qemu/target-arm/helper-a64.c
<<
>>
Prefs
   1/*
   2 *  AArch64 specific helpers
   3 *
   4 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "cpu.h"
  21#include "exec/gdbstub.h"
  22#include "exec/helper-proto.h"
  23#include "qemu/host-utils.h"
  24#include "sysemu/sysemu.h"
  25#include "qemu/bitops.h"
  26#include "internals.h"
  27#include "qemu/crc32c.h"
  28#include <zlib.h> /* For crc32 */
  29
  30/* C2.4.7 Multiply and divide */
  31/* special cases for 0 and LLONG_MIN are mandated by the standard */
  32uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
  33{
  34    if (den == 0) {
  35        return 0;
  36    }
  37    return num / den;
  38}
  39
  40int64_t HELPER(sdiv64)(int64_t num, int64_t den)
  41{
  42    if (den == 0) {
  43        return 0;
  44    }
  45    if (num == LLONG_MIN && den == -1) {
  46        return LLONG_MIN;
  47    }
  48    return num / den;
  49}
  50
  51uint64_t HELPER(clz64)(uint64_t x)
  52{
  53    return clz64(x);
  54}
  55
  56uint64_t HELPER(cls64)(uint64_t x)
  57{
  58    return clrsb64(x);
  59}
  60
  61uint32_t HELPER(cls32)(uint32_t x)
  62{
  63    return clrsb32(x);
  64}
  65
  66uint32_t HELPER(clz32)(uint32_t x)
  67{
  68    return clz32(x);
  69}
  70
  71uint64_t HELPER(rbit64)(uint64_t x)
  72{
  73    /* assign the correct byte position */
  74    x = bswap64(x);
  75
  76    /* assign the correct nibble position */
  77    x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4)
  78        | ((x & 0x0f0f0f0f0f0f0f0fULL) << 4);
  79
  80    /* assign the correct bit position */
  81    x = ((x & 0x8888888888888888ULL) >> 3)
  82        | ((x & 0x4444444444444444ULL) >> 1)
  83        | ((x & 0x2222222222222222ULL) << 1)
  84        | ((x & 0x1111111111111111ULL) << 3);
  85
  86    return x;
  87}
  88
  89/* Convert a softfloat float_relation_ (as returned by
  90 * the float*_compare functions) to the correct ARM
  91 * NZCV flag state.
  92 */
  93static inline uint32_t float_rel_to_flags(int res)
  94{
  95    uint64_t flags;
  96    switch (res) {
  97    case float_relation_equal:
  98        flags = PSTATE_Z | PSTATE_C;
  99        break;
 100    case float_relation_less:
 101        flags = PSTATE_N;
 102        break;
 103    case float_relation_greater:
 104        flags = PSTATE_C;
 105        break;
 106    case float_relation_unordered:
 107    default:
 108        flags = PSTATE_C | PSTATE_V;
 109        break;
 110    }
 111    return flags;
 112}
 113
 114uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
 115{
 116    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
 117}
 118
 119uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
 120{
 121    return float_rel_to_flags(float32_compare(x, y, fp_status));
 122}
 123
 124uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
 125{
 126    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
 127}
 128
 129uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
 130{
 131    return float_rel_to_flags(float64_compare(x, y, fp_status));
 132}
 133
 134float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
 135{
 136    float_status *fpst = fpstp;
 137
 138    a = float32_squash_input_denormal(a, fpst);
 139    b = float32_squash_input_denormal(b, fpst);
 140
 141    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
 142        (float32_is_infinity(a) && float32_is_zero(b))) {
 143        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 144        return make_float32((1U << 30) |
 145                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
 146    }
 147    return float32_mul(a, b, fpst);
 148}
 149
 150float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
 151{
 152    float_status *fpst = fpstp;
 153
 154    a = float64_squash_input_denormal(a, fpst);
 155    b = float64_squash_input_denormal(b, fpst);
 156
 157    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
 158        (float64_is_infinity(a) && float64_is_zero(b))) {
 159        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 160        return make_float64((1ULL << 62) |
 161                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
 162    }
 163    return float64_mul(a, b, fpst);
 164}
 165
 166uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
 167                          uint32_t rn, uint32_t numregs)
 168{
 169    /* Helper function for SIMD TBL and TBX. We have to do the table
 170     * lookup part for the 64 bits worth of indices we're passed in.
