qemu/include/qom/object.h
<<
>>
Prefs
   1/*
   2 * QEMU Object Model
   3 *
   4 * Copyright IBM, Corp. 2011
   5 *
   6 * Authors:
   7 *  Anthony Liguori   <aliguori@us.ibm.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef QEMU_OBJECT_H
  15#define QEMU_OBJECT_H
  16
  17#include <glib.h>
  18#include <stdint.h>
  19#include <stdbool.h>
  20#include "qemu/queue.h"
  21#include "qapi/error.h"
  22
  23struct Visitor;
  24
  25struct TypeImpl;
  26typedef struct TypeImpl *Type;
  27
  28typedef struct ObjectClass ObjectClass;
  29typedef struct Object Object;
  30
  31typedef struct TypeInfo TypeInfo;
  32
  33typedef struct InterfaceClass InterfaceClass;
  34typedef struct InterfaceInfo InterfaceInfo;
  35
  36#define TYPE_OBJECT "object"
  37
  38/**
  39 * SECTION:object.h
  40 * @title:Base Object Type System
  41 * @short_description: interfaces for creating new types and objects
  42 *
  43 * The QEMU Object Model provides a framework for registering user creatable
  44 * types and instantiating objects from those types.  QOM provides the following
  45 * features:
  46 *
  47 *  - System for dynamically registering types
  48 *  - Support for single-inheritance of types
  49 *  - Multiple inheritance of stateless interfaces
  50 *
  51 * <example>
  52 *   <title>Creating a minimal type</title>
  53 *   <programlisting>
  54 * #include "qdev.h"
  55 *
  56 * #define TYPE_MY_DEVICE "my-device"
  57 *
  58 * // No new virtual functions: we can reuse the typedef for the
  59 * // superclass.
  60 * typedef DeviceClass MyDeviceClass;
  61 * typedef struct MyDevice
  62 * {
  63 *     DeviceState parent;
  64 *
  65 *     int reg0, reg1, reg2;
  66 * } MyDevice;
  67 *
  68 * static const TypeInfo my_device_info = {
  69 *     .name = TYPE_MY_DEVICE,
  70 *     .parent = TYPE_DEVICE,
  71 *     .instance_size = sizeof(MyDevice),
  72 * };
  73 *
  74 * static void my_device_register_types(void)
  75 * {
  76 *     type_register_static(&my_device_info);
  77 * }
  78 *
  79 * type_init(my_device_register_types)
  80 *   </programlisting>
  81 * </example>
  82 *
  83 * In the above example, we create a simple type that is described by #TypeInfo.
  84 * #TypeInfo describes information about the type including what it inherits
  85 * from, the instance and class size, and constructor/destructor hooks.
  86 *
  87 * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
  88 * are instantiated dynamically but there is only ever one instance for any
  89 * given type.  The #ObjectClass typically holds a table of function pointers
  90 * for the virtual methods implemented by this type.
  91 *
  92 * Using object_new(), a new #Object derivative will be instantiated.  You can
  93 * cast an #Object to a subclass (or base-class) type using
  94 * object_dynamic_cast().  You typically want to define macro wrappers around
  95 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
  96 * specific type:
  97 *
  98 * <example>
  99 *   <title>Typecasting macros</title>
 100 *   <programlisting>
 101 *    #define MY_DEVICE_GET_CLASS(obj) \
 102 *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
 103 *    #define MY_DEVICE_CLASS(klass) \
 104 *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
 105 *    #define MY_DEVICE(obj) \
 106 *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
 107 *   </programlisting>
 108 * </example>
 109 *
 110 * # Class Initialization #
 111 *
 112 * Before an object is initialized, the class for the object must be
 113 * initialized.  There is only one class object for all instance objects
 114 * that is created lazily.
 115 *
 116 * Classes are initialized by first initializing any parent classes (if
 117 * necessary).  After the parent class object has initialized, it will be
 118 * copied into the current class object and any additional storage in the
 119 * class object is zero filled.
 120 *
 121 * The effect of this is that classes automatically inherit any virtual
 122 * function pointers that the parent class has already initialized.  All
 123 * other fields will be zero filled.
