qemu/hw/s390x/sclp.c
<<
>>
Prefs
   1/*
   2 * SCLP Support
   3 *
   4 * Copyright IBM, Corp. 2012
   5 *
   6 * Authors:
   7 *  Christian Borntraeger <borntraeger@de.ibm.com>
   8 *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
  11 * option) any later version.  See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "cpu.h"
  16#include "sysemu/kvm.h"
  17#include "exec/memory.h"
  18#include "sysemu/sysemu.h"
  19#include "exec/address-spaces.h"
  20#include "qemu/config-file.h"
  21#include "hw/s390x/sclp.h"
  22#include "hw/s390x/event-facility.h"
  23#include "hw/s390x/s390-pci-bus.h"
  24
  25static inline SCLPEventFacility *get_event_facility(void)
  26{
  27    ObjectProperty *op = object_property_find(qdev_get_machine(),
  28                                              TYPE_SCLP_EVENT_FACILITY,
  29                                              NULL);
  30    assert(op);
  31    return op->opaque;
  32}
  33
  34/* Provide information about the configuration, CPUs and storage */
  35static void read_SCP_info(SCCB *sccb)
  36{
  37    ReadInfo *read_info = (ReadInfo *) sccb;
  38    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
  39    CPUState *cpu;
  40    int cpu_count = 0;
  41    int i = 0;
  42    int increment_size = 20;
  43    int rnsize, rnmax;
  44    QemuOpts *opts = qemu_opts_find(qemu_find_opts("memory"), NULL);
  45    int slots = qemu_opt_get_number(opts, "slots", 0);
  46    int max_avail_slots = s390_get_memslot_count(kvm_state);
  47
  48    if (slots > max_avail_slots) {
  49        slots = max_avail_slots;
  50    }
  51
  52    CPU_FOREACH(cpu) {
  53        cpu_count++;
  54    }
  55
  56    /* CPU information */
  57    read_info->entries_cpu = cpu_to_be16(cpu_count);
  58    read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
  59    read_info->highest_cpu = cpu_to_be16(max_cpus);
  60
  61    for (i = 0; i < cpu_count; i++) {
  62        read_info->entries[i].address = i;
  63        read_info->entries[i].type = 0;
  64    }
  65
  66    read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
  67                                        SCLP_HAS_PCI_RECONFIG);
  68
  69    /*
  70     * The storage increment size is a multiple of 1M and is a power of 2.
  71     * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
  72     */
  73    while ((ram_size >> increment_size) > MAX_STORAGE_INCREMENTS) {
  74        increment_size++;
  75    }
  76    rnmax = ram_size >> increment_size;
  77
  78    /* Memory Hotplug is only supported for the ccw machine type */
  79    if (mhd) {
  80        while ((mhd->standby_mem_size >> increment_size) >
  81               MAX_STORAGE_INCREMENTS) {
  82            increment_size++;
  83        }
  84        assert(increment_size == mhd->increment_size);
  85
  86        mhd->standby_subregion_size = MEM_SECTION_SIZE;
  87        /* Deduct the memory slot already used for core */
  88        if (slots > 0) {
  89            while ((mhd->standby_subregion_size * (slots - 1)
  90                    < mhd->standby_mem_size)) {
  91                mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
  92            }
  93        }
  94        /*
  95         * Initialize mapping of guest standby memory sections indicating which
  96         * are and are not online. Assume all standby memory begins offline.
