qemu/target-ppc/fpu_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC floating point and SPE emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "cpu.h"
  20#include "exec/helper-proto.h"
  21
  22#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
  23#define float32_snan_to_qnan(x) ((x) | 0x00400000)
  24
  25/*****************************************************************************/
  26/* Floating point operations helpers */
  27uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
  28{
  29    CPU_FloatU f;
  30    CPU_DoubleU d;
  31
  32    f.l = arg;
  33    d.d = float32_to_float64(f.f, &env->fp_status);
  34    return d.ll;
  35}
  36
  37uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
  38{
  39    CPU_FloatU f;
  40    CPU_DoubleU d;
  41
  42    d.ll = arg;
  43    f.f = float64_to_float32(d.d, &env->fp_status);
  44    return f.l;
  45}
  46
  47static inline int isden(float64 d)
  48{
  49    CPU_DoubleU u;
  50
  51    u.d = d;
  52
  53    return ((u.ll >> 52) & 0x7FF) == 0;
  54}
  55
  56static inline int ppc_float32_get_unbiased_exp(float32 f)
  57{
  58    return ((f >> 23) & 0xFF) - 127;
  59}
  60
  61static inline int ppc_float64_get_unbiased_exp(float64 f)
  62{
  63    return ((f >> 52) & 0x7FF) - 1023;
  64}
  65
  66void helper_compute_fprf(CPUPPCState *env, uint64_t arg)
  67{
  68    CPU_DoubleU farg;
  69    int isneg;
  70    int fprf;
  71
  72    farg.ll = arg;
  73    isneg = float64_is_neg(farg.d);
  74    if (unlikely(float64_is_any_nan(farg.d))) {
  75        if (float64_is_signaling_nan(farg.d)) {
  76            /* Signaling NaN: flags are undefined */
  77            fprf = 0x00;
  78        } else {
  79            /* Quiet NaN */
  80            fprf = 0x11;
  81        }
  82    } else if (unlikely(float64_is_infinity(farg.d))) {
  83        /* +/- infinity */
  84        if (isneg) {
  85            fprf = 0x09;
  86        } else {
  87            fprf = 0x05;
  88        }
  89    } else {
  90        if (float64_is_zero(farg.d)) {
  91            /* +/- zero */
  92            if (isneg) {
  93                fprf = 0x12;
  94            } else {
  95                fprf = 0x02;
  96            }
  97        } else {
  98            if (isden(farg.d)) {
  99                /* Denormalized numbers */
 100                fprf = 0x10;
 101            } else {
 102                /* Normalized numbers */
 103                fprf = 0x00;
 104            }
 105            if (isneg) {
 106                fprf |= 0x08;
 107            } else {
 108                fprf |= 0x04;
 109            }
 110        }
 111    }
 112    /* We update FPSCR_FPRF */
 113    env->fpscr &= ~(0x1F << FPSCR_FPRF);
 114    env->fpscr |= fprf << FPSCR_FPRF;
 115}
 116
 117/* Floating-point invalid operations exception */
 118static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
 119                                             int set_fpcc)
 120{
 121    CPUState *cs = CPU(ppc_env_get_cpu(env));
 122    uint64_t ret = 0;
 123    int ve;
 124
 125    ve = fpscr_ve;
 126    switch (op) {
 127    case POWERPC_EXCP_FP_VXSNAN:
 128        env->fpscr |= 1 << FPSCR_VXSNAN;
 129        break;
 130    case POWERPC_EXCP_FP_VXSOFT:
 131        env->fpscr |= 1 << FPSCR_VXSOFT;
 132        break;
 133    case POWERPC_EXCP_FP_VXISI:
 134        /* Magnitude subtraction of infinities */
 135        env->fpscr |= 1 << FPSCR_VXISI;
 136        goto update_arith;
 137    case POWERPC_EXCP_FP_VXIDI:
 138        /* Division of infinity by infinity */
 139        env->fpscr |= 1 << FPSCR_VXIDI;
 140        goto update_arith;
 141    case POWERPC_EXCP_FP_VXZDZ:
 142        /* Division of zero by zero */
 143        env->fpscr |= 1 << FPSCR_VXZDZ;
 144        goto update_arith;
 145    case POWERPC_EXCP_FP_VXIMZ:
 146        /* Multiplication of zero by infinity */
 147        env->fpscr |= 1 << FPSCR_VXIMZ;
 148        goto update_arith;
 149    case POWERPC_EXCP_FP_VXVC:
 150        /* Ordered comparison of NaN */
 151        env->fpscr |= 1 << FPSCR_VXVC;
 152        if (set_fpcc) {
 153            env->fpscr &= ~(0xF << FPSCR_FPCC);
 154            env->fpscr |= 0x11 << FPSCR_FPCC;
 155        }
 156        /* We must update the target FPR before raising the exception */
 157        if (ve != 0) {
 158            cs->exception_index = POWERPC_EXCP_PROGRAM;
 159            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 160            /* Update the floating-point enabled exception summary */
 161            env->fpscr |= 1 << FPSCR_FEX;
 162            /* Exception is differed */
 163            ve = 0;
 164        }
 165        break;
 166    case POWERPC_EXCP_FP_VXSQRT:
 167        /* Square root of a negative number */
 168        env->fpscr |= 1 << FPSCR_VXSQRT;
 169    update_arith:
 170        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 171        if (ve == 0) {
 172            /* Set the result to quiet NaN */
 173            ret = 0x7FF8000000000000ULL;
 174            if (set_fpcc) {
 175                env->fpscr &= ~(0xF << FPSCR_FPCC);
 176                env->fpscr |= 0x11 << FPSCR_FPCC;
 177            }
 178        }
 179        break;
 180    case POWERPC_EXCP_FP_VXCVI:
 181        /* Invalid conversion */
 182        env->fpscr |= 1 << FPSCR_VXCVI;
 183        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 184        if (ve == 0) {
 185            /* Set the result to quiet NaN */
 186            ret = 0x7FF8000000000000ULL;
 187            if (set_fpcc) {
 188                env->fpscr &= ~(0xF << FPSCR_FPCC);
 189                env->fpscr |= 0x11 << FPSCR_FPCC;
 190            }
 191        }
 192        break;
 193    }
 194    /* Update the floating-point invalid operation summary */
 195    env->fpscr |= 1 << FPSCR_VX;
 196    /* Update the floating-point exception summary */
 197    env->fpscr |= 1 << FPSCR_FX;
 198    if (ve != 0) {
 199        /* Update the floating-point enabled exception summary */
 200        env->fpscr |= 1 << FPSCR_FEX;
 201        if (msr_fe0 != 0 || msr_fe1 != 0) {
 202            helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 203                                       POWERPC_EXCP_FP | op);
 204        }
 205    }
 206    return ret;
 207}
 208
 209static inline void float_zero_divide_excp(CPUPPCState *env)
 210{
 211    env->fpscr |= 1 << FPSCR_ZX;
 212    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 213    /* Update the floating-point exception summary */
 214    env->fpscr |= 1 << FPSCR_FX;
 215    if (fpscr_ze != 0) {
 216        /* Update the floating-point enabled exception summary */
 217        env->fpscr |= 1 << FPSCR_FEX;
 218        if (msr_fe0 != 0 || msr_fe1 != 0) {
 219            helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 220                                       POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
 221        }
 222    }
 223}
 224
 225static inline void float_overflow_excp(CPUPPCState *env)
 226{
 227    CPUState *cs = CPU(ppc_env_get_cpu(env));
 228
 229    env->fpscr |= 1 << FPSCR_OX;
 230    /* Update the floating-point exception summary */
 231    env->fpscr |= 1 << FPSCR_FX;
 232    if (fpscr_oe != 0) {
 233        /* XXX: should adjust the result */
 234        /* Update the floating-point enabled exception summary */
 235        env->fpscr |= 1 << FPSCR_FEX;
 236        /* We must update the target FPR before raising the exception */
 237        cs->exception_index = POWERPC_EXCP_PROGRAM;
 238        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 239    } else {
 240        env->fpscr |= 1 << FPSCR_XX;
 241        env->fpscr |= 1 << FPSCR_FI;
 242    }
 243}
 244
 245static inline void float_underflow_excp(CPUPPCState *env)
 246{
 247    CPUState *cs = CPU(ppc_env_get_cpu(env));
 248
 249    env->fpscr |= 1 << FPSCR_UX;
 250    /* Update the floating-point exception summary */
 251    env->fpscr |= 1 << FPSCR_FX;
 252    if (fpscr_ue != 0) {
 253        /* XXX: should adjust the result */
 254        /* Update the floating-point enabled exception summary */
 255        env->fpscr |= 1 << FPSCR_FEX;
 256        /* We must update the target FPR before raising the exception */
 257        cs->exception_index = POWERPC_EXCP_PROGRAM;
 258        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 259    }
 260}
 261
 262static inline void float_inexact_excp(CPUPPCState *env)
 263{
 264    CPUState *cs = CPU(ppc_env_get_cpu(env));
 265
 266    env->fpscr |= 1 << FPSCR_XX;
 267    /* Update the floating-point exception summary */
 268    env->fpscr |= 1 << FPSCR_FX;
 269    if (fpscr_xe != 0) {
 270        /* Update the floating-point enabled exception summary */
 271        env->fpscr |= 1 << FPSCR_FEX;
 272        /* We must update the target FPR before raising the exception */
 273        cs->exception_index = POWERPC_EXCP_PROGRAM;
 274        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 275    }
 276}
 277
 278static inline void fpscr_set_rounding_mode(CPUPPCState *env)
 279{
 280    int rnd_type;
 281
 282    /* Set rounding mode */
 283    switch (fpscr_rn) {
 284    case 0:
 285        /* Best approximation (round to nearest) */
 286        rnd_type = float_round_nearest_even;
 287        break;
 288    case 1:
 289        /* Smaller magnitude (round toward zero) */
 290        rnd_type = float_round_to_zero;
 291        break;
 292    case 2:
 293        /* Round toward +infinite */
 294        rnd_type = float_round_up;
 295        break;
 296    default:
 297    case 3:
 298        /* Round toward -infinite */
 299        rnd_type = float_round_down;
 300        break;
 301    }
 302    set_float_rounding_mode(rnd_type, &env->fp_status);
 303}
 304
 305void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
 306{
 307    int prev;
 308
 309    prev = (env->fpscr >> bit) & 1;
 310    env->fpscr &= ~(1 << bit);
 311    if (prev == 1) {
 312        switch (bit) {
 313        case FPSCR_RN1:
 314        case FPSCR_RN:
 315            fpscr_set_rounding_mode(env);
 316            break;
 317        default:
 318            break;
 319        }
 320    }
 321}
 322
 323void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
 324{
 325    CPUState *cs = CPU(ppc_env_get_cpu(env));
 326    int prev;
 327
 328    prev = (env->fpscr >> bit) & 1;
 329    env->fpscr |= 1 << bit;
 330    if (prev == 0) {
 331        switch (bit) {
 332        case FPSCR_VX:
 333            env->fpscr |= 1 << FPSCR_FX;
 334            if (fpscr_ve) {
 335                goto raise_ve;
 336            }
 337            break;
 338        case FPSCR_OX:
 339            env->fpscr |= 1 << FPSCR_FX;
 340            if (fpscr_oe) {
 341                goto raise_oe;
 342            }
 343            break;
 344        case FPSCR_UX:
 345            env->fpscr |= 1 << FPSCR_FX;
 346            if (fpscr_ue) {
 347                goto raise_ue;
 348            }
 349            break;
 350        case FPSCR_ZX:
 351            env->fpscr |= 1 << FPSCR_FX;
 352            if (fpscr_ze) {
 353                goto raise_ze;
 354            }
 355            break;
 356        case FPSCR_XX:
 357            env->fpscr |= 1 << FPSCR_FX;
 358            if (fpscr_xe) {
 359                goto raise_xe;
 360            }
 361            break;
 362        case FPSCR_VXSNAN:
 363        case FPSCR_VXISI:
 364        case FPSCR_VXIDI:
 365        case FPSCR_VXZDZ:
 366        case FPSCR_VXIMZ:
 367        case FPSCR_VXVC:
 368        case FPSCR_VXSOFT:
 369        case FPSCR_VXSQRT:
 370        case FPSCR_VXCVI:
 371            env->fpscr |= 1 << FPSCR_VX;
 372            env->fpscr |= 1 << FPSCR_FX;
 373            if (fpscr_ve != 0) {
 374                goto raise_ve;
 375            }
 376            break;
 377        case FPSCR_VE:
 378            if (fpscr_vx != 0) {
 379            raise_ve:
 380                env->error_code = POWERPC_EXCP_FP;
 381                if (fpscr_vxsnan) {
 382                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
 383                }
 384                if (fpscr_vxisi) {
 385                    env->error_code |= POWERPC_EXCP_FP_VXISI;
 386                }
 387                if (fpscr_vxidi) {
 388                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
 389                }
 390                if (fpscr_vxzdz) {
 391                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
 392                }
 393                if (fpscr_vximz) {
 394                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
 395                }
 396                if (fpscr_vxvc) {
 397                    env->error_code |= POWERPC_EXCP_FP_VXVC;
 398                }
 399                if (fpscr_vxsoft) {
 400                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
 401                }
 402                if (fpscr_vxsqrt) {
 403                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
 404                }
 405                if (fpscr_vxcvi) {
 406                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
 407                }
 408                goto raise_excp;
 409            }
 410            break;
 411        case FPSCR_OE:
 412            if (fpscr_ox != 0) {
 413            raise_oe:
 414                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 415                goto raise_excp;
 416            }
 417            break;
 418        case FPSCR_UE:
 419            if (fpscr_ux != 0) {
 420            raise_ue:
 421                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 422                goto raise_excp;
 423            }
 424            break;
 425        case FPSCR_ZE:
 426            if (fpscr_zx != 0) {
 427            raise_ze:
 428                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
 429                goto raise_excp;
 430            }
 431            break;
 432        case FPSCR_XE:
 433            if (fpscr_xx != 0) {
 434            raise_xe:
 435                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 436                goto raise_excp;
 437            }
 438            break;
 439        case FPSCR_RN1:
 440        case FPSCR_RN:
 441            fpscr_set_rounding_mode(env);
 442            break;
 443        default:
 444            break;
 445        raise_excp:
 446            /* Update the floating-point enabled exception summary */
 447            env->fpscr |= 1 << FPSCR_FEX;
 448            /* We have to update Rc1 before raising the exception */