 124 *
 125 * Once all of the parent classes have been initialized, #TypeInfo::class_init
 126 * is called to let the class being instantiated provide default initialize for
 127 * its virtual functions.  Here is how the above example might be modified
 128 * to introduce an overridden virtual function:
 129 *
 130 * <example>
 131 *   <title>Overriding a virtual function</title>
 132 *   <programlisting>
 133 * #include "qdev.h"
 134 *
 135 * void my_device_class_init(ObjectClass *klass, void *class_data)
 136 * {
 137 *     DeviceClass *dc = DEVICE_CLASS(klass);
 138 *     dc->reset = my_device_reset;
 139 * }
 140 *
 141 * static const TypeInfo my_device_info = {
 142 *     .name = TYPE_MY_DEVICE,
 143 *     .parent = TYPE_DEVICE,
 144 *     .instance_size = sizeof(MyDevice),
 145 *     .class_init = my_device_class_init,
 146 * };
 147 *   </programlisting>
 148 * </example>
 149 *
 150 * Introducing new virtual methods requires a class to define its own
 151 * struct and to add a .class_size member to the #TypeInfo.  Each method
 152 * will also have a wrapper function to call it easily:
 153 *
 154 * <example>
 155 *   <title>Defining an abstract class</title>
 156 *   <programlisting>
 157 * #include "qdev.h"
 158 *
 159 * typedef struct MyDeviceClass
 160 * {
 161 *     DeviceClass parent;
 162 *
 163 *     void (*frobnicate) (MyDevice *obj);
 164 * } MyDeviceClass;
 165 *
 166 * static const TypeInfo my_device_info = {
 167 *     .name = TYPE_MY_DEVICE,
 168 *     .parent = TYPE_DEVICE,
 169 *     .instance_size = sizeof(MyDevice),
 170 *     .abstract = true, // or set a default in my_device_class_init
 171 *     .class_size = sizeof(MyDeviceClass),
 172 * };
 173 *
 174 * void my_device_frobnicate(MyDevice *obj)
 175 * {
 176 *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
 177 *
 178 *     klass->frobnicate(obj);
 179 * }
 180 *   </programlisting>
 181 * </example>
 182 *
 183 * # Interfaces #
 184 *
 185 * Interfaces allow a limited form of multiple inheritance.  Instances are
 186 * similar to normal types except for the fact that are only defined by
 187 * their classes and never carry any state.  You can dynamically cast an object
 188 * to one of its #Interface types and vice versa.
 189 *
 190 * # Methods #
 191 *
 192 * A <emphasis>method</emphasis> is a function within the namespace scope of
 193 * a class. It usually operates on the object instance by passing it as a
 194 * strongly-typed first argument.
 195 * If it does not operate on an object instance, it is dubbed
 196 * <emphasis>class method</emphasis>.
 197 *
 198 * Methods cannot be overloaded. That is, the #ObjectClass and method name
 199 * uniquely identity the function to be called; the signature does not vary
 200 * except for trailing varargs.
 201 *
 202 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
 203 * #TypeInfo.class_init of a subclass leads to any user of the class obtained
 204 * via OBJECT_GET_CLASS() accessing the overridden function.
 205 * The original function is not automatically invoked. It is the responsibility
 206 * of the overriding class to determine whether and when to invoke the method
 207 * being overridden.
 208 *
 209 * To invoke the method being overridden, the preferred solution is to store
 210 * the original value in the overriding class before overriding the method.
 211 * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
 212 * respectively; this frees the overriding class from hardcoding its parent
 213 * class, which someone might choose to change at some point.