 171     * result is the initial results vector (either zeroes for TBL
 172     * or some guest values for TBX), rn the register number where
 173     * the table starts, and numregs the number of registers in the table.
 174     * We return the results of the lookups.
 175     */
 176    int shift;
 177
 178    for (shift = 0; shift < 64; shift += 8) {
 179        int index = extract64(indices, shift, 8);
 180        if (index < 16 * numregs) {
 181            /* Convert index (a byte offset into the virtual table
 182             * which is a series of 128-bit vectors concatenated)
 183             * into the correct vfp.regs[] element plus a bit offset
 184             * into that element, bearing in mind that the table
 185             * can wrap around from V31 to V0.
 186             */
 187            int elt = (rn * 2 + (index >> 3)) % 64;
 188            int bitidx = (index & 7) * 8;
 189            uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
 190
 191            result = deposit64(result, shift, 8, val);
 192        }
 193    }
 194    return result;
 195}
 196
 197/* 64bit/double versions of the neon float compare functions */
 198uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
 199{
 200    float_status *fpst = fpstp;
 201    return -float64_eq_quiet(a, b, fpst);
 202}
 203
 204uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
 205{
 206    float_status *fpst = fpstp;
 207    return -float64_le(b, a, fpst);
 208}
 209
 210uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
 211{
 212    float_status *fpst = fpstp;
 213    return -float64_lt(b, a, fpst);
 214}
 215
 216/* Reciprocal step and sqrt step. Note that unlike the A32/T32
 217 * versions, these do a fully fused multiply-add or
 218 * multiply-add-and-halve.
 219 */
 220#define float32_two make_float32(0x40000000)
 221#define float32_three make_float32(0x40400000)
 222#define float32_one_point_five make_float32(0x3fc00000)
 223
 224#define float64_two make_float64(0x4000000000000000ULL)
 225#define float64_three make_float64(0x4008000000000000ULL)
 226#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 227
 228float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
 229{
 230    float_status *fpst = fpstp;
 231
 232    a = float32_squash_input_denormal(a, fpst);
 233    b = float32_squash_input_denormal(b, fpst);
 234
 235    a = float32_chs(a);
 236    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 237        (float32_is_infinity(b) && float32_is_zero(a))) {
 238        return float32_two;
 239    }
 240    return float32_muladd(a, b, float32_two, 0, fpst);
 241}
 242
 243float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
 244{
 245    float_status *fpst = fpstp;
 246
 247    a = float64_squash_input_denormal(a, fpst);
 248    b = float64_squash_input_denormal(b, fpst);
 249
 250    a = float64_chs(a);
 251    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 252        (float64_is_infinity(b) && float64_is_zero(a))) {
 253        return float64_two;
 254    }
 255    return float64_muladd(a, b, float64_two, 0, fpst);
 256}
 257
 258float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
 259{
 260    float_status *fpst = fpstp;
 261
 262    a = float32_squash_input_denormal(a, fpst);
 263    b = float32_squash_input_denormal(b, fpst);
 264
 265    a = float32_chs(a);
 266    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 267        (float32_is_infinity(b) && float32_is_zero(a))) {
 268        return float32_one_point_five;
 269    }
 270    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
 271}
 272
 273float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
 274{
 275    float_status *fpst = fpstp;
 276
 277    a = float64_squash_input_denormal(a, fpst);
 278    b = float64_squash_input_denormal(b, fpst);
 279
 280    a = float64_chs(a);
 281    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 282        (float64_is_infinity(b) && float64_is_zero(a))) {
 283        return float64_one_point_five;
 284    }
 285    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
 286}
 287
 288/* Pairwise long add: add pairs of adjacent elements into
 289 * double-width elements in the result (eg _s8 is an 8x8->16 op)
 290 */
 291uint64_t HELPER(neon_addlp_s8)(uint64_t a)
 292{
 293    uint64_t nsignmask = 0x0080008000800080ULL;
 294    uint64_t wsignmask = 0x8000800080008000ULL;
 295    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
 296    uint64_t tmp1, tmp2;
 297    uint64_t res, signres;
 298
 299    /* Extract odd elements, sign extend each to a 16 bit field */
 300    tmp1 = a & elementmask;
 301    tmp1 ^= nsignmask;
 302    tmp1 |= wsignmask;
 303    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
 304    /* Ditto for the even elements */
 305    tmp2 = (a >> 8) & elementmask;
 306    tmp2 ^= nsignmask;
 307    tmp2 |= wsignmask;
 308    tmp2 = (tmp2 - nsignmask) ^ wsignmask;
 309
 310    /* calculate the result by summing bits 0..14, 16..22, etc,
 311     * and then adjusting the sign bits 15, 23, etc manually.