 449            cs->exception_index = POWERPC_EXCP_PROGRAM;
 450            break;
 451        }
 452    }
 453}
 454
 455void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
 456{
 457    CPUState *cs = CPU(ppc_env_get_cpu(env));
 458    target_ulong prev, new;
 459    int i;
 460
 461    prev = env->fpscr;
 462    new = (target_ulong)arg;
 463    new &= ~0x60000000LL;
 464    new |= prev & 0x60000000LL;
 465    for (i = 0; i < sizeof(target_ulong) * 2; i++) {
 466        if (mask & (1 << i)) {
 467            env->fpscr &= ~(0xFLL << (4 * i));
 468            env->fpscr |= new & (0xFLL << (4 * i));
 469        }
 470    }
 471    /* Update VX and FEX */
 472    if (fpscr_ix != 0) {
 473        env->fpscr |= 1 << FPSCR_VX;
 474    } else {
 475        env->fpscr &= ~(1 << FPSCR_VX);
 476    }
 477    if ((fpscr_ex & fpscr_eex) != 0) {
 478        env->fpscr |= 1 << FPSCR_FEX;
 479        cs->exception_index = POWERPC_EXCP_PROGRAM;
 480        /* XXX: we should compute it properly */
 481        env->error_code = POWERPC_EXCP_FP;
 482    } else {
 483        env->fpscr &= ~(1 << FPSCR_FEX);
 484    }
 485    fpscr_set_rounding_mode(env);
 486}
 487
 488void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
 489{
 490    helper_store_fpscr(env, arg, mask);
 491}
 492
 493void helper_float_check_status(CPUPPCState *env)
 494{
 495    CPUState *cs = CPU(ppc_env_get_cpu(env));
 496    int status = get_float_exception_flags(&env->fp_status);
 497
 498    if (status & float_flag_divbyzero) {
 499        float_zero_divide_excp(env);
 500    } else if (status & float_flag_overflow) {
 501        float_overflow_excp(env);
 502    } else if (status & float_flag_underflow) {
 503        float_underflow_excp(env);
 504    } else if (status & float_flag_inexact) {
 505        float_inexact_excp(env);
 506    }
 507
 508    if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
 509        (env->error_code & POWERPC_EXCP_FP)) {
 510        /* Differred floating-point exception after target FPR update */
 511        if (msr_fe0 != 0 || msr_fe1 != 0) {
 512            helper_raise_exception_err(env, cs->exception_index,
 513                                       env->error_code);
 514        }
 515    }
 516}
 517
 518void helper_reset_fpstatus(CPUPPCState *env)
 519{
 520    set_float_exception_flags(0, &env->fp_status);
 521}
 522
 523/* fadd - fadd. */
 524uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 525{
 526    CPU_DoubleU farg1, farg2;
 527
 528    farg1.ll = arg1;
 529    farg2.ll = arg2;
 530
 531    if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 532                 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
 533        /* Magnitude subtraction of infinities */
 534        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 535    } else {
 536        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 537                     float64_is_signaling_nan(farg2.d))) {
 538            /* sNaN addition */
 539            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 540        }
 541        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
 542    }
 543
 544    return farg1.ll;
 545}
 546
 547/* fsub - fsub. */
 548uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 549{
 550    CPU_DoubleU farg1, farg2;
 551
 552    farg1.ll = arg1;
 553    farg2.ll = arg2;
 554
 555    if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 556                 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
 557        /* Magnitude subtraction of infinities */
 558        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 559    } else {
 560        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 561                     float64_is_signaling_nan(farg2.d))) {
 562            /* sNaN subtraction */
 563            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 564        }
 565        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
 566    }
 567
 568    return farg1.ll;
 569}
 570
 571/* fmul - fmul. */
 572uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 573{
 574    CPU_DoubleU farg1, farg2;
 575
 576    farg1.ll = arg1;
 577    farg2.ll = arg2;
 578
 579    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 580                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 581        /* Multiplication of zero by infinity */
 582        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 583    } else {
 584        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 585                     float64_is_signaling_nan(farg2.d))) {
 586            /* sNaN multiplication */
 587            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 588        }
 589        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 590    }
 591
 592    return farg1.ll;
 593}
 594
 595/* fdiv - fdiv. */
 596uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 597{
 598    CPU_DoubleU farg1, farg2;
 599
 600    farg1.ll = arg1;
 601    farg2.ll = arg2;
 602
 603    if (unlikely(float64_is_infinity(farg1.d) &&
 604                 float64_is_infinity(farg2.d))) {
 605        /* Division of infinity by infinity */
 606        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
 607    } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
 608        /* Division of zero by zero */
 609        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
 610    } else {
 611        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 612                     float64_is_signaling_nan(farg2.d))) {
 613            /* sNaN division */
 614            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 615        }
 616        farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
 617    }
 618
 619    return farg1.ll;
 620}
 621
 622
 623#define FPU_FCTI(op, cvt, nanval)                                      \
 624uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
 625{                                                                      \
 626    CPU_DoubleU farg;                                                  \
 627                                                                       \
 628    farg.ll = arg;                                                     \
 629    farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \
 630                                                                       \
 631    if (unlikely(env->fp_status.float_exception_flags)) {              \
 632        if (float64_is_any_nan(arg)) {                                 \
 633            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
 634            if (float64_is_signaling_nan(arg)) {                       \
 635                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
 636            }                                                          \
 637            farg.ll = nanval;                                          \
 638        } else if (env->fp_status.float_exception_flags &              \
 639                   float_flag_invalid) {                               \
 640            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
 641        }                                                              \
 642        helper_float_check_status(env);                                \
 643    }                                                                  \
 644    return farg.ll;                                                    \
 645 }
 646
 647FPU_FCTI(fctiw, int32, 0x80000000U)
 648FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
 649FPU_FCTI(fctiwu, uint32, 0x00000000U)
 650FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
 651FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
 652FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
 653FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
 654FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
 655
 656#define FPU_FCFI(op, cvtr, is_single)                      \
 657uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
 658{                                                          \
 659    CPU_DoubleU farg;                                      \
 660                                                           \
 661    if (is_single) {                                       \
 662        float32 tmp = cvtr(arg, &env->fp_status);          \
 663        farg.d = float32_to_float64(tmp, &env->fp_status); \
 664    } else {                                               \
 665        farg.d = cvtr(arg, &env->fp_status);               \
 666    }                                                      \
 667    helper_float_check_status(env);                        \
 668    return farg.ll;                                        \
 669}
 670
 671FPU_FCFI(fcfid, int64_to_float64, 0)
 672FPU_FCFI(fcfids, int64_to_float32, 1)
 673FPU_FCFI(fcfidu, uint64_to_float64, 0)
 674FPU_FCFI(fcfidus, uint64_to_float32, 1)
 675
 676static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
 677                              int rounding_mode)
 678{
 679    CPU_DoubleU farg;
 680
 681    farg.ll = arg;
 682
 683    if (unlikely(float64_is_signaling_nan(farg.d))) {
 684        /* sNaN round */
 685        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 686        farg.ll = arg | 0x0008000000000000ULL;
 687    } else {
 688        int inexact = get_float_exception_flags(&env->fp_status) &
 689                      float_flag_inexact;
 690        set_float_rounding_mode(rounding_mode, &env->fp_status);
 691        farg.ll = float64_round_to_int(farg.d, &env->fp_status);
 692        /* Restore rounding mode from FPSCR */
 693        fpscr_set_rounding_mode(env);
 694
 695        /* fri* does not set FPSCR[XX] */
 696        if (!inexact) {
 697            env->fp_status.float_exception_flags &= ~float_flag_inexact;
 698        }
 699    }
 700    helper_float_check_status(env);
 701    return farg.ll;
 702}
 703
 704uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
 705{
 706    return do_fri(env, arg, float_round_ties_away);
 707}
 708
 709uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
 710{
 711    return do_fri(env, arg, float_round_to_zero);
 712}
 713
 714uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
 715{
 716    return do_fri(env, arg, float_round_up);
 717}
 718
 719uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
 720{
 721    return do_fri(env, arg, float_round_down);
 722}
 723
 724/* fmadd - fmadd. */
 725uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 726                      uint64_t arg3)
 727{
 728    CPU_DoubleU farg1, farg2, farg3;
 729
 730    farg1.ll = arg1;
 731    farg2.ll = arg2;
 732    farg3.ll = arg3;
 733
 734    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 735                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 736        /* Multiplication of zero by infinity */
 737        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 738    } else {
 739        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 740                     float64_is_signaling_nan(farg2.d) ||
 741                     float64_is_signaling_nan(farg3.d))) {
 742            /* sNaN operation */
 743            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 744        }
 745        /* This is the way the PowerPC specification defines it */
 746        float128 ft0_128, ft1_128;
 747
 748        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 749        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 750        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 751        if (unlikely(float128_is_infinity(ft0_128) &&
 752                     float64_is_infinity(farg3.d) &&
 753                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 754            /* Magnitude subtraction of infinities */
 755            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 756        } else {
 757            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 758            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 759            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 760        }
 761    }
 762
 763    return farg1.ll;
 764}
 765
 766/* fmsub - fmsub. */
 767uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 768                      uint64_t arg3)
 769{
 770    CPU_DoubleU farg1, farg2, farg3;
 771
 772    farg1.ll = arg1;
 773    farg2.ll = arg2;
 774    farg3.ll = arg3;
 775
 776    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 777                 (float64_is_zero(farg1.d) &&
 778                  float64_is_infinity(farg2.d)))) {
 779        /* Multiplication of zero by infinity */
 780        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 781    } else {
 782        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 783                     float64_is_signaling_nan(farg2.d) ||
 784                     float64_is_signaling_nan(farg3.d))) {
 785            /* sNaN operation */
 786            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 787        }
 788        /* This is the way the PowerPC specification defines it */
 789        float128 ft0_128, ft1_128;
 790
 791        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 792        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 793        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 794        if (unlikely(float128_is_infinity(ft0_128) &&
 795                     float64_is_infinity(farg3.d) &&
 796                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 797            /* Magnitude subtraction of infinities */
 798            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 799        } else {
 800            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 801            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 802            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 803        }
 804    }
 805    return farg1.ll;
 806}
 807
 808/* fnmadd - fnmadd. */
 809uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 810                       uint64_t arg3)
 811{
 812    CPU_DoubleU farg1, farg2, farg3;
 813
 814    farg1.ll = arg1;
 815    farg2.ll = arg2;
 816    farg3.ll = arg3;
 817
 818    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 819                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 820        /* Multiplication of zero by infinity */
 821        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 822    } else {
 823        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 824                     float64_is_signaling_nan(farg2.d) ||