 214 *
 215 * <example>
 216 *   <title>Overriding a virtual method</title>
 217 *   <programlisting>
 218 * typedef struct MyState MyState;
 219 *
 220 * typedef void (*MyDoSomething)(MyState *obj);
 221 *
 222 * typedef struct MyClass {
 223 *     ObjectClass parent_class;
 224 *
 225 *     MyDoSomething do_something;
 226 * } MyClass;
 227 *
 228 * static void my_do_something(MyState *obj)
 229 * {
 230 *     // do something
 231 * }
 232 *
 233 * static void my_class_init(ObjectClass *oc, void *data)
 234 * {
 235 *     MyClass *mc = MY_CLASS(oc);
 236 *
 237 *     mc->do_something = my_do_something;
 238 * }
 239 *
 240 * static const TypeInfo my_type_info = {
 241 *     .name = TYPE_MY,
 242 *     .parent = TYPE_OBJECT,
 243 *     .instance_size = sizeof(MyState),
 244 *     .class_size = sizeof(MyClass),
 245 *     .class_init = my_class_init,
 246 * };
 247 *
 248 * typedef struct DerivedClass {
 249 *     MyClass parent_class;
 250 *
 251 *     MyDoSomething parent_do_something;
 252 * } DerivedClass;
 253 *
 254 * static void derived_do_something(MyState *obj)
 255 * {
 256 *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
 257 *
 258 *     // do something here
 259 *     dc->parent_do_something(obj);
 260 *     // do something else here
 261 * }
 262 *
 263 * static void derived_class_init(ObjectClass *oc, void *data)
 264 * {
 265 *     MyClass *mc = MY_CLASS(oc);
 266 *     DerivedClass *dc = DERIVED_CLASS(oc);
 267 *
 268 *     dc->parent_do_something = mc->do_something;
 269 *     mc->do_something = derived_do_something;
 270 * }
 271 *
 272 * static const TypeInfo derived_type_info = {
 273 *     .name = TYPE_DERIVED,
 274 *     .parent = TYPE_MY,
 275 *     .class_size = sizeof(DerivedClass),
 276 *     .class_init = derived_class_init,
 277 * };
 278 *   </programlisting>
 279 * </example>
 280 *
 281 * Alternatively, object_class_by_name() can be used to obtain the class and
 282 * its non-overridden methods for a specific type. This would correspond to
 283 * |[ MyClass::method(...) ]| in C++.
 284 *
 285 * The first example of such a QOM method was #CPUClass.reset,
 286 * another example is #DeviceClass.realize.
 287 */
 288
 289
 290/**
 291 * ObjectPropertyAccessor:
 292 * @obj: the object that owns the property
 293 * @v: the visitor that contains the property data
 294 * @opaque: the object property opaque
 295 * @name: the name of the property
 296 * @errp: a pointer to an Error that is filled if getting/setting fails.
 297 *
 298 * Called when trying to get/set a property.
 299 */
 300typedef void (ObjectPropertyAccessor)(Object *obj,
 301                                      struct Visitor *v,
 302                                      void *opaque,
 303                                      const char *name,
 304                                      Error **errp);
 305
 306/**
 307 * ObjectPropertyResolve:
 308 * @obj: the object that owns the property
 309 * @opaque: the opaque registered with the property
 310 * @part: the name of the property
 311 *
 312 * Resolves the #Object corresponding to property @part.
 313 *
 314 * The returned object can also be used as a starting point
 315 * to resolve a relative path starting with "@part".
 316 *
 317 * Returns: If @path is the path that led to @obj, the function
 318 * returns the #Object corresponding to "@path/@part".
 319 * If "@path/@part" is not a valid object path, it returns #NULL.
 320 */
 321typedef Object *(ObjectPropertyResolve)(Object *obj,
 322                                        void *opaque,
 323                                        const char *part);
 324
 325/**
 326 * ObjectPropertyRelease:
 327 * @obj: the object that owns the property
 328 * @name: the name of the property
 329 * @opaque: the opaque registered with the property
 330 *
 331 * Called when a property is removed from a object.
 332 */
 333typedef void (ObjectPropertyRelease)(Object *obj,
 334                                     const char *name,
 335                                     void *opaque);
 336
 337typedef struct ObjectProperty
 338{
 339    gchar *name;
 340    gchar *type;
 341    gchar *description;
 342    ObjectPropertyAccessor *get;
 343    ObjectPropertyAccessor *set;
 344    ObjectPropertyResolve *resolve;
 345    ObjectPropertyRelease *release;
 346    void *opaque;
 347
 348    QTAILQ_ENTRY(ObjectProperty) node;
 349} ObjectProperty;
 350
 351/**
 352 * ObjectUnparent:
 353 * @obj: the object that is being removed from the composition tree
 354 *
 355 * Called when an object is being removed from the QOM composition tree.
