qemu/hw/watchdog/wdt_i6300esb.c
<<
>>
Prefs
   1/*
   2 * Virtual hardware watchdog.
   3 *
   4 * Copyright (C) 2009 Red Hat Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * By Richard W.M. Jones (rjones@redhat.com).
  20 */
  21
  22#include <inttypes.h>
  23
  24#include "qemu-common.h"
  25#include "qemu/timer.h"
  26#include "sysemu/watchdog.h"
  27#include "hw/hw.h"
  28#include "hw/pci/pci.h"
  29
  30/*#define I6300ESB_DEBUG 1*/
  31
  32#ifdef I6300ESB_DEBUG
  33#define i6300esb_debug(fs,...) \
  34    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
  35#else
  36#define i6300esb_debug(fs,...)
  37#endif
  38
  39/* PCI configuration registers */
  40#define ESB_CONFIG_REG  0x60            /* Config register                   */
  41#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
  42
  43/* Memory mapped registers (offset from base address) */
  44#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
  45#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
  46#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
  47#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
  48
  49/* Lock register bits */
  50#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
  51#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
  52#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
  53
  54/* Config register bits */
  55#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
  56#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
  57#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
  58
  59/* Reload register bits */
  60#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
  61
  62/* Magic constants */
  63#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
  64#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
  65
  66/* Device state. */
  67struct I6300State {
  68    PCIDevice dev;
  69    MemoryRegion io_mem;
  70
  71    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
  72                                 * performed depends on the -watchdog-action
  73                                 * param passed on QEMU command line.
  74                                 */
  75    int clock_scale;            /* Clock scale. */
  76#define CLOCK_SCALE_1KHZ 0
  77#define CLOCK_SCALE_1MHZ 1
  78
  79    int int_type;               /* Interrupt type generated. */
  80#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
  81#define INT_TYPE_SMI 2
  82#define INT_TYPE_DISABLED 3
  83
  84    int free_run;               /* If true, reload timer on expiry. */
  85    int locked;                 /* If true, enabled field cannot be changed. */
  86    int enabled;                /* If true, watchdog is enabled. */
  87
  88    QEMUTimer *timer;           /* The actual watchdog timer. */
  89
  90    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
  91    uint32_t timer2_preload;
  92    int stage;                  /* Stage (1 or 2). */
  93
  94    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
  95                                 * registers, and we transition through
  96                                 * states 0 -> 1 -> 2 when this happens.
  97                                 */
  98
  99    int previous_reboot_flag;   /* If the watchdog caused the previous
 100                                 * reboot, this flag will be set.
 101                                 */
 102};
 103
 104typedef struct I6300State I6300State;
 105
 106/* This function is called when the watchdog has either been enabled
 107 * (hence it starts counting down) or has been keep-alived.
 108 */
 109static void i6300esb_restart_timer(I6300State *d, int stage)
 110{
 111    int64_t timeout;
 112
 113    if (!d->enabled)
 114        return;
 115
 116    d->stage = stage;
 117
 118    if (d->stage <= 1)
 119        timeout = d->timer1_preload;
 120    else
 121        timeout = d->timer2_preload;
 122
 123    if (d->clock_scale == CLOCK_SCALE_1KHZ)
 124        timeout <<= 15;
 125    else
 126        timeout <<= 5;
 127
 128    /* Get the timeout in units of ticks_per_sec.
 129     *
 130     * ticks_per_sec is typically 10^9 == 0x3B9ACA00 (30 bits), with
 131     * 20 bits of user supplied preload, and 15 bits of scale, the
 132     * multiply here can exceed 64-bits, before we divide by 33MHz, so
 133     * we use a higher-precision intermediate result.
 134     */
 135    timeout = muldiv64(get_ticks_per_sec(), timeout, 33000000);
 136
 137    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
 138
 139    timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
 140}
 141
 142/* This is called when the guest disables the watchdog. */
 143static void i6300esb_disable_timer(I6300State *d)
 144{
 145    i6300esb_debug("timer disabled\n");
 146
 147    timer_del(d->timer);
 148}
 149
 150static void i6300esb_reset(DeviceState *dev)
 151{
 152    PCIDevice *pdev = PCI_DEVICE(dev);
 153    I6300State *d = DO_UPCAST(I6300State, dev, pdev);
 154
 155    i6300esb_debug("I6300State = %p\n", d);
 156
 157    i6300esb_disable_timer(d);
 158
 159    /* NB: Don't change d->previous_reboot_flag in this function. */
 160
 161    d->reboot_enabled = 1;
 162    d->clock_scale = CLOCK_SCALE_1KHZ;
 163    d->int_type = INT_TYPE_IRQ;
 164    d->free_run = 0;
 165    d->locked = 0;
 166    d->enabled = 0;
 167    d->timer1_preload = 0xfffff;
 168    d->timer2_preload = 0xfffff;
 169    d->stage = 1;
 170    d->unlock_state = 0;
 171}
 172
 173/* This function is called when the watchdog expires.  Note that
 174 * the hardware has two timers, and so expiry happens in two stages.