 825                     float64_is_signaling_nan(farg3.d))) {
 826            /* sNaN operation */
 827            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 828        }
 829        /* This is the way the PowerPC specification defines it */
 830        float128 ft0_128, ft1_128;
 831
 832        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 833        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 834        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 835        if (unlikely(float128_is_infinity(ft0_128) &&
 836                     float64_is_infinity(farg3.d) &&
 837                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 838            /* Magnitude subtraction of infinities */
 839            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 840        } else {
 841            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 842            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 843            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 844        }
 845        if (likely(!float64_is_any_nan(farg1.d))) {
 846            farg1.d = float64_chs(farg1.d);
 847        }
 848    }
 849    return farg1.ll;
 850}
 851
 852/* fnmsub - fnmsub. */
 853uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 854                       uint64_t arg3)
 855{
 856    CPU_DoubleU farg1, farg2, farg3;
 857
 858    farg1.ll = arg1;
 859    farg2.ll = arg2;
 860    farg3.ll = arg3;
 861
 862    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 863                 (float64_is_zero(farg1.d) &&
 864                  float64_is_infinity(farg2.d)))) {
 865        /* Multiplication of zero by infinity */
 866        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 867    } else {
 868        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 869                     float64_is_signaling_nan(farg2.d) ||
 870                     float64_is_signaling_nan(farg3.d))) {
 871            /* sNaN operation */
 872            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 873        }
 874        /* This is the way the PowerPC specification defines it */
 875        float128 ft0_128, ft1_128;
 876
 877        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 878        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 879        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 880        if (unlikely(float128_is_infinity(ft0_128) &&
 881                     float64_is_infinity(farg3.d) &&
 882                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 883            /* Magnitude subtraction of infinities */
 884            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 885        } else {
 886            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 887            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 888            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 889        }
 890        if (likely(!float64_is_any_nan(farg1.d))) {
 891            farg1.d = float64_chs(farg1.d);
 892        }
 893    }
 894    return farg1.ll;
 895}
 896
 897/* frsp - frsp. */
 898uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
 899{
 900    CPU_DoubleU farg;
 901    float32 f32;
 902
 903    farg.ll = arg;
 904
 905    if (unlikely(float64_is_signaling_nan(farg.d))) {
 906        /* sNaN square root */
 907        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 908    }
 909    f32 = float64_to_float32(farg.d, &env->fp_status);
 910    farg.d = float32_to_float64(f32, &env->fp_status);
 911
 912    return farg.ll;
 913}
 914
 915/* fsqrt - fsqrt. */
 916uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
 917{
 918    CPU_DoubleU farg;
 919
 920    farg.ll = arg;
 921
 922    if (unlikely(float64_is_any_nan(farg.d))) {
 923        if (unlikely(float64_is_signaling_nan(farg.d))) {
 924            /* sNaN reciprocal square root */
 925            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 926            farg.ll = float64_snan_to_qnan(farg.ll);
 927        }
 928    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 929        /* Square root of a negative nonzero number */
 930        farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
 931    } else {
 932        farg.d = float64_sqrt(farg.d, &env->fp_status);
 933    }
 934    return farg.ll;
 935}
 936
 937/* fre - fre. */
 938uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
 939{
 940    CPU_DoubleU farg;
 941
 942    farg.ll = arg;
 943
 944    if (unlikely(float64_is_signaling_nan(farg.d))) {
 945        /* sNaN reciprocal */
 946        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 947    }
 948    farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 949    return farg.d;
 950}
 951
 952/* fres - fres. */
 953uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
 954{
 955    CPU_DoubleU farg;
 956    float32 f32;
 957
 958    farg.ll = arg;
 959
 960    if (unlikely(float64_is_signaling_nan(farg.d))) {
 961        /* sNaN reciprocal */
 962        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 963    }
 964    farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 965    f32 = float64_to_float32(farg.d, &env->fp_status);
 966    farg.d = float32_to_float64(f32, &env->fp_status);
 967
 968    return farg.ll;
 969}
 970
 971/* frsqrte  - frsqrte. */
 972uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
 973{
 974    CPU_DoubleU farg;
 975
 976    farg.ll = arg;
 977
 978    if (unlikely(float64_is_any_nan(farg.d))) {
 979        if (unlikely(float64_is_signaling_nan(farg.d))) {
 980            /* sNaN reciprocal square root */
 981            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 982            farg.ll = float64_snan_to_qnan(farg.ll);
 983        }
 984    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 985        /* Reciprocal square root of a negative nonzero number */
 986        farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
 987    } else {
 988        farg.d = float64_sqrt(farg.d, &env->fp_status);
 989        farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 990    }
 991
 992    return farg.ll;
 993}
 994
 995/* fsel - fsel. */
 996uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 997                     uint64_t arg3)
 998{
 999    CPU_DoubleU farg1;
1000
1001    farg1.ll = arg1;
1002
1003    if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1004        !float64_is_any_nan(farg1.d)) {
1005        return arg2;
1006    } else {
1007        return arg3;
1008    }
1009}
1010
1011uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1012{
1013    int fe_flag = 0;
1014    int fg_flag = 0;
1015
1016    if (unlikely(float64_is_infinity(fra) ||
1017                 float64_is_infinity(frb) ||
1018                 float64_is_zero(frb))) {
1019        fe_flag = 1;
1020        fg_flag = 1;
1021    } else {
1022        int e_a = ppc_float64_get_unbiased_exp(fra);
1023        int e_b = ppc_float64_get_unbiased_exp(frb);
1024
1025        if (unlikely(float64_is_any_nan(fra) ||
1026                     float64_is_any_nan(frb))) {
1027            fe_flag = 1;
1028        } else if ((e_b <= -1022) || (e_b >= 1021)) {
1029            fe_flag = 1;
1030        } else if (!float64_is_zero(fra) &&
1031                   (((e_a - e_b) >= 1023) ||
1032                    ((e_a - e_b) <= -1021) ||
1033                    (e_a <= -970))) {
1034            fe_flag = 1;
1035        }
1036
1037        if (unlikely(float64_is_zero_or_denormal(frb))) {
1038            /* XB is not zero because of the above check and */
1039            /* so must be denormalized.                      */
1040            fg_flag = 1;
1041        }
1042    }
1043
1044    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1045}
1046
1047uint32_t helper_ftsqrt(uint64_t frb)
1048{
1049    int fe_flag = 0;
1050    int fg_flag = 0;
1051
1052    if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1053        fe_flag = 1;
1054        fg_flag = 1;
1055    } else {
1056        int e_b = ppc_float64_get_unbiased_exp(frb);
1057
1058        if (unlikely(float64_is_any_nan(frb))) {
1059            fe_flag = 1;
1060        } else if (unlikely(float64_is_zero(frb))) {
1061            fe_flag = 1;
1062        } else if (unlikely(float64_is_neg(frb))) {
1063            fe_flag = 1;
1064        } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1065            fe_flag = 1;
1066        }
1067
1068        if (unlikely(float64_is_zero_or_denormal(frb))) {
1069            /* XB is not zero because of the above check and */
1070            /* therefore must be denormalized.               */
1071            fg_flag = 1;
1072        }
1073    }
1074
1075    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1076}
1077
1078void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1079                  uint32_t crfD)
1080{
1081    CPU_DoubleU farg1, farg2;
1082    uint32_t ret = 0;
1083
1084    farg1.ll = arg1;
1085    farg2.ll = arg2;
1086
1087    if (unlikely(float64_is_any_nan(farg1.d) ||
1088                 float64_is_any_nan(farg2.d))) {
1089        ret = 0x01UL;
1090    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1091        ret = 0x08UL;
1092    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1093        ret = 0x04UL;
1094    } else {
1095        ret = 0x02UL;
1096    }
1097
1098    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1099    env->fpscr |= ret << FPSCR_FPRF;
1100    env->crf[crfD] = ret;
1101    if (unlikely(ret == 0x01UL
1102                 && (float64_is_signaling_nan(farg1.d) ||
1103                     float64_is_signaling_nan(farg2.d)))) {
1104        /* sNaN comparison */
1105        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1106    }
1107}
1108
1109void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1110                  uint32_t crfD)
1111{
1112    CPU_DoubleU farg1, farg2;
1113    uint32_t ret = 0;
1114
1115    farg1.ll = arg1;
1116    farg2.ll = arg2;
1117
1118    if (unlikely(float64_is_any_nan(farg1.d) ||
1119                 float64_is_any_nan(farg2.d))) {
1120        ret = 0x01UL;
1121    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1122        ret = 0x08UL;
1123    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1124        ret = 0x04UL;
1125    } else {
1126        ret = 0x02UL;
1127    }
1128
1129    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1130    env->fpscr |= ret << FPSCR_FPRF;
1131    env->crf[crfD] = ret;
1132    if (unlikely(ret == 0x01UL)) {
1133        if (float64_is_signaling_nan(farg1.d) ||
1134            float64_is_signaling_nan(farg2.d)) {
1135            /* sNaN comparison */
1136            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1137                                  POWERPC_EXCP_FP_VXVC, 1);
1138        } else {
1139            /* qNaN comparison */
1140            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1141        }
1142    }
1143}
1144
1145/* Single-precision floating-point conversions */
1146static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1147{
1148    CPU_FloatU u;
1149
1150    u.f = int32_to_float32(val, &env->vec_status);
1151
1152    return u.l;
1153}
1154
1155static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1156{
1157    CPU_FloatU u;
1158
1159    u.f = uint32_to_float32(val, &env->vec_status);
1160
1161    return u.l;
1162}
1163
1164static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1165{
1166    CPU_FloatU u;
1167
1168    u.l = val;
1169    /* NaN are not treated the same way IEEE 754 does */
1170    if (unlikely(float32_is_quiet_nan(u.f))) {
1171        return 0;
1172    }
1173
1174    return float32_to_int32(u.f, &env->vec_status);
1175}
1176
1177static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1178{
1179    CPU_FloatU u;
1180
1181    u.l = val;
1182    /* NaN are not treated the same way IEEE 754 does */
1183    if (unlikely(float32_is_quiet_nan(u.f))) {
1184        return 0;
1185    }
1186
1187    return float32_to_uint32(u.f, &env->vec_status);
1188}
1189
1190static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1191{
1192    CPU_FloatU u;
1193
1194    u.l = val;
1195    /* NaN are not treated the same way IEEE 754 does */
1196    if (unlikely(float32_is_quiet_nan(u.f))) {
1197        return 0;
1198    }
1199
1200    return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1201}
1202
1203static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1204{
1205    CPU_FloatU u;
1206
1207    u.l = val;
1208    /* NaN are not treated the same way IEEE 754 does */
1209    if (unlikely(float32_is_quiet_nan(u.f))) {
1210        return 0;
1211    }
1212
1213    return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1214}
1215
1216static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1217{
1218    CPU_FloatU u;
1219    float32 tmp;
1220
1221    u.f = int32_to_float32(val, &env->vec_status);
1222    tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1223    u.f = float32_div(u.f, tmp, &env->vec_status);
1224
1225    return u.l;
1226}
1227
1228static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1229{
1230    CPU_FloatU u;
1231    float32 tmp;
1232
1233    u.f = uint32_to_float32(val, &env->vec_status);
1234    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1235    u.f = float32_div(u.f, tmp, &env->vec_status);
1236
1237    return u.l;
1238}
1239
1240static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1241{
1242    CPU_FloatU u;
1243    float32 tmp;
1244
1245    u.l = val;
1246    /* NaN are not treated the same way IEEE 754 does */
1247    if (unlikely(float32_is_quiet_nan(u.f))) {
1248        return 0;
1249    }
1250    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1251    u.f = float32_mul(u.f, tmp, &env->vec_status);
1252
1253    return float32_to_int32(u.f, &env->vec_status);
1254}
1255
1256static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1257{
1258    CPU_FloatU u;
1259    float32 tmp;
1260
1261    u.l = val;
1262    /* NaN are not treated the same way IEEE 754 does */
1263    if (unlikely(float32_is_quiet_nan(u.f))) {
1264        return 0;
1265    }
1266    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1267    u.f = float32_mul(u.f, tmp, &env->vec_status);
1268
1269    return float32_to_uint32(u.f, &env->vec_status);
1270}
1271
1272#define HELPER_SPE_SINGLE_CONV(name)                              \
1273    uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1274    {                                                             \