 356 * The function should remove any backlinks from children objects to @obj.
 357 */
 358typedef void (ObjectUnparent)(Object *obj);
 359
 360/**
 361 * ObjectFree:
 362 * @obj: the object being freed
 363 *
 364 * Called when an object's last reference is removed.
 365 */
 366typedef void (ObjectFree)(void *obj);
 367
 368#define OBJECT_CLASS_CAST_CACHE 4
 369
 370/**
 371 * ObjectClass:
 372 *
 373 * The base for all classes.  The only thing that #ObjectClass contains is an
 374 * integer type handle.
 375 */
 376struct ObjectClass
 377{
 378    /*< private >*/
 379    Type type;
 380    GSList *interfaces;
 381
 382    const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
 383    const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
 384
 385    ObjectUnparent *unparent;
 386};
 387
 388/**
 389 * Object:
 390 *
 391 * The base for all objects.  The first member of this object is a pointer to
 392 * a #ObjectClass.  Since C guarantees that the first member of a structure
 393 * always begins at byte 0 of that structure, as long as any sub-object places
 394 * its parent as the first member, we can cast directly to a #Object.
 395 *
 396 * As a result, #Object contains a reference to the objects type as its
 397 * first member.  This allows identification of the real type of the object at
 398 * run time.
 399 *
 400 * #Object also contains a list of #Interfaces that this object
 401 * implements.
 402 */
 403struct Object
 404{
 405    /*< private >*/
 406    ObjectClass *class;
 407    ObjectFree *free;
 408    QTAILQ_HEAD(, ObjectProperty) properties;
 409    uint32_t ref;
 410    Object *parent;
 411};
 412
 413/**
 414 * TypeInfo:
 415 * @name: The name of the type.
 416 * @parent: The name of the parent type.
 417 * @instance_size: The size of the object (derivative of #Object).  If
 418 *   @instance_size is 0, then the size of the object will be the size of the
 419 *   parent object.
 420 * @instance_init: This function is called to initialize an object.  The parent
 421 *   class will have already been initialized so the type is only responsible
 422 *   for initializing its own members.
 423 * @instance_post_init: This function is called to finish initialization of
 424 *   an object, after all @instance_init functions were called.
 425 * @instance_finalize: This function is called during object destruction.  This
 426 *   is called before the parent @instance_finalize function has been called.
 427 *   An object should only free the members that are unique to its type in this
 428 *   function.
 429 * @abstract: If this field is true, then the class is considered abstract and
 430 *   cannot be directly instantiated.
 431 * @class_size: The size of the class object (derivative of #ObjectClass)
 432 *   for this object.  If @class_size is 0, then the size of the class will be
 433 *   assumed to be the size of the parent class.  This allows a type to avoid
 434 *   implementing an explicit class type if they are not adding additional
 435 *   virtual functions.
 436 * @class_init: This function is called after all parent class initialization
 437 *   has occurred to allow a class to set its default virtual method pointers.
 438 *   This is also the function to use to override virtual methods from a parent
 439 *   class.
 440 * @class_base_init: This function is called for all base classes after all
 441 *   parent class initialization has occurred, but before the class itself
 442 *   is initialized.  This is the function to use to undo the effects of
 443 *   memcpy from the parent class to the descendents.
 444 * @class_finalize: This function is called during class destruction and is
 445 *   meant to release and dynamic parameters allocated by @class_init.
 446 * @class_data: Data to pass to the @class_init, @class_base_init and
 447 *   @class_finalize functions.  This can be useful when building dynamic
 448 *   classes.
 449 * @interfaces: The list of interfaces associated with this type.  This
 450 *   should point to a static array that's terminated with a zero filled
 451 *   element.