  97         */
  98        if (mhd->standby_state_map == 0) {
  99            if (mhd->standby_mem_size % mhd->standby_subregion_size) {
 100                mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
 101                                             mhd->standby_subregion_size + 1) *
 102                                             (mhd->standby_subregion_size /
 103                                             MEM_SECTION_SIZE));
 104            } else {
 105                mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
 106                                                   MEM_SECTION_SIZE);
 107            }
 108        }
 109        mhd->padded_ram_size = ram_size + mhd->pad_size;
 110        mhd->rzm = 1 << mhd->increment_size;
 111        rnmax = ((ram_size + mhd->standby_mem_size + mhd->pad_size)
 112             >> mhd->increment_size);
 113
 114        read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
 115    }
 116
 117    rnsize = 1 << (increment_size - 20);
 118    if (rnsize <= 128) {
 119        read_info->rnsize = rnsize;
 120    } else {
 121        read_info->rnsize = 0;
 122        read_info->rnsize2 = cpu_to_be32(rnsize);
 123    }
 124
 125    if (rnmax < 0x10000) {
 126        read_info->rnmax = cpu_to_be16(rnmax);
 127    } else {
 128        read_info->rnmax = cpu_to_be16(0);
 129        read_info->rnmax2 = cpu_to_be64(rnmax);
 130    }
 131
 132    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 133}
 134
 135static void read_storage_element0_info(SCCB *sccb)
 136{
 137    int i, assigned;
 138    int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
 139    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 140    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 141
 142    assert(mhd);
 143
 144    if ((ram_size >> mhd->increment_size) >= 0x10000) {
 145        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 146        return;
 147    }
 148
 149    /* Return information regarding core memory */
 150    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 151    assigned = ram_size >> mhd->increment_size;
 152    storage_info->assigned = cpu_to_be16(assigned);
 153
 154    for (i = 0; i < assigned; i++) {
 155        storage_info->entries[i] = cpu_to_be32(subincrement_id);
 156        subincrement_id += SCLP_INCREMENT_UNIT;
 157    }
 158    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 159}
 160
 161static void read_storage_element1_info(SCCB *sccb)
 162{
 163    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 164    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 165
 166    assert(mhd);
 167
 168    if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
 169        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 170        return;
 171    }
 172
 173    /* Return information regarding standby memory */
 174    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 175    storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
 176                                         mhd->increment_size);
 177    storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
 178                                        mhd->increment_size);
 179    sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
 180}
 181
 182static void attach_storage_element(SCCB *sccb, uint16_t element)
 183{
 184    int i, assigned, subincrement_id;
 185    AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
 186    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 187
 188    assert(mhd);
 189
 190    if (element != 1) {
 191        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 192        return;
 193    }
 194
 195    assigned = mhd->standby_mem_size >> mhd->increment_size;
 196    attach_info->assigned = cpu_to_be16(assigned);
 197    subincrement_id = ((ram_size >> mhd->increment_size) << 16)
 198                      + SCLP_STARTING_SUBINCREMENT_ID;
 199    for (i = 0; i < assigned; i++) {
 200        attach_info->entries[i] = cpu_to_be32(subincrement_id);
 201        subincrement_id += SCLP_INCREMENT_UNIT;
 202    }
 203    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 204}
 205
 206static void assign_storage(SCCB *sccb)
 207{
 208    MemoryRegion *mr = NULL;
 209    uint64_t this_subregion_size;
 210    AssignStorage *assign_info = (AssignStorage *) sccb;
 211    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 212    assert(mhd);
 213    ram_addr_t assign_addr = (assign_info->rn - 1) * mhd->rzm;
 214    MemoryRegion *sysmem = get_system_memory();
 215
 216    if ((assign_addr % MEM_SECTION_SIZE == 0) &&