1275        return e##name(env, val);                                 \
1276    }
1277/* efscfsi */
1278HELPER_SPE_SINGLE_CONV(fscfsi);
1279/* efscfui */
1280HELPER_SPE_SINGLE_CONV(fscfui);
1281/* efscfuf */
1282HELPER_SPE_SINGLE_CONV(fscfuf);
1283/* efscfsf */
1284HELPER_SPE_SINGLE_CONV(fscfsf);
1285/* efsctsi */
1286HELPER_SPE_SINGLE_CONV(fsctsi);
1287/* efsctui */
1288HELPER_SPE_SINGLE_CONV(fsctui);
1289/* efsctsiz */
1290HELPER_SPE_SINGLE_CONV(fsctsiz);
1291/* efsctuiz */
1292HELPER_SPE_SINGLE_CONV(fsctuiz);
1293/* efsctsf */
1294HELPER_SPE_SINGLE_CONV(fsctsf);
1295/* efsctuf */
1296HELPER_SPE_SINGLE_CONV(fsctuf);
1297
1298#define HELPER_SPE_VECTOR_CONV(name)                            \
1299    uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1300    {                                                           \
1301        return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1302            (uint64_t)e##name(env, val);                        \
1303    }
1304/* evfscfsi */
1305HELPER_SPE_VECTOR_CONV(fscfsi);
1306/* evfscfui */
1307HELPER_SPE_VECTOR_CONV(fscfui);
1308/* evfscfuf */
1309HELPER_SPE_VECTOR_CONV(fscfuf);
1310/* evfscfsf */
1311HELPER_SPE_VECTOR_CONV(fscfsf);
1312/* evfsctsi */
1313HELPER_SPE_VECTOR_CONV(fsctsi);
1314/* evfsctui */
1315HELPER_SPE_VECTOR_CONV(fsctui);
1316/* evfsctsiz */
1317HELPER_SPE_VECTOR_CONV(fsctsiz);
1318/* evfsctuiz */
1319HELPER_SPE_VECTOR_CONV(fsctuiz);
1320/* evfsctsf */
1321HELPER_SPE_VECTOR_CONV(fsctsf);
1322/* evfsctuf */
1323HELPER_SPE_VECTOR_CONV(fsctuf);
1324
1325/* Single-precision floating-point arithmetic */
1326static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1327{
1328    CPU_FloatU u1, u2;
1329
1330    u1.l = op1;
1331    u2.l = op2;
1332    u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1333    return u1.l;
1334}
1335
1336static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1337{
1338    CPU_FloatU u1, u2;
1339
1340    u1.l = op1;
1341    u2.l = op2;
1342    u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1343    return u1.l;
1344}
1345
1346static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1347{
1348    CPU_FloatU u1, u2;
1349
1350    u1.l = op1;
1351    u2.l = op2;
1352    u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1353    return u1.l;
1354}
1355
1356static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1357{
1358    CPU_FloatU u1, u2;
1359
1360    u1.l = op1;
1361    u2.l = op2;
1362    u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1363    return u1.l;
1364}
1365
1366#define HELPER_SPE_SINGLE_ARITH(name)                                   \
1367    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1368    {                                                                   \
1369        return e##name(env, op1, op2);                                  \
1370    }
1371/* efsadd */
1372HELPER_SPE_SINGLE_ARITH(fsadd);
1373/* efssub */
1374HELPER_SPE_SINGLE_ARITH(fssub);
1375/* efsmul */
1376HELPER_SPE_SINGLE_ARITH(fsmul);
1377/* efsdiv */
1378HELPER_SPE_SINGLE_ARITH(fsdiv);
1379
1380#define HELPER_SPE_VECTOR_ARITH(name)                                   \
1381    uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1382    {                                                                   \
1383        return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1384            (uint64_t)e##name(env, op1, op2);                           \
1385    }
1386/* evfsadd */
1387HELPER_SPE_VECTOR_ARITH(fsadd);
1388/* evfssub */
1389HELPER_SPE_VECTOR_ARITH(fssub);
1390/* evfsmul */
1391HELPER_SPE_VECTOR_ARITH(fsmul);
1392/* evfsdiv */
1393HELPER_SPE_VECTOR_ARITH(fsdiv);
1394
1395/* Single-precision floating-point comparisons */
1396static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1397{
1398    CPU_FloatU u1, u2;
1399
1400    u1.l = op1;
1401    u2.l = op2;
1402    return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1403}
1404
1405static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1406{
1407    CPU_FloatU u1, u2;
1408
1409    u1.l = op1;
1410    u2.l = op2;
1411    return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1412}
1413
1414static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1415{
1416    CPU_FloatU u1, u2;
1417
1418    u1.l = op1;
1419    u2.l = op2;
1420    return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1421}
1422
1423static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1424{
1425    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1426    return efscmplt(env, op1, op2);
1427}
1428
1429static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1430{
1431    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1432    return efscmpgt(env, op1, op2);
1433}
1434
1435static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1436{
1437    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1438    return efscmpeq(env, op1, op2);
1439}
1440
1441#define HELPER_SINGLE_SPE_CMP(name)                                     \
1442    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1443    {                                                                   \
1444        return e##name(env, op1, op2) << 2;                             \
1445    }
1446/* efststlt */
1447HELPER_SINGLE_SPE_CMP(fststlt);
1448/* efststgt */
1449HELPER_SINGLE_SPE_CMP(fststgt);
1450/* efststeq */
1451HELPER_SINGLE_SPE_CMP(fststeq);
1452/* efscmplt */
1453HELPER_SINGLE_SPE_CMP(fscmplt);
1454/* efscmpgt */
1455HELPER_SINGLE_SPE_CMP(fscmpgt);
1456/* efscmpeq */
1457HELPER_SINGLE_SPE_CMP(fscmpeq);
1458
1459static inline uint32_t evcmp_merge(int t0, int t1)
1460{
1461    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1462}
1463
1464#define HELPER_VECTOR_SPE_CMP(name)                                     \
1465    uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1466    {                                                                   \
1467        return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1468                           e##name(env, op1, op2));                     \
1469    }
1470/* evfststlt */
1471HELPER_VECTOR_SPE_CMP(fststlt);
1472/* evfststgt */
1473HELPER_VECTOR_SPE_CMP(fststgt);
1474/* evfststeq */
1475HELPER_VECTOR_SPE_CMP(fststeq);
1476/* evfscmplt */
1477HELPER_VECTOR_SPE_CMP(fscmplt);
1478/* evfscmpgt */
1479HELPER_VECTOR_SPE_CMP(fscmpgt);
1480/* evfscmpeq */
1481HELPER_VECTOR_SPE_CMP(fscmpeq);
1482
1483/* Double-precision floating-point conversion */
1484uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1485{
1486    CPU_DoubleU u;
1487
1488    u.d = int32_to_float64(val, &env->vec_status);
1489
1490    return u.ll;
1491}
1492
1493uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1494{
1495    CPU_DoubleU u;
1496
1497    u.d = int64_to_float64(val, &env->vec_status);
1498
1499    return u.ll;
1500}
1501
1502uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1503{
1504    CPU_DoubleU u;
1505
1506    u.d = uint32_to_float64(val, &env->vec_status);
1507
1508    return u.ll;
1509}
1510
1511uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1512{
1513    CPU_DoubleU u;
1514
1515    u.d = uint64_to_float64(val, &env->vec_status);
1516
1517    return u.ll;
1518}
1519
1520uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1521{
1522    CPU_DoubleU u;
1523
1524    u.ll = val;
1525    /* NaN are not treated the same way IEEE 754 does */
1526    if (unlikely(float64_is_any_nan(u.d))) {
1527        return 0;
1528    }
1529
1530    return float64_to_int32(u.d, &env->vec_status);
1531}
1532
1533uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1534{
1535    CPU_DoubleU u;
1536
1537    u.ll = val;
1538    /* NaN are not treated the same way IEEE 754 does */
1539    if (unlikely(float64_is_any_nan(u.d))) {
1540        return 0;
1541    }
1542
1543    return float64_to_uint32(u.d, &env->vec_status);
1544}
1545
1546uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1547{
1548    CPU_DoubleU u;
1549
1550    u.ll = val;
1551    /* NaN are not treated the same way IEEE 754 does */
1552    if (unlikely(float64_is_any_nan(u.d))) {
1553        return 0;
1554    }
1555
1556    return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1557}
1558
1559uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1560{
1561    CPU_DoubleU u;
1562
1563    u.ll = val;
1564    /* NaN are not treated the same way IEEE 754 does */
1565    if (unlikely(float64_is_any_nan(u.d))) {
1566        return 0;
1567    }
1568
1569    return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1570}
1571
1572uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1573{
1574    CPU_DoubleU u;
1575
1576    u.ll = val;
1577    /* NaN are not treated the same way IEEE 754 does */
1578    if (unlikely(float64_is_any_nan(u.d))) {
1579        return 0;
1580    }
1581
1582    return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1583}
1584
1585uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1586{
1587    CPU_DoubleU u;
1588
1589    u.ll = val;
1590    /* NaN are not treated the same way IEEE 754 does */
1591    if (unlikely(float64_is_any_nan(u.d))) {
1592        return 0;
1593    }
1594
1595    return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1596}
1597
1598uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1599{
1600    CPU_DoubleU u;
1601    float64 tmp;
1602
1603    u.d = int32_to_float64(val, &env->vec_status);
1604    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1605    u.d = float64_div(u.d, tmp, &env->vec_status);
1606
1607    return u.ll;
1608}
1609
1610uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1611{
1612    CPU_DoubleU u;
1613    float64 tmp;
1614
1615    u.d = uint32_to_float64(val, &env->vec_status);
1616    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1617    u.d = float64_div(u.d, tmp, &env->vec_status);
1618
1619    return u.ll;
1620}
1621
1622uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1623{
1624    CPU_DoubleU u;
1625    float64 tmp;
1626
1627    u.ll = val;
1628    /* NaN are not treated the same way IEEE 754 does */
1629    if (unlikely(float64_is_any_nan(u.d))) {
1630        return 0;
1631    }
1632    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1633    u.d = float64_mul(u.d, tmp, &env->vec_status);
1634
1635    return float64_to_int32(u.d, &env->vec_status);
1636}
1637
1638uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1639{
1640    CPU_DoubleU u;
1641    float64 tmp;
1642
1643    u.ll = val;
1644    /* NaN are not treated the same way IEEE 754 does */
1645    if (unlikely(float64_is_any_nan(u.d))) {
1646        return 0;
1647    }
1648    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1649    u.d = float64_mul(u.d, tmp, &env->vec_status);
1650
1651    return float64_to_uint32(u.d, &env->vec_status);
1652}
1653
1654uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1655{
1656    CPU_DoubleU u1;
1657    CPU_FloatU u2;
1658
1659    u1.ll = val;
1660    u2.f = float64_to_float32(u1.d, &env->vec_status);
1661
1662    return u2.l;
1663}
1664
1665uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1666{
1667    CPU_DoubleU u2;
1668    CPU_FloatU u1;
1669
1670    u1.l = val;
1671    u2.d = float32_to_float64(u1.f, &env->vec_status);
1672
1673    return u2.ll;
1674}
1675
1676/* Double precision fixed-point arithmetic */
1677uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1678{
1679    CPU_DoubleU u1, u2;
1680
1681    u1.ll = op1;
1682    u2.ll = op2;
1683    u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1684    return u1.ll;
1685}
1686
1687uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1688{
1689    CPU_DoubleU u1, u2;
1690
1691    u1.ll = op1;
1692    u2.ll = op2;
1693    u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1694    return u1.ll;
1695}
1696
1697uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1698{
1699    CPU_DoubleU u1, u2;
1700
1701    u1.ll = op1;
1702    u2.ll = op2;
1703    u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1704    return u1.ll;
1705}
1706
1707uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1708{
1709    CPU_DoubleU u1, u2;
1710
1711    u1.ll = op1;
1712    u2.ll = op2;
1713    u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1714    return u1.ll;
1715}
1716
1717/* Double precision floating point helpers */
1718uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1719{
1720    CPU_DoubleU u1, u2;
1721
1722    u1.ll = op1;
1723    u2.ll = op2;
1724    return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1725}
1726
1727uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1728{
1729    CPU_DoubleU u1, u2;
1730
1731    u1.ll = op1;
1732    u2.ll = op2;
1733    return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1734}
1735
1736uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1737{
1738    CPU_DoubleU u1, u2;
1739
1740    u1.ll = op1;
1741    u2.ll = op2;
1742    return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1743}
1744
1745uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1746{
1747    /* XXX: TODO: test special values (NaN, infinites, ...) */
1748    return helper_efdtstlt(env, op1, op2);
1749}
1750
1751uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1752{
1753    /* XXX: TODO: test special values (NaN, infinites, ...) */
1754    return helper_efdtstgt(env, op1, op2);
1755}
1756
1757uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1758{
1759    /* XXX: TODO: test special values (NaN, infinites, ...) */
1760    return helper_efdtsteq(env, op1, op2);
1761}
1762
1763#define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1764    (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) |    \
1765     (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1766
1767#define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1768#define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1769#define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1770#define xC(opcode) DECODE_SPLIT(opcode, 3, 1,  6, 5)
1771#define BF(opcode) (((opcode) >> (31-8)) & 7)
1772
1773typedef union _ppc_vsr_t {
1774    uint64_t u64[2];
1775    uint32_t u32[4];
1776    float32 f32[4];
1777    float64 f64[2];
1778} ppc_vsr_t;
1779
1780#if defined(HOST_WORDS_BIGENDIAN)
1781#define VsrW(i) u32[i]
1782#define VsrD(i) u64[i]
1783#else
1784#define VsrW(i) u32[3-(i)]
1785#define VsrD(i) u64[1-(i)]
1786#endif
1787
1788static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1789{
1790    if (n < 32) {
1791        vsr->VsrD(0) = env->fpr[n];
1792        vsr->VsrD(1) = env->vsr[n];
1793    } else {
1794        vsr->u64[0] = env->avr[n-32].u64[0];