 452 */
 453struct TypeInfo
 454{
 455    const char *name;
 456    const char *parent;
 457
 458    size_t instance_size;
 459    void (*instance_init)(Object *obj);
 460    void (*instance_post_init)(Object *obj);
 461    void (*instance_finalize)(Object *obj);
 462
 463    bool abstract;
 464    size_t class_size;
 465
 466    void (*class_init)(ObjectClass *klass, void *data);
 467    void (*class_base_init)(ObjectClass *klass, void *data);
 468    void (*class_finalize)(ObjectClass *klass, void *data);
 469    void *class_data;
 470
 471    InterfaceInfo *interfaces;
 472};
 473
 474/**
 475 * OBJECT:
 476 * @obj: A derivative of #Object
 477 *
 478 * Converts an object to a #Object.  Since all objects are #Objects,
 479 * this function will always succeed.
 480 */
 481#define OBJECT(obj) \
 482    ((Object *)(obj))
 483
 484/**
 485 * OBJECT_CLASS:
 486 * @class: A derivative of #ObjectClass.
 487 *
 488 * Converts a class to an #ObjectClass.  Since all objects are #Objects,
 489 * this function will always succeed.
 490 */
 491#define OBJECT_CLASS(class) \
 492    ((ObjectClass *)(class))
 493
 494/**
 495 * OBJECT_CHECK:
 496 * @type: The C type to use for the return value.
 497 * @obj: A derivative of @type to cast.
 498 * @name: The QOM typename of @type
 499 *
 500 * A type safe version of @object_dynamic_cast_assert.  Typically each class
 501 * will define a macro based on this type to perform type safe dynamic_casts to
 502 * this object type.
 503 *
 504 * If an invalid object is passed to this function, a run time assert will be
 505 * generated.
 506 */
 507#define OBJECT_CHECK(type, obj, name) \
 508    ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
 509                                        __FILE__, __LINE__, __func__))
 510
 511/**
 512 * OBJECT_CLASS_CHECK:
 513 * @class: The C type to use for the return value.
 514 * @obj: A derivative of @type to cast.
 515 * @name: the QOM typename of @class.
 516 *
 517 * A type safe version of @object_class_dynamic_cast_assert.  This macro is
 518 * typically wrapped by each type to perform type safe casts of a class to a
 519 * specific class type.
 520 */
 521#define OBJECT_CLASS_CHECK(class, obj, name) \
 522    ((class *)object_class_dynamic_cast_assert(OBJECT_CLASS(obj), (name), \
 523                                               __FILE__, __LINE__, __func__))
 524
 525/**
 526 * OBJECT_GET_CLASS:
 527 * @class: The C type to use for the return value.
 528 * @obj: The object to obtain the class for.
 529 * @name: The QOM typename of @obj.
 530 *
 531 * This function will return a specific class for a given object.  Its generally
 532 * used by each type to provide a type safe macro to get a specific class type
 533 * from an object.
 534 */
 535#define OBJECT_GET_CLASS(class, obj, name) \
 536    OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
 537
 538/**
 539 * InterfaceInfo:
 540 * @type: The name of the interface.
 541 *
 542 * The information associated with an interface.
 543 */
 544struct InterfaceInfo {
 545    const char *type;
 546};
 547
 548/**
 549 * InterfaceClass:
 550 * @parent_class: the base class
 551 *
 552 * The class for all interfaces.  Subclasses of this class should only add
 553 * virtual methods.
 554 */
 555struct InterfaceClass
 556{
 557    ObjectClass parent_class;
 558    /*< private >*/
 559    ObjectClass *concrete_class;
 560    Type interface_type;
 561};
 562
 563#define TYPE_INTERFACE "interface"
 564
 565/**
 566 * INTERFACE_CLASS:
 567 * @klass: class to cast from
 568 * Returns: An #InterfaceClass or raise an error if cast is invalid
 569 */
 570#define INTERFACE_CLASS(klass) \
 571    OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
 572
 573/**
 574 * INTERFACE_CHECK:
 575 * @interface: the type to return
 576 * @obj: the object to convert to an interface
 577 * @name: the interface type name
 578 *
 579 * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
 580 */
 581#define INTERFACE_CHECK(interface, obj, name) \
 582    ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
 583                                             __FILE__, __LINE__, __func__))
 584
 585/**
 586 * object_new:
 587 * @typename: The name of the type of the object to instantiate.
