForSingleObject(cond->continue_event, INFINITE);
 167}
 168
 169void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
 170{
 171    /*
 172     * This access is protected under the mutex.
 173     */
 174    cond->waiters++;
 175
 176    /*
 177     * Unlock external mutex and wait for signal.
 178     * NOTE: we've held mutex locked long enough to increment
 179     * waiters count above, so there's no problem with
 180     * leaving mutex unlocked before we wait on semaphore.
 181     */
 182    qemu_mutex_unlock(mutex);
 183    WaitForSingleObject(cond->sema, INFINITE);
 184
 185    /* Now waiters must rendez-vous with the signaling thread and
 186     * let it continue.  For cond_broadcast this has heavy contention
 187     * and triggers thundering herd.  So goes life.
 188     *
 189     * Decrease waiters count.  The mutex is not taken, so we have
 190     * to do this atomically.
 191     *
 192     * All waiters contend for the mutex at the end of this function
 193     * until the signaling thread relinquishes it.  To ensure
 194     * each waiter consumes exactly one slice of the semaphore,
 195     * the signaling thread stops until it is told by the last
 196     * waiter that it can go on.
 197     */
 198    if (InterlockedDecrement(&cond->waiters) == cond->target) {
 199        SetEvent(cond->continue_event);
 200    }
 201
 202    qemu_mutex_lock(mutex);
 203}
 204
 205void qemu_sem_init(QemuSemaphore *sem, int init)
 206{
 207    /* Manual reset.  */
 208    sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
 209}
 210
 211void qemu_sem_destroy(QemuSemaphore *sem)
 212{
 213    CloseHandle(sem->sema);
 214}
 215
 216void qemu_sem_post(QemuSemaphore *sem)
 217{
 218    ReleaseSemaphore(sem->sema, 1, NULL);
 219}
 220
 221int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
 222{
 223    int rc = WaitForSingleObject(sem->sema, ms);
 224    if (rc == WAIT_OBJECT_0) {
 225        return 0;
 226    }
 227    if (rc != WAIT_TIMEOUT) {
 228        error_exit(GetLastError(), __func__);
 229    }
 230    return -1;
 231}
 232
 233void qemu_sem_wait(QemuSemaphore *sem)
 234{
 235    if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
 236        error_exit(GetLastError(), __func__);
 237    }
 238}
 239
 240void qemu_event_init(QemuEvent *ev, bool init)
 241{
 242    /* Manual reset.  */
 243    ev->event = CreateEvent(NULL, TRUE, init, NULL);
 244}
 245
 246void qemu_event_destroy(QemuEvent *ev)
 247{
 248    CloseHandle(ev->event);
 249}
 250
 251void qemu_event_set(QemuEvent *ev)
 252{
 253    SetEvent(ev->event);
 254}
 255
 256void qemu_event_reset(QemuEvent *ev)
 257{
 258    ResetEvent(ev->event);
 259}
 260
 261void qemu_event_wait(QemuEvent *ev)
 262{
 263    WaitForSingleObject(ev->event, INFINITE);
 264}
 265
 266struct QemuThreadData {
 267    /* Passed to win32_start_routine.  */
 268    void             *(*start_routine)(void *);
 269    void             *arg;
 270    short             mode;
 271
 272    /* Only used for joinable threads. */
 273    bool              exited;
 274    void             *ret;
 275    CRITICAL_SECTION  cs;
 276};
 277
 278static __thread QemuThreadData *qemu_thread_data;
 279
 280static unsigned __stdcall win32_start_routine(void *arg)
 281{
 282    QemuThreadData *data = (QemuThreadData *) arg;
 283    void *(*start_routine)(void *) = data->start_routine;
 284    void *thread_arg = data->arg;
 285
 286    if (data->mode == QEMU_THREAD_DETACHED) {
 287        g_free(data);
 288        data = NULL;
 289    }
 290    qemu_thread_data = data;
 291    qemu_thread_exit(start_routine(thread_arg));
 292    abort();
 293}
 294
 295void qemu_thread_exit(void *arg)
 296{
 297    QemuThreadData *data = qemu_thread_data;
 298
 299    if (data) {
 300        assert(data->mode != QEMU_THREAD_DETACHED);
 301        data->ret = arg;
 302        EnterCriticalSection(&data->cs);
 303        data->exited = true;
 304        LeaveCriticalSection(&data->cs);
 305    }
 306    _endthreadex(0);
 307}
 308
 309void *qemu_thread_join(QemuThread *thread)
 310{
 311    QemuThreadData *data;
 312    void *ret;
 313    HANDLE handle;
 314
 315    data = thread->data;
 316    if (!data) {
 317        return NULL;
 318    }
 319    /*
 320     * Because multiple copies of the QemuThread can exist via
 321     * qemu_thread_get_self, we need to store a value that cannot
 322     * leak there.  The simplest, non racy way is to store the TID,
 323     * discard the handle that _beginthreadex gives back, and
 324     * get another copy of the handle here.
 325     */
 326    handle = qemu_thread_get_handle(thread);
 327    if (handle) {
 328        WaitForSingleObject(handle, INFINITE);
 329        CloseHandle(handle);
 330    }
 331    ret = data->ret;
 332    assert(data->mode != QEMU_THREAD_DETACHED);
 333    DeleteCriticalSection(&data->cs);
 334    g_free(data);
 335    return ret;
 336}
 337
 338void qemu_thread_create(QemuThread *thread, const char *name,
 339                       void *(*start_routine)(void *),
 340                       void *arg, int mode)
 341{
 342    HANDLE hThread;
 343    struct QemuThreadData *data;
 344
 345    data = g_malloc(sizeof *data);
 346    data->start_routine = start_routine;
 347    data->arg = arg;
 348    data->mode = mode;
 349    data->exited = false;
 350
 351    if (data->mode != QEMU_THREAD_DETACHED) {
 352        InitializeCriticalSection(&data->cs);
 353    }
 354
 355    hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
 356                                      data, 0, &thread->tid);
 357    if (!hThread) {
 358        error_exit(GetLastError(), __func__);
 359    }
 360    CloseHandle(hThread);
 361    thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data;
 362}
 363
 364void qemu_thread_get_self(QemuThread *thread)
 365{
 366    thread->data = qemu_thread_data;
 367    thread->tid = GetCurrentThreadId();
 368}
 369
 370HANDLE qemu_thread_get_handle(QemuThread *thread)
 371{
 372    QemuThreadData *data;
 373    HANDLE handle;
 374
 375    data = thread->data;
 376    if (!data) {
 377        return NULL;
 378    }
 379
 380    assert(data->mode != QEMU_THREAD_DETACHED);
 381    EnterCriticalSection(&data->cs);
 382    if (!data->exited) {
 383        handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
 384                            thread->tid);
 385    } else {
 386        handle = NULL;
 387    }
 388    LeaveCriticalSection(&data->cs);
 389    return handle;
 390}
 391
 392bool qemu_thread_is_self(QemuThread *thread)
 393{
 394    return GetCurrentThreadId() == thread->tid;
 395}
 396