1795        vsr->u64[1] = env->avr[n-32].u64[1];
1796    }
1797}
1798
1799static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1800{
1801    if (n < 32) {
1802        env->fpr[n] = vsr->VsrD(0);
1803        env->vsr[n] = vsr->VsrD(1);
1804    } else {
1805        env->avr[n-32].u64[0] = vsr->u64[0];
1806        env->avr[n-32].u64[1] = vsr->u64[1];
1807    }
1808}
1809
1810#define float64_to_float64(x, env) x
1811
1812
1813/* VSX_ADD_SUB - VSX floating point add/subract
1814 *   name  - instruction mnemonic
1815 *   op    - operation (add or sub)
1816 *   nels  - number of elements (1, 2 or 4)
1817 *   tp    - type (float32 or float64)
1818 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1819 *   sfprf - set FPRF
1820 */
1821#define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1822void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1823{                                                                            \
1824    ppc_vsr_t xt, xa, xb;                                                    \
1825    int i;                                                                   \
1826                                                                             \
1827    getVSR(xA(opcode), &xa, env);                                            \
1828    getVSR(xB(opcode), &xb, env);                                            \
1829    getVSR(xT(opcode), &xt, env);                                            \
1830    helper_reset_fpstatus(env);                                              \
1831                                                                             \
1832    for (i = 0; i < nels; i++) {                                             \
1833        float_status tstat = env->fp_status;                                 \
1834        set_float_exception_flags(0, &tstat);                                \
1835        xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1836        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1837                                                                             \
1838        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1839            if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \
1840                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
1841            } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1842                       tp##_is_signaling_nan(xb.fld)) {                      \
1843                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1844            }                                                                \
1845        }                                                                    \
1846                                                                             \
1847        if (r2sp) {                                                          \
1848            xt.fld = helper_frsp(env, xt.fld);                               \
1849        }                                                                    \
1850                                                                             \
1851        if (sfprf) {                                                         \
1852            helper_compute_fprf(env, xt.fld);                                \
1853        }                                                                    \
1854    }                                                                        \
1855    putVSR(xT(opcode), &xt, env);                                            \
1856    helper_float_check_status(env);                                          \
1857}
1858
1859VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1860VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1861VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1862VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1863VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1864VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1865VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1866VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1867
1868/* VSX_MUL - VSX floating point multiply
1869 *   op    - instruction mnemonic
1870 *   nels  - number of elements (1, 2 or 4)
1871 *   tp    - type (float32 or float64)
1872 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1873 *   sfprf - set FPRF
1874 */
1875#define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1876void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1877{                                                                            \
1878    ppc_vsr_t xt, xa, xb;                                                    \
1879    int i;                                                                   \
1880                                                                             \
1881    getVSR(xA(opcode), &xa, env);                                            \
1882    getVSR(xB(opcode), &xb, env);                                            \
1883    getVSR(xT(opcode), &xt, env);                                            \
1884    helper_reset_fpstatus(env);                                              \
1885                                                                             \
1886    for (i = 0; i < nels; i++) {                                             \
1887        float_status tstat = env->fp_status;                                 \
1888        set_float_exception_flags(0, &tstat);                                \
1889        xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1890        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1891                                                                             \
1892        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1893            if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \
1894                (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \
1895                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
1896            } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1897                       tp##_is_signaling_nan(xb.fld)) {                      \
1898                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1899            }                                                                \
1900        }                                                                    \
1901                                                                             \
1902        if (r2sp) {                                                          \
1903            xt.fld = helper_frsp(env, xt.fld);                               \
1904        }                                                                    \
1905                                                                             \
1906        if (sfprf) {                                                         \
1907            helper_compute_fprf(env, xt.fld);                                \
1908        }                                                                    \
1909    }                                                                        \
1910                                                                             \
1911    putVSR(xT(opcode), &xt, env);                                            \
1912    helper_float_check_status(env);                                          \
1913}
1914
1915VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1916VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1917VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1918VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1919
1920/* VSX_DIV - VSX floating point divide
1921 *   op    - instruction mnemonic
1922 *   nels  - number of elements (1, 2 or 4)
1923 *   tp    - type (float32 or float64)
1924 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1925 *   sfprf - set FPRF
1926 */
1927#define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1928void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1929{                                                                             \
1930    ppc_vsr_t xt, xa, xb;                                                     \
1931    int i;                                                                    \
1932                                                                              \
1933    getVSR(xA(opcode), &xa, env);                                             \
1934    getVSR(xB(opcode), &xb, env);                                             \
1935    getVSR(xT(opcode), &xt, env);                                             \
1936    helper_reset_fpstatus(env);                                               \
1937                                                                              \
1938    for (i = 0; i < nels; i++) {                                              \
1939        float_status tstat = env->fp_status;                                  \
1940        set_float_exception_flags(0, &tstat);                                 \
1941        xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1942        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1943                                                                              \
1944        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1945            if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {       \
1946                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \
1947            } else if (tp##_is_zero(xa.fld) &&                                \
1948                tp##_is_zero(xb.fld)) {                                       \
1949                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
1950            } else if (tp##_is_signaling_nan(xa.fld) ||                       \
1951                tp##_is_signaling_nan(xb.fld)) {                              \
1952                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1953            }                                                                 \
1954        }                                                                     \
1955                                                                              \
1956        if (r2sp) {                                                           \
1957            xt.fld = helper_frsp(env, xt.fld);                                \
1958        }                                                                     \
1959                                                                              \
1960        if (sfprf) {                                                          \
1961            helper_compute_fprf(env, xt.fld);                                 \
1962        }                                                                     \
1963    }                                                                         \
1964                                                                              \
1965    putVSR(xT(opcode), &xt, env);                                             \
1966    helper_float_check_status(env);                                           \
1967}
1968
1969VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1970VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1971VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1972VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1973
1974/* VSX_RE  - VSX floating point reciprocal estimate
1975 *   op    - instruction mnemonic
1976 *   nels  - number of elements (1, 2 or 4)
1977 *   tp    - type (float32 or float64)
1978 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1979 *   sfprf - set FPRF
1980 */
1981#define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1982void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1983{                                                                             \
1984    ppc_vsr_t xt, xb;                                                         \
1985    int i;                                                                    \
1986                                                                              \
1987    getVSR(xB(opcode), &xb, env);                                             \
1988    getVSR(xT(opcode), &xt, env);                                             \
1989    helper_reset_fpstatus(env);                                               \
1990                                                                              \
1991    for (i = 0; i < nels; i++) {                                              \
1992        if (unlikely(tp##_is_signaling_nan(xb.fld))) {                        \
1993                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1994        }                                                                     \
1995        xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
1996                                                                              \
1997        if (r2sp) {                                                           \
1998            xt.fld = helper_frsp(env, xt.fld);                                \
1999        }                                                                     \
2000                                                                              \
2001        if (sfprf) {                                                          \
2002            helper_compute_fprf(env, xt.fld);                                 \
2003        }                                                                     \
2004    }                                                                         \
2005                                                                              \
2006    putVSR(xT(opcode), &xt, env);                                             \
2007    helper_float_check_status(env);                                           \
2008}
2009
2010VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2011VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2012VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2013VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2014
2015/* VSX_SQRT - VSX floating point square root
2016 *   op    - instruction mnemonic
2017 *   nels  - number of elements (1, 2 or 4)
2018 *   tp    - type (float32 or float64)
2019 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2020 *   sfprf - set FPRF
2021 */
2022#define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2023void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2024{                                                                            \
2025    ppc_vsr_t xt, xb;                                                        \