 588 *
 589 * This function will initialize a new object using heap allocated memory.
 590 * The returned object has a reference count of 1, and will be freed when
 591 * the last reference is dropped.
 592 *
 593 * Returns: The newly allocated and instantiated object.
 594 */
 595Object *object_new(const char *typename);
 596
 597/**
 598 * object_new_with_type:
 599 * @type: The type of the object to instantiate.
 600 *
 601 * This function will initialize a new object using heap allocated memory.
 602 * The returned object has a reference count of 1, and will be freed when
 603 * the last reference is dropped.
 604 *
 605 * Returns: The newly allocated and instantiated object.
 606 */
 607Object *object_new_with_type(Type type);
 608
 609/**
 610 * object_new_with_props:
 611 * @typename:  The name of the type of the object to instantiate.
 612 * @parent: the parent object
 613 * @id: The unique ID of the object
 614 * @errp: pointer to error object
 615 * @...: list of property names and values
 616 *
 617 * This function will initialize a new object using heap allocated memory.
 618 * The returned object has a reference count of 1, and will be freed when
 619 * the last reference is dropped.
 620 *
 621 * The @id parameter will be used when registering the object as a
 622 * child of @parent in the composition tree.
 623 *
 624 * The variadic parameters are a list of pairs of (propname, propvalue)
 625 * strings. The propname of %NULL indicates the end of the property
 626 * list. If the object implements the user creatable interface, the
 627 * object will be marked complete once all the properties have been
 628 * processed.
 629 *
 630 * <example>
 631 *   <title>Creating an object with properties</title>
 632 *   <programlisting>
 633 *   Error *err = NULL;
 634 *   Object *obj;
 635 *
 636 *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
 637 *                               object_get_objects_root(),
 638 *                               "hostmem0",
 639 *                               &err,
 640 *                               "share", "yes",
 641 *                               "mem-path", "/dev/shm/somefile",
 642 *                               "prealloc", "yes",
 643 *                               "size", "1048576",
 644 *                               NULL);
 645 *
 646 *   if (!obj) {
 647 *     g_printerr("Cannot create memory backend: %s\n",
 648 *                error_get_pretty(err));
 649 *   }
 650 *   </programlisting>
 651 * </example>
 652 *
 653 * The returned object will have one stable reference maintained
 654 * for as long as it is present in the object hierarchy.
 655 *
 656 * Returns: The newly allocated, instantiated & initialized object.
 657 */
 658Object *object_new_with_props(const char *typename,
 659                              Object *parent,
 660                              const char *id,
 661                              Error **errp,
 662                              ...) QEMU_SENTINEL;
 663
 664/**
 665 * object_new_with_propv:
 666 * @typename:  The name of the type of the object to instantiate.
 667 * @parent: the parent object
 668 * @id: The unique ID of the object
 669 * @errp: pointer to error object
 670 * @vargs: list of property names and values
 671 *
 672 * See object_new_with_props() for documentation.
 673 */
 674Object *object_new_with_propv(const char *typename,
 675                              Object *parent,
 676                              const char *id,
 677                              Error **errp,
 678                              va_list vargs);
 679
 680/**
 681 * object_set_props:
 682 * @obj: the object instance to set properties on
 683 * @errp: pointer to error object
 684 * @...: list of property names and values
 685 *
 686 * This function will set a list of properties on an existing object
 687 * instance.
 688 *
 689 * The variadic parameters are a list of pairs of (propname, propvalue)
 690 * strings. The propname of %NULL indicates the end of the property
 691 * list.