 312     * This ensures the addition can't overflow the 16 bit field.
 313     */
 314    signres = (tmp1 ^ tmp2) & wsignmask;
 315    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
 316    res ^= signres;
 317
 318    return res;
 319}
 320
 321uint64_t HELPER(neon_addlp_u8)(uint64_t a)
 322{
 323    uint64_t tmp;
 324
 325    tmp = a & 0x00ff00ff00ff00ffULL;
 326    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
 327    return tmp;
 328}
 329
 330uint64_t HELPER(neon_addlp_s16)(uint64_t a)
 331{
 332    int32_t reslo, reshi;
 333
 334    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
 335    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
 336
 337    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
 338}
 339
 340uint64_t HELPER(neon_addlp_u16)(uint64_t a)
 341{
 342    uint64_t tmp;
 343
 344    tmp = a & 0x0000ffff0000ffffULL;
 345    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
 346    return tmp;
 347}
 348
 349/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
 350float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 351{
 352    float_status *fpst = fpstp;
 353    uint32_t val32, sbit;
 354    int32_t exp;
 355
 356    if (float32_is_any_nan(a)) {
 357        float32 nan = a;
 358        if (float32_is_signaling_nan(a)) {
 359            float_raise(float_flag_invalid, fpst);
 360            nan = float32_maybe_silence_nan(a);
 361        }
 362        if (fpst->default_nan_mode) {
 363            nan = float32_default_nan;
 364        }
 365        return nan;
 366    }
 367
 368    val32 = float32_val(a);
 369    sbit = 0x80000000ULL & val32;
 370    exp = extract32(val32, 23, 8);
 371
 372    if (exp == 0) {
 373        return make_float32(sbit | (0xfe << 23));
 374    } else {
 375        return make_float32(sbit | (~exp & 0xff) << 23);
 376    }
 377}
 378
 379float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 380{
 381    float_status *fpst = fpstp;
 382    uint64_t val64, sbit;
 383    int64_t exp;
 384
 385    if (float64_is_any_nan(a)) {
 386        float64 nan = a;
 387        if (float64_is_signaling_nan(a)) {
 388            float_raise(float_flag_invalid, fpst);
 389            nan = float64_maybe_silence_nan(a);
 390        }
 391        if (fpst->default_nan_mode) {
 392            nan = float64_default_nan;
 393        }
 394        return nan;
 395    }
 396
 397    val64 = float64_val(a);
 398    sbit = 0x8000000000000000ULL & val64;
 399    exp = extract64(float64_val(a), 52, 11);
 400
 401    if (exp == 0) {
 402        return make_float64(sbit | (0x7feULL << 52));
 403    } else {
 404        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
 405    }
 406}
 407
 408float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
 409{
 410    /* Von Neumann rounding is implemented by using round-to-zero
 411     * and then setting the LSB of the result if Inexact was raised.