 217        (assign_addr >= mhd->padded_ram_size)) {
 218        /* Re-use existing memory region if found */
 219        mr = memory_region_find(sysmem, assign_addr, 1).mr;
 220        if (!mr) {
 221
 222            MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
 223
 224            /* offset to align to standby_subregion_size for allocation */
 225            ram_addr_t offset = assign_addr -
 226                                (assign_addr - mhd->padded_ram_size)
 227                                % mhd->standby_subregion_size;
 228
 229            /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
 230            char id[16];
 231            snprintf(id, 16, "standby.ram%d",
 232                     (int)((offset - mhd->padded_ram_size) /
 233                     mhd->standby_subregion_size) + 1);
 234
 235            /* Allocate a subregion of the calculated standby_subregion_size */
 236            if (offset + mhd->standby_subregion_size >
 237                mhd->padded_ram_size + mhd->standby_mem_size) {
 238                this_subregion_size = mhd->padded_ram_size +
 239                  mhd->standby_mem_size - offset;
 240            } else {
 241                this_subregion_size = mhd->standby_subregion_size;
 242            }
 243
 244            memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, &error_abort);
 245            vmstate_register_ram_global(standby_ram);
 246            memory_region_add_subregion(sysmem, offset, standby_ram);
 247        }
 248        /* The specified subregion is no longer in standby */
 249        mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
 250                               / MEM_SECTION_SIZE] = 1;
 251    }
 252    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 253}
 254
 255static void unassign_storage(SCCB *sccb)
 256{
 257    MemoryRegion *mr = NULL;
 258    AssignStorage *assign_info = (AssignStorage *) sccb;
 259    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 260    assert(mhd);
 261    ram_addr_t unassign_addr = (assign_info->rn - 1) * mhd->rzm;
 262    MemoryRegion *sysmem = get_system_memory();
 263
 264    /* if the addr is a multiple of 256 MB */
 265    if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
 266        (unassign_addr >= mhd->padded_ram_size)) {
 267        mhd->standby_state_map[(unassign_addr -
 268                           mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
 269
 270        /* find the specified memory region and destroy it */
 271        mr = memory_region_find(sysmem, unassign_addr, 1).mr;
 272        if (mr) {
 273            int i;
 274            int is_removable = 1;
 275            ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
 276                                     (unassign_addr - mhd->padded_ram_size)
 277                                     % mhd->standby_subregion_size);
 278            /* Mark all affected subregions as 'standby' once again */
 279            for (i = 0;
 280                 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
 281                 i++) {
 282
 283                if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
 284                    is_removable = 0;
 285                    break;
 286                }
 287            }
 288            if (is_removable) {
 289                memory_region_del_subregion(sysmem, mr);
 290                object_unparent(OBJECT(mr));
 291                g_free(mr);
 292            }
 293        }
 294    }
 295    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 296}
 297
 298/* Provide information about the CPU */
 299static void sclp_read_cpu_info(SCCB *sccb)
 300{
 301    ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
 302    CPUState *cpu;
 303    int cpu_count = 0;
 304    int i = 0;
 305
 306    CPU_FOREACH(cpu) {
 307        cpu_count++;
 308    }
 309
 310    cpu_info->nr_configured = cpu_to_be16(cpu_count);
 311    cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
 312    cpu_info->nr_standby = cpu_to_be16(0);
 313
 314    /* The standby offset is 16-byte for each CPU */
 315    cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
 316        + cpu_info->nr_configured*sizeof(CPUEntry));
 317
 318    for (i = 0; i < cpu_count; i++) {
 319        cpu_info->entries[i].address = i;
 320        cpu_info->entries[i].type = 0;
 321    }
 322
 323    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 324}
 325
 326static void sclp_execute(SCCB *sccb, uint32_t code)
 327{
 328    SCLPEventFacility *ef = get_event_facility();