 175 * If d->stage == 1 then we perform the first stage action (usually,
 176 * sending an interrupt) and then restart the timer again for the
 177 * second stage.  If the second stage expires then the watchdog
 178 * really has run out.
 179 */
 180static void i6300esb_timer_expired(void *vp)
 181{
 182    I6300State *d = vp;
 183
 184    i6300esb_debug("stage %d\n", d->stage);
 185
 186    if (d->stage == 1) {
 187        /* What to do at the end of stage 1? */
 188        switch (d->int_type) {
 189        case INT_TYPE_IRQ:
 190            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
 191            break;
 192        case INT_TYPE_SMI:
 193            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
 194            break;
 195        }
 196
 197        /* Start the second stage. */
 198        i6300esb_restart_timer(d, 2);
 199    } else {
 200        /* Second stage expired, reboot for real. */
 201        if (d->reboot_enabled) {
 202            d->previous_reboot_flag = 1;
 203            watchdog_perform_action(); /* This reboots, exits, etc */
 204            i6300esb_reset(&d->dev.qdev);
 205        }
 206
 207        /* In "free running mode" we start stage 1 again. */
 208        if (d->free_run)
 209            i6300esb_restart_timer(d, 1);
 210    }
 211}
 212
 213static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
 214                                  uint32_t data, int len)
 215{
 216    I6300State *d = DO_UPCAST(I6300State, dev, dev);
 217    int old;
 218
 219    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
 220
 221    if (addr == ESB_CONFIG_REG && len == 2) {
 222        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
 223        d->clock_scale =
 224            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
 225        d->int_type = (data & ESB_WDT_INTTYPE);
 226    } else if (addr == ESB_LOCK_REG && len == 1) {
 227        if (!d->locked) {
 228            d->locked = (data & ESB_WDT_LOCK) != 0;
 229            d->free_run = (data & ESB_WDT_FUNC) != 0;
 230            old = d->enabled;
 231            d->enabled = (data & ESB_WDT_ENABLE) != 0;
 232            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
 233                i6300esb_restart_timer(d, 1);
 234            else if (!d->enabled)
 235                i6300esb_disable_timer(d);
 236        }
 237    } else {
 238        pci_default_write_config(dev, addr, data, len);
 239    }
 240}
 241
 242static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
 243{
 244    I6300State *d = DO_UPCAST(I6300State, dev, dev);
 245    uint32_t data;
 246
 247    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
 248
 249    if (addr == ESB_CONFIG_REG && len == 2) {
 250        data =
 251            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
 252            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
 253            d->int_type;
 254        return data;
 255    } else if (addr == ESB_LOCK_REG && len == 1) {
 256        data =
 257            (d->free_run ? ESB_WDT_FUNC : 0) |
 258            (d->locked ? ESB_WDT_LOCK : 0) |
 259            (d->enabled ? ESB_WDT_ENABLE : 0);
 260        return data;
 261    } else {
 262        return pci_default_read_config(dev, addr, len);
 263    }
 264}
 265
 266static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
 267{
 268    i6300esb_debug ("addr = %x\n", (int) addr);
 269
 270    return 0;
 271}
 272
 273static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
 274{
 275    uint32_t data = 0;
 276    I6300State *d = vp;
 277
 278    i6300esb_debug("addr = %x\n", (int) addr);
 279
 280    if (addr == 0xc) {
 281        /* The previous reboot flag is really bit 9, but there is
 282         * a bug in the Linux driver where it thinks it's bit 12.
 283         * Set both.
 284         */
 285        data = d->previous_reboot_flag ? 0x1200 : 0;
 286    }
 287
 288    return data;
 289}
 290
 291static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
 292{
 293    i6300esb_debug("addr = %x\n", (int) addr);
 294
 295    return 0;
 296}
 297
 298static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
 299{
 300    I6300State *d = vp;
 301
 302    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
 303
 304    if (addr == 0xc && val == 0x80)
 305        d->unlock_state = 1;
 306    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 307        d->unlock_state = 2;
 308}
 309
 310static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
 311{
 312    I6300State *d = vp;
 313
 314    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
 315
 316    if (addr == 0xc && val == 0x80)
 317        d->unlock_state = 1;
 318    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 319        d->unlock_state = 2;
 320    else {
 321        if (d->unlock_state == 2) {
 322            if (addr == 0xc) {
 323                if ((val & 0x100) != 0)
 324                    /* This is the "ping" from the userspace watchdog in
 325                     * the guest ...
 326                     */
 327                    i6300esb_restart_timer(d, 1);
 328
 329                /* Setting bit 9 resets the previous reboot flag.
 330                 * There's a bug in the Linux driver where it sets
 331                 * bit 12 instead.