 412     */
 413    float32 r;
 414    float_status *fpst = &env->vfp.fp_status;
 415    float_status tstat = *fpst;
 416    int exflags;
 417
 418    set_float_rounding_mode(float_round_to_zero, &tstat);
 419    set_float_exception_flags(0, &tstat);
 420    r = float64_to_float32(a, &tstat);
 421    r = float32_maybe_silence_nan(r);
 422    exflags = get_float_exception_flags(&tstat);
 423    if (exflags & float_flag_inexact) {
 424        r = make_float32(float32_val(r) | 1);
 425    }
 426    exflags |= get_float_exception_flags(fpst);
 427    set_float_exception_flags(exflags, fpst);
 428    return r;
 429}
 430
 431/* 64-bit versions of the CRC helpers. Note that although the operation
 432 * (and the prototypes of crc32c() and crc32() mean that only the bottom
 433 * 32 bits of the accumulator and result are used, we pass and return
 434 * uint64_t for convenience of the generated code. Unlike the 32-bit
 435 * instruction set versions, val may genuinely have 64 bits of data in it.
 436 * The upper bytes of val (above the number specified by 'bytes') must have
 437 * been zeroed out by the caller.
 438 */
 439uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 440{
 441    uint8_t buf[8];
 442
 443    stq_le_p(buf, val);
 444
 445    /* zlib crc32 converts the accumulator and output to one's complement.  */
 446    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 447}
 448
 449uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 450{
 451    uint8_t buf[8];
 452
 453    stq_le_p(buf, val);
 454
 455    /* Linux crc32c converts the output to one's complement.  */
 456    return crc32c(acc, buf, bytes) ^ 0xffffffff;
 457}
 458
 459#if !defined(CONFIG_USER_ONLY)
 460
 461/* Handle a CPU exception.  */
 462void aarch64_cpu_do_interrupt(CPUState *cs)
 463{
 464    ARMCPU *cpu = ARM_CPU(cs);
 465    CPUARMState *env = &cpu->env;
 466    unsigned int new_el = arm_excp_target_el(cs, cs->exception_index);
 467    target_ulong addr = env->cp15.vbar_el[new_el];
 468    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
 469
 470    if (arm_current_el(env) < new_el) {
 471        if (env->aarch64) {
 472            addr += 0x400;
 473        } else {
 474            addr += 0x600;
 475        }
 476    } else if (pstate_read(env) & PSTATE_SP) {
 477        addr += 0x200;
 478    }
 479
 480    arm_log_exception(cs->exception_index);
 481    qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_el(env));
 482    if (qemu_loglevel_mask(CPU_LOG_INT)
 483        && !excp_is_internal(cs->exception_index)) {
 484        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n",
 485                      env->exception.syndrome);
 486    }
 487
 488    if (arm_is_psci_call(cpu, cs->exception_index)) {
 489        arm_handle_psci_call(cpu);
 490        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
 491        return;
 492    }
 493
 494    switch (cs->exception_index) {
 495    case EXCP_PREFETCH_ABORT:
 496    case EXCP_DATA_ABORT:
 497        env->cp15.far_el[new_el] = env->exception.vaddress;
 498        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
 499                      env->cp15.far_el[new_el]);
 500        /* fall through */
 501    case EXCP_BKPT:
 502    case EXCP_UDEF:
 503    case EXCP_SWI:
 504    case EXCP_HVC:
 505    case EXCP_HYP_TRAP:
 506    case EXCP_SMC:
 507        env->cp15.esr_el[new_el] = env->exception.syndrome;
 508        break;
 509    case EXCP_IRQ:
 510    case EXCP_VIRQ:
 511        addr += 0x80;
 512        break;
 513    case EXCP_FIQ:
 514    case EXCP_VFIQ:
 515        addr += 0x100;
 516        break;
 517    default:
 518        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 519    }
 520
 521    if (is_a64(env)) {
 522        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
 523        aarch64_save_sp(env, arm_current_el(env));
 524        env->elr_el[new_el] = env->pc;
 525    } else {
 526        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
 527        if (!env->thumb) {
 528            env->cp15.esr_el[new_el] |= 1 << 25;
 529        }
 530        env->elr_el[new_el] = env->regs[15];
 531
 532        aarch64_sync_32_to_64(env);
 533
 534        env->condexec_bits = 0;
 535    }
 536
 537    pstate_write(env, PSTATE_DAIF | new_mode);
 538    env->aarch64 = 1;
 539    aarch64_restore_sp(env, new_el);
 540
 541    env->pc = addr;
 542    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
 543}
 544#endif
 545