2026    int i;                                                                   \
2027                                                                             \
2028    getVSR(xB(opcode), &xb, env);                                            \
2029    getVSR(xT(opcode), &xt, env);                                            \
2030    helper_reset_fpstatus(env);                                              \
2031                                                                             \
2032    for (i = 0; i < nels; i++) {                                             \
2033        float_status tstat = env->fp_status;                                 \
2034        set_float_exception_flags(0, &tstat);                                \
2035        xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2036        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2037                                                                             \
2038        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2039            if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2040                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2041            } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2042                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2043            }                                                                \
2044        }                                                                    \
2045                                                                             \
2046        if (r2sp) {                                                          \
2047            xt.fld = helper_frsp(env, xt.fld);                               \
2048        }                                                                    \
2049                                                                             \
2050        if (sfprf) {                                                         \
2051            helper_compute_fprf(env, xt.fld);                                \
2052        }                                                                    \
2053    }                                                                        \
2054                                                                             \
2055    putVSR(xT(opcode), &xt, env);                                            \
2056    helper_float_check_status(env);                                          \
2057}
2058
2059VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2060VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2061VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2062VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2063
2064/* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2065 *   op    - instruction mnemonic
2066 *   nels  - number of elements (1, 2 or 4)
2067 *   tp    - type (float32 or float64)
2068 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2069 *   sfprf - set FPRF
2070 */
2071#define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2072void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2073{                                                                            \
2074    ppc_vsr_t xt, xb;                                                        \
2075    int i;                                                                   \
2076                                                                             \
2077    getVSR(xB(opcode), &xb, env);                                            \
2078    getVSR(xT(opcode), &xt, env);                                            \
2079    helper_reset_fpstatus(env);                                              \
2080                                                                             \
2081    for (i = 0; i < nels; i++) {                                             \
2082        float_status tstat = env->fp_status;                                 \
2083        set_float_exception_flags(0, &tstat);                                \
2084        xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2085        xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2086        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2087                                                                             \
2088        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2089            if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2090                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2091            } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2092                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2093            }                                                                \
2094        }                                                                    \
2095                                                                             \
2096        if (r2sp) {                                                          \
2097            xt.fld = helper_frsp(env, xt.fld);                               \
2098        }                                                                    \
2099                                                                             \
2100        if (sfprf) {                                                         \
2101            helper_compute_fprf(env, xt.fld);                                \
2102        }                                                                    \
2103    }                                                                        \
2104                                                                             \
2105    putVSR(xT(opcode), &xt, env);                                            \
2106    helper_float_check_status(env);                                          \
2107}
2108
2109VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2110VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2111VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2112VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2113
2114/* VSX_TDIV - VSX floating point test for divide
2115 *   op    - instruction mnemonic
2116 *   nels  - number of elements (1, 2 or 4)
2117 *   tp    - type (float32 or float64)
2118 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2119 *   emin  - minimum unbiased exponent
2120 *   emax  - maximum unbiased exponent
2121 *   nbits - number of fraction bits
2122 */
2123#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2124void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2125{                                                                       \
2126    ppc_vsr_t xa, xb;                                                   \
2127    int i;                                                              \
2128    int fe_flag = 0;                                                    \
2129    int fg_flag = 0;                                                    \
2130                                                                        \
2131    getVSR(xA(opcode), &xa, env);                                       \
2132    getVSR(xB(opcode), &xb, env);                                       \
2133                                                                        \
2134    for (i = 0; i < nels; i++) {                                        \
2135        if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2136                     tp##_is_infinity(xb.fld) ||                        \
2137                     tp##_is_zero(xb.fld))) {                           \
2138            fe_flag = 1;                                                \
2139            fg_flag = 1;                                                \
2140        } else {                                                        \
2141            int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2142            int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2143                                                                        \
2144            if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2145                         tp##_is_any_nan(xb.fld))) {                    \
2146                fe_flag = 1;                                            \
2147            } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2148                fe_flag = 1;                                            \
2149            } else if (!tp##_is_zero(xa.fld) &&                         \
2150                       (((e_a - e_b) >= emax) ||                        \
2151                        ((e_a - e_b) <= (emin+1)) ||                    \
2152                         (e_a <= (emin+nbits)))) {                      \
2153                fe_flag = 1;                                            \
2154            }                                                           \
2155                                                                        \
2156            if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2157                /* XB is not zero because of the above check and */     \
2158                /* so must be denormalized.                      */     \
2159                fg_flag = 1;                                            \
2160            }                                                           \
2161        }                                                               \
2162    }                                                                   \
2163                                                                        \
2164    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2165}
2166
2167VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2168VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2169VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2170
2171/* VSX_TSQRT - VSX floating point test for square root
2172 *   op    - instruction mnemonic
2173 *   nels  - number of elements (1, 2 or 4)
2174 *   tp    - type (float32 or float64)
2175 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2176 *   emin  - minimum unbiased exponent
2177 *   emax  - maximum unbiased exponent
2178 *   nbits - number of fraction bits
2179 */
2180#define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2181void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2182{                                                                       \
2183    ppc_vsr_t xa, xb;                                                   \
2184    int i;                                                              \
2185    int fe_flag = 0;                                                    \
2186    int fg_flag = 0;                                                    \
2187                                                                        \
2188    getVSR(xA(opcode), &xa, env);                                       \
2189    getVSR(xB(opcode), &xb, env);                                       \
2190                                                                        \
2191    for (i = 0; i < nels; i++) {                                        \
2192        if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2193                     tp##_is_zero(xb.fld))) {                           \
2194            fe_flag = 1;                                                \
2195            fg_flag = 1;                                                \
2196        } else {                                                        \
2197            int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2198                                                                        \
2199            if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2200                fe_flag = 1;                                            \
2201            } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2202                fe_flag = 1;                                            \
2203            } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2204                fe_flag = 1;                                            \
2205            } else if (!tp##_is_zero(xb.fld) &&                         \
2206                      (e_b <= (emin+nbits))) {                          \
2207                fe_flag = 1;                                            \
2208            }                                                           \
2209                                                                        \
2210            if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2211                /* XB is not zero because of the above check and */     \
2212                /* therefore must be denormalized.               */     \
2213                fg_flag = 1;                                            \
2214            }                                                           \
2215        }                                                               \
2216    }                                                                   \
2217                                                                        \
2218    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2219}
2220
2221VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2222VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2223VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2224
2225/* VSX_MADD - VSX floating point muliply/add variations
2226 *   op    - instruction mnemonic
2227 *   nels  - number of elements (1, 2 or 4)
2228 *   tp    - type (float32 or float64)
2229 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2230 *   maddflgs - flags for the float*muladd routine that control the
2231 *           various forms (madd, msub, nmadd, nmsub)
2232 *   afrm  - A form (1=A, 0=M)
2233 *   sfprf - set FPRF
2234 */
2235#define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2236void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2237{                                                                             \
2238    ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2239    ppc_vsr_t *b, *c;                                                         \
2240    int i;                                                                    \
2241                                                                              \
2242    if (afrm) { /* AxB + T */                                                 \
2243        b = &xb;                                                              \
2244        c = &xt_in;                                                           \