 332                 */
 333                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
 334                    d->previous_reboot_flag = 0;
 335                }
 336            }
 337
 338            d->unlock_state = 0;
 339        }
 340    }
 341}
 342
 343static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
 344{
 345    I6300State *d = vp;
 346
 347    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
 348
 349    if (addr == 0xc && val == 0x80)
 350        d->unlock_state = 1;
 351    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 352        d->unlock_state = 2;
 353    else {
 354        if (d->unlock_state == 2) {
 355            if (addr == 0)
 356                d->timer1_preload = val & 0xfffff;
 357            else if (addr == 4)
 358                d->timer2_preload = val & 0xfffff;
 359
 360            d->unlock_state = 0;
 361        }
 362    }
 363}
 364
 365static const MemoryRegionOps i6300esb_ops = {
 366    .old_mmio = {
 367        .read = {
 368            i6300esb_mem_readb,
 369            i6300esb_mem_readw,
 370            i6300esb_mem_readl,
 371        },
 372        .write = {
 373            i6300esb_mem_writeb,
 374            i6300esb_mem_writew,
 375            i6300esb_mem_writel,
 376        },
 377    },
 378    .endianness = DEVICE_LITTLE_ENDIAN,
 379};
 380
 381static const VMStateDescription vmstate_i6300esb = {
 382    .name = "i6300esb_wdt",
 383    /* With this VMSD's introduction, version_id/minimum_version_id were
 384     * erroneously set to sizeof(I6300State), causing a somewhat random
 385     * version_id to be set for every build. This eventually broke
 386     * migration.
 387     *
 388     * To correct this without breaking old->new migration for older
 389     * versions of QEMU, we've set version_id to a value high enough
 390     * to exceed all past values of sizeof(I6300State) across various
 391     * build environments, and have reset minimum_version_id to 1,
 392     * since this VMSD has never changed and thus can accept all past
 393     * versions.
 394     *
 395     * For future changes we can treat these values as we normally would.
 396     */
 397    .version_id = 10000,
 398    .minimum_version_id = 1,
 399    .fields = (VMStateField[]) {
 400        VMSTATE_PCI_DEVICE(dev, I6300State),
 401        VMSTATE_INT32(reboot_enabled, I6300State),
 402        VMSTATE_INT32(clock_scale, I6300State),
 403        VMSTATE_INT32(int_type, I6300State),
 404        VMSTATE_INT32(free_run, I6300State),
 405        VMSTATE_INT32(locked, I6300State),
 406        VMSTATE_INT32(enabled, I6300State),
 407        VMSTATE_TIMER_PTR(timer, I6300State),
 408        VMSTATE_UINT32(timer1_preload, I6300State),
 409        VMSTATE_UINT32(timer2_preload, I6300State),
 410        VMSTATE_INT32(stage, I6300State),
 411        VMSTATE_INT32(unlock_state, I6300State),
 412        VMSTATE_INT32(previous_reboot_flag, I6300State),
 413        VMSTATE_END_OF_LIST()
 414    }
 415};
 416
 417static void i6300esb_realize(PCIDevice *dev, Error **errp)
 418{
 419    I6300State *d = DO_UPCAST(I6300State, dev, dev);
 420
 421    i6300esb_debug("I6300State = %p\n", d);
 422
 423    d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
 424    d->previous_reboot_flag = 0;
 425
 426    memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
 427                          "i6300esb", 0x10);
 428    pci_register_bar(&d->dev, 0, 0, &d->io_mem);
 429    /* qemu_register_coalesced_mmio (addr, 0x10); ? */
 430}
 431
 432static WatchdogTimerModel model = {
 433    .wdt_name = "i6300esb",
 434    .wdt_description = "Intel 6300ESB",
 435};
 436
 437static void i6300esb_class_init(ObjectClass *klass, void *data)
 438{
 439    DeviceClass *dc = DEVICE_CLASS(klass);
 440    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
 441
 442    k->config_read = i6300esb_config_read;
 443    k->config_write = i6300esb_config_write;
 444    k->realize = i6300esb_realize;
 445    k->vendor_id = PCI_VENDOR_ID_INTEL;
 446    k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
 447    k->class_id = PCI_CLASS_SYSTEM_OTHER;
 448    dc->reset = i6300esb_reset;
 449    dc->vmsd = &vmstate_i6300esb;
 450    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 451}
 452
 453static const TypeInfo i6300esb_info = {
 454    .name          = "i6300esb",
 455    .parent        = TYPE_PCI_DEVICE,
 456    .instance_size = sizeof(I6300State),
 457    .class_init    = i6300esb_class_init,
 458};
 459
 460static void i6300esb_register_types(void)
 461{
 462    watchdog_add_model(&model);
 463    type_register_static(&i6300esb_info);
 464}
 465
 466type_init(i6300esb_register_types)
 467