 329    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 330
 331    switch (code & SCLP_CMD_CODE_MASK) {
 332    case SCLP_CMDW_READ_SCP_INFO:
 333    case SCLP_CMDW_READ_SCP_INFO_FORCED:
 334        read_SCP_info(sccb);
 335        break;
 336    case SCLP_CMDW_READ_CPU_INFO:
 337        sclp_read_cpu_info(sccb);
 338        break;
 339    case SCLP_READ_STORAGE_ELEMENT_INFO:
 340        if (code & 0xff00) {
 341            read_storage_element1_info(sccb);
 342        } else {
 343            read_storage_element0_info(sccb);
 344        }
 345        break;
 346    case SCLP_ATTACH_STORAGE_ELEMENT:
 347        attach_storage_element(sccb, (code & 0xff00) >> 8);
 348        break;
 349    case SCLP_ASSIGN_STORAGE:
 350        assign_storage(sccb);
 351        break;
 352    case SCLP_UNASSIGN_STORAGE:
 353        unassign_storage(sccb);
 354        break;
 355    case SCLP_CMDW_CONFIGURE_PCI:
 356        s390_pci_sclp_configure(1, sccb);
 357        break;
 358    case SCLP_CMDW_DECONFIGURE_PCI:
 359        s390_pci_sclp_configure(0, sccb);
 360        break;
 361    default:
 362        efc->command_handler(ef, sccb, code);
 363        break;
 364    }
 365}
 366
 367int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
 368{
 369    int r = 0;
 370    SCCB work_sccb;
 371
 372    hwaddr sccb_len = sizeof(SCCB);
 373
 374    /* first some basic checks on program checks */
 375    if (env->psw.mask & PSW_MASK_PSTATE) {
 376        r = -PGM_PRIVILEGED;
 377        goto out;
 378    }
 379    if (cpu_physical_memory_is_io(sccb)) {
 380        r = -PGM_ADDRESSING;
 381        goto out;
 382    }
 383    if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
 384        || (sccb & ~0x7ffffff8UL) != 0) {
 385        r = -PGM_SPECIFICATION;
 386        goto out;
 387    }
 388
 389    /*
 390     * we want to work on a private copy of the sccb, to prevent guests
 391     * from playing dirty tricks by modifying the memory content after
 392     * the host has checked the values
 393     */
 394    cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
 395
 396    /* Valid sccb sizes */
 397    if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
 398        be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
 399        r = -PGM_SPECIFICATION;
 400        goto out;
 401    }
 402
 403    sclp_execute((SCCB *)&work_sccb, code);
 404
 405    cpu_physical_memory_write(sccb, &work_sccb,
 406                              be16_to_cpu(work_sccb.h.length));
 407
 408    sclp_service_interrupt(sccb);
 409
 410out:
 411    return r;
 412}
 413
 414void sclp_service_interrupt(uint32_t sccb)
 415{
 416    SCLPEventFacility *ef = get_event_facility();
 417    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 418
 419    uint32_t param = sccb & ~3;
 420
 421    /* Indicate whether an event is still pending */
 422    param |= efc->event_pending(ef) ? 1 : 0;
 423
 424    if (!param) {
 425        /* No need to send an interrupt, there's nothing to be notified about */
 426        return;
 427    }
 428    s390_sclp_extint(param);
 429}
 430
 431/* qemu object creation and initialization functions */
 432
 433void s390_sclp_init(void)
 434{
 435    DeviceState *dev  = qdev_create(NULL, TYPE_SCLP_EVENT_FACILITY);
 436
 437    object_property_add_child(qdev_get_machine(), TYPE_SCLP_EVENT_FACILITY,
 438                              OBJECT(dev), NULL);
 439    qdev_init_nofail(dev);
 440}
 441
 442sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
 443{
 444    DeviceState *dev;
 445    dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
 446    object_property_add_child(qdev_get_machine(),
 447                              TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 448                              OBJECT(dev), NULL);
 449    qdev_init_nofail(dev);
 450    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 451                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 452}
 453
 454sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
 455{
 456    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 457                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 458}
 459
 460static TypeInfo sclp_memory_hotplug_dev_info = {
 461    .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 462    .parent = TYPE_SYS_BUS_DEVICE,
 463    .instance_size = sizeof(sclpMemoryHotplugDev),
 464};
 465
 466static void register_types(void)
 467{
 468    type_register_static(&sclp_memory_hotplug_dev_info);
 469}
 470type_init(register_types);
 471