2245    } else { /* AxT + B */                                                    \
2246        b = &xt_in;                                                           \
2247        c = &xb;                                                              \
2248    }                                                                         \
2249                                                                              \
2250    getVSR(xA(opcode), &xa, env);                                             \
2251    getVSR(xB(opcode), &xb, env);                                             \
2252    getVSR(xT(opcode), &xt_in, env);                                          \
2253                                                                              \
2254    xt_out = xt_in;                                                           \
2255                                                                              \
2256    helper_reset_fpstatus(env);                                               \
2257                                                                              \
2258    for (i = 0; i < nels; i++) {                                              \
2259        float_status tstat = env->fp_status;                                  \
2260        set_float_exception_flags(0, &tstat);                                 \
2261        if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2262            /* Avoid double rounding errors by rounding the intermediate */   \
2263            /* result to odd.                                            */   \
2264            set_float_rounding_mode(float_round_to_zero, &tstat);             \
2265            xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2266                                       maddflgs, &tstat);                     \
2267            xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2268                              float_flag_inexact) != 0;                       \
2269        } else {                                                              \
2270            xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2271                                        maddflgs, &tstat);                    \
2272        }                                                                     \
2273        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2274                                                                              \
2275        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2276            if (tp##_is_signaling_nan(xa.fld) ||                              \
2277                tp##_is_signaling_nan(b->fld) ||                              \
2278                tp##_is_signaling_nan(c->fld)) {                              \
2279                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
2280                tstat.float_exception_flags &= ~float_flag_invalid;           \
2281            }                                                                 \
2282            if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) ||         \
2283                (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) {         \
2284                xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env,       \
2285                    POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status);          \
2286                tstat.float_exception_flags &= ~float_flag_invalid;           \
2287            }                                                                 \
2288            if ((tstat.float_exception_flags & float_flag_invalid) &&         \
2289                ((tp##_is_infinity(xa.fld) ||                                 \
2290                  tp##_is_infinity(b->fld)) &&                                \
2291                  tp##_is_infinity(c->fld))) {                                \
2292                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);     \
2293            }                                                                 \
2294        }                                                                     \
2295                                                                              \
2296        if (r2sp) {                                                           \
2297            xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2298        }                                                                     \
2299                                                                              \
2300        if (sfprf) {                                                          \
2301            helper_compute_fprf(env, xt_out.fld);                             \
2302        }                                                                     \
2303    }                                                                         \
2304    putVSR(xT(opcode), &xt_out, env);                                         \
2305    helper_float_check_status(env);                                           \
2306}
2307
2308#define MADD_FLGS 0
2309#define MSUB_FLGS float_muladd_negate_c
2310#define NMADD_FLGS float_muladd_negate_result
2311#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2312
2313VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2314VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2315VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2316VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2317VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2318VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2319VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2320VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2321
2322VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2323VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2324VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2325VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2326VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2327VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2328VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2329VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2330
2331VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2332VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2333VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2334VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2335VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2336VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2337VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2338VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2339
2340VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2341VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2342VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2343VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2344VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2345VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2346VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2347VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2348
2349#define VSX_SCALAR_CMP(op, ordered)                                      \
2350void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2351{                                                                        \
2352    ppc_vsr_t xa, xb;                                                    \
2353    uint32_t cc = 0;                                                     \
2354                                                                         \
2355    getVSR(xA(opcode), &xa, env);                                        \
2356    getVSR(xB(opcode), &xb, env);                                        \
2357                                                                         \
2358    if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                       \
2359                 float64_is_any_nan(xb.VsrD(0)))) {                      \
2360        if (float64_is_signaling_nan(xa.VsrD(0)) ||                      \
2361            float64_is_signaling_nan(xb.VsrD(0))) {                      \
2362            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2363        }                                                                \
2364        if (ordered) {                                                   \
2365            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);         \
2366        }                                                                \
2367        cc = 1;                                                          \
2368    } else {                                                             \
2369        if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {       \
2370            cc = 8;                                                      \
2371        } else if (!float64_le(xa.VsrD(0), xb.VsrD(0),                   \
2372                               &env->fp_status)) { \
2373            cc = 4;                                                      \
2374        } else {                                                         \
2375            cc = 2;                                                      \
2376        }                                                                \
2377    }                                                                    \
2378                                                                         \
2379    env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2380    env->fpscr |= cc << FPSCR_FPRF;                                      \
2381    env->crf[BF(opcode)] = cc;                                           \
2382                                                                         \
2383    helper_float_check_status(env);                                      \
2384}
2385
2386VSX_SCALAR_CMP(xscmpodp, 1)
2387VSX_SCALAR_CMP(xscmpudp, 0)
2388
2389/* VSX_MAX_MIN - VSX floating point maximum/minimum
2390 *   name  - instruction mnemonic
2391 *   op    - operation (max or min)
2392 *   nels  - number of elements (1, 2 or 4)
2393 *   tp    - type (float32 or float64)
2394 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2395 */
2396#define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2397void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2398{                                                                             \
2399    ppc_vsr_t xt, xa, xb;                                                     \
2400    int i;                                                                    \
2401                                                                              \
2402    getVSR(xA(opcode), &xa, env);                                             \
2403    getVSR(xB(opcode), &xb, env);                                             \
2404    getVSR(xT(opcode), &xt, env);                                             \
2405                                                                              \
2406    for (i = 0; i < nels; i++) {                                              \
2407        xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2408        if (unlikely(tp##_is_signaling_nan(xa.fld) ||                         \
2409                     tp##_is_signaling_nan(xb.fld))) {                        \
2410            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2411        }                                                                     \
2412    }                                                                         \
2413                                                                              \
2414    putVSR(xT(opcode), &xt, env);                                             \
2415    helper_float_check_status(env);                                           \
2416}
2417
2418VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2419VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2420VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2421VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2422VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2423VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2424
2425/* VSX_CMP - VSX floating point compare
2426 *   op    - instruction mnemonic
2427 *   nels  - number of elements (1, 2 or 4)
2428 *   tp    - type (float32 or float64)
2429 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2430 *   cmp   - comparison operation
2431 *   svxvc - set VXVC bit
2432 */
2433#define VSX_CMP(op, nels, tp, fld, cmp, svxvc)                            \
2434void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2435{                                                                         \
2436    ppc_vsr_t xt, xa, xb;                                                 \
2437    int i;                                                                \
2438    int all_true = 1;                                                     \
2439    int all_false = 1;                                                    \
2440                                                                          \
2441    getVSR(xA(opcode), &xa, env);                                         \
2442    getVSR(xB(opcode), &xb, env);                                         \
2443    getVSR(xT(opcode), &xt, env);                                         \
2444                                                                          \
2445    for (i = 0; i < nels; i++) {                                          \
2446        if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2447                     tp##_is_any_nan(xb.fld))) {                          \
2448            if (tp##_is_signaling_nan(xa.fld) ||                          \
2449                tp##_is_signaling_nan(xb.fld)) {                          \
2450                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
2451            }                                                             \
2452            if (svxvc) {                                                  \
2453                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \
2454            }                                                             \
2455            xt.fld = 0;                                                   \
2456            all_true = 0;                                                 \
2457        } else {                                                          \
2458            if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) {       \
2459                xt.fld = -1;                                              \
2460                all_false = 0;                                            \
2461            } else {                                                      \
2462                xt.fld = 0;                                               \
2463                all_true = 0;                                             \
2464            }                                                             \
2465        }                                                                 \
2466    }                                                                     \
2467                                                                          \
2468    putVSR(xT(opcode), &xt, env);                                         \
2469    if ((opcode >> (31-21)) & 1) {                                        \
2470        env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2471    }                                                                     \
2472    helper_float_check_status(env);                                       \
2473 }
2474
2475VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0)
2476VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1)
2477VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1)
2478VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0)
2479VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1)
2480VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1)
2481
2482/* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2483 *   op    - instruction mnemonic
2484 *   nels  - number of elements (1, 2 or 4)
2485 *   stp   - source type (float32 or float64)
2486 *   ttp   - target type (float32 or float64)
2487 *   sfld  - source vsr_t field
2488 *   tfld  - target vsr_t field (f32 or f64)
2489 *   sfprf - set FPRF
2490 */
2491#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2492void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2493{                                                                  \
2494    ppc_vsr_t xt, xb;                                              \
2495    int i;                                                         \
2496                                                                   \
2497    getVSR(xB(opcode), &xb, env);                                  \
2498    getVSR(xT(opcode), &xt, env);                                  \
2499                                                                   \
2500    for (i = 0; i < nels; i++) {                                   \
2501        xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2502        if (unlikely(stp##_is_signaling_nan(xb.sfld))) {           \
2503            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2504            xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2505        }                                                          \
2506        if (sfprf) {                                               \
2507            helper_compute_fprf(env, ttp##_to_float64(xt.tfld,     \
2508                                &env->fp_status));                 \
2509        }                                                          \
2510    }                                                              \
2511                                                                   \
2512    putVSR(xT(opcode), &xt, env);                                  \
2513    helper_float_check_status(env);                                \
2514}
2515
2516VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2517VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2518VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2519VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2520
2521uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2522{
2523    float_status tstat = env->fp_status;
2524    set_float_exception_flags(0, &tstat);
2525
2526    return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2527}
2528
2529uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2530{
2531    float_status tstat = env->fp_status;
2532    set_float_exception_flags(0, &tstat);
2533
2534    return float32_to_float64(xb >> 32, &tstat);
2535}
2536
2537/* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2538 *   op    - instruction mnemonic
2539 *   nels  - number of elements (1, 2 or 4)
2540 *   stp   - source type (float32 or float64)
2541 *   ttp   - target type (int32, uint32, int64 or uint64)
2542 *   sfld  - source vsr_t field
2543 *   tfld  - target vsr_t field
2544 *   rnan  - resulting NaN
2545 */
2546#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2547void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2548{                                                                            \
2549    ppc_vsr_t xt, xb;                                                        \
2550    int i;                                                                   \
2551                                                                             \
2552    getVSR(xB(opcode), &xb, env);                                            \
2553    getVSR(xT(opcode), &xt, env);                                            \
2554                                                                             \
2555    for (i = 0; i < nels; i++) {                                             \
2556        if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
2557            if (stp##_is_signaling_nan(xb.sfld)) {                           \
2558                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2559            }                                                                \
2560            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2561            xt.tfld = rnan;                                                  \
2562        } else {                                                             \
2563            xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                \
2564                          &env->fp_status);                                  \
2565            if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2566                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \
2567            }                                                                \
2568        }                                                                    \
2569    }                                                                        \
2570                                                                             \
2571    putVSR(xT(opcode), &xt, env);                                            \
2572    helper_float_check_status(env);                                          \
2573}
2574
2575VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2576                  0x8000000000000000ULL)
2577VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2578                  0x80000000U)
2579VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2580VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2581VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2582                  0x8000000000000000ULL)
2583VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2584                  0x80000000U)
2585VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2586VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2587VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2588                  0x8000000000000000ULL)
2589VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2590VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2591VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2592
2593/* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2594 *   op    - instruction mnemonic
2595 *   nels  - number of elements (1, 2 or 4)
2596 *   stp   - source type (int32, uint32, int64 or uint64)
2597 *   ttp   - target type (float32 or float64)
2598 *   sfld  - source vsr_t field
2599 *   tfld  - target vsr_t field
2600 *   jdef  - definition of the j index (i or 2*i)
2601 *   sfprf - set FPRF
2602 */
2603#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2604void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2605{                                                                       \
2606    ppc_vsr_t xt, xb;                                                   \
2607    int i;                                                              \
2608                                                                        \
2609    getVSR(xB(opcode), &xb, env);                                       \
2610    getVSR(xT(opcode), &xt, env);                                       \
2611                                                                        \
2612    for (i = 0; i < nels; i++) {                                        \
2613        xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2614        if (r2sp) {                                                     \
2615            xt.tfld = helper_frsp(env, xt.tfld);                        \
2616        }                                                               \
2617        if (sfprf) {                                                    \
2618            helper_compute_fprf(env, xt.tfld);                          \
2619        }                                                               \
2620    }                                                                   \
2621                                                                        \
2622    putVSR(xT(opcode), &xt, env);                                       \
2623    helper_float_check_status(env);                                     \
2624}
2625
2626VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2627VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2628VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2629VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2630VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2631VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2632VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2633VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2634VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2635VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2636VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2637VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2638
2639/* For "use current rounding mode", define a value that will not be one of
2640 * the existing rounding model enums.
2641 */
2642#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2643  float_round_up + float_round_to_zero)
2644
2645/* VSX_ROUND - VSX floating point round
2646 *   op    - instruction mnemonic
2647 *   nels  - number of elements (1, 2 or 4)
2648 *   tp    - type (float32 or float64)
2649 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2650 *   rmode - rounding mode
2651 *   sfprf - set FPRF
2652 */
2653#define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
2654void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
2655{                                                                      \
2656    ppc_vsr_t xt, xb;                                                  \
2657    int i;                                                             \
2658    getVSR(xB(opcode), &xb, env);                                      \
2659    getVSR(xT(opcode), &xt, env);                                      \
2660                                                                       \
2661    if (rmode != FLOAT_ROUND_CURRENT) {                                \
2662        set_float_rounding_mode(rmode, &env->fp_status);               \
2663    }                                                                  \
2664                                                                       \
2665    for (i = 0; i < nels; i++) {                                       \
2666        if (unlikely(tp##_is_signaling_nan(xb.fld))) {                 \
2667            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
2668            xt.fld = tp##_snan_to_qnan(xb.fld);                        \
2669        } else {                                                       \
2670            xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
2671        }                                                              \
2672        if (sfprf) {                                                   \
2673            helper_compute_fprf(env, xt.fld);                          \
2674        }                                                              \
2675    }                                                                  \
2676                                                                       \
2677    /* If this is not a "use current rounding mode" instruction,       \
2678     * then inhibit setting of the XX bit and restore rounding         \
2679     * mode from FPSCR */                                              \
2680    if (rmode != FLOAT_ROUND_CURRENT) {                                \
2681        fpscr_set_rounding_mode(env);                                  \
2682        env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
2683    }                                                                  \
2684                                                                       \
2685    putVSR(xT(opcode), &xt, env);                                      \
2686    helper_float_check_status(env);                                    \
2687}
2688
2689VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_nearest_even, 1)
2690VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2691VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2692VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2693VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2694
2695VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_nearest_even, 0)
2696VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2697VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2698VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2699VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2700
2701VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_nearest_even, 0)
2702VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2703VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2704VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2705VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2706
2707uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2708{
2709    helper_reset_fpstatus(env);
2710
2711    uint64_t xt = helper_frsp(env, xb);
2712
2713    helper_compute_fprf(env, xt);
2714    helper_float_check_status(env);
2715    return xt;
2716}
2717