 692 *
 693 * <example>
 694 *   <title>Update an object's properties</title>
 695 *   <programlisting>
 696 *   Error *err = NULL;
 697 *   Object *obj = ...get / create object...;
 698 *
 699 *   obj = object_set_props(obj,
 700 *                          &err,
 701 *                          "share", "yes",
 702 *                          "mem-path", "/dev/shm/somefile",
 703 *                          "prealloc", "yes",
 704 *                          "size", "1048576",
 705 *                          NULL);
 706 *
 707 *   if (!obj) {
 708 *     g_printerr("Cannot set properties: %s\n",
 709 *                error_get_pretty(err));
 710 *   }
 711 *   </programlisting>
 712 * </example>
 713 *
 714 * The returned object will have one stable reference maintained
 715 * for as long as it is present in the object hierarchy.
 716 *
 717 * Returns: -1 on error, 0 on success
 718 */
 719int object_set_props(Object *obj,
 720                     Error **errp,
 721                     ...) QEMU_SENTINEL;
 722
 723/**
 724 * object_set_propv:
 725 * @obj: the object instance to set properties on
 726 * @errp: pointer to error object
 727 * @vargs: list of property names and values
 728 *
 729 * See object_set_props() for documentation.
 730 *
 731 * Returns: -1 on error, 0 on success
 732 */
 733int object_set_propv(Object *obj,
 734                     Error **errp,
 735                     va_list vargs);
 736
 737/**
 738 * object_initialize_with_type:
 739 * @data: A pointer to the memory to be used for the object.
 740 * @size: The maximum size available at @data for the object.
 741 * @type: The type of the object to instantiate.
 742 *
 743 * This function will initialize an object.  The memory for the object should
 744 * have already been allocated.  The returned object has a reference count of 1,
 745 * and will be finalized when the last reference is dropped.
 746 */
 747void object_initialize_with_type(void *data, size_t size, Type type);
 748
 749/**
 750 * object_initialize:
 751 * @obj: A pointer to the memory to be used for the object.
 752 * @size: The maximum size available at @obj for the object.
 753 * @typename: The name of the type of the object to instantiate.
 754 *
 755 * This function will initialize an object.  The memory for the object should
 756 * have already been allocated.  The returned object has a reference count of 1,
 757 * and will be finalized when the last reference is dropped.
 758 */
 759void object_initialize(void *obj, size_t size, const char *typename);
 760
 761/**
 762 * object_dynamic_cast:
 763 * @obj: The object to cast.
 764 * @typename: The @typename to cast to.
 765 *
 766 * This function will determine if @obj is-a @typename.  @obj can refer to an
 767 * object or an interface associated with an object.
 768 *
 769 * Returns: This function returns @obj on success or #NULL on failure.
 770 */
 771Object *object_dynamic_cast(Object *obj, const char *typename);
 772
 773/**
 774 * object_dynamic_cast_assert:
 775 *
 776 * See object_dynamic_cast() for a description of the parameters of this
 777 * function.  The only difference in behavior is that this function asserts
 778 * instead of returning #NULL on failure if QOM cast debugging is enabled.
 779 * This function is not meant to be called directly, but only through
 780 * the wrapper macro OBJECT_CHECK.
 781 */
 782Object *object_dynamic_cast_assert(Object *obj, const char *typename,
 783                                   const char *file, int line, const char *func);
 784
 785/**
 786 * object_get_class:
 787 * @obj: A derivative of #Object
 788 *
 789 * Returns: The #ObjectClass of the type associated with @obj.
 790 */
 791ObjectClass *object_get_class(Object *obj);
 792
 793/**
 794 * object_get_typename:
 795 * @obj: A derivative of #Object.
 796 *
 797 * Returns: The QOM typename of @obj.
 798 */
 799const char *object_get_typename(Object *obj);
 800
 801/**
 802 * type_register_static:
 803 * @info: The #TypeInfo of the new type.
 804 *
 805 * @info and all of the strings it points to should exist for the life time
 806 * that the type is registered.
 807 *
 808 * Returns: 0 on failure, the new #Type on success.
 809 */
 810Type type_register_static(const TypeInfo *info);
 811
 812/**
 813 * type_register:
 814 * @info: The #TypeInfo of the new type
 815 *
 816 * Unlike type_register_static(), this call does not require @info or its
 817 * string members to continue to exist after the call returns.
 818 *
 819 * Returns: 0 on failure, the new #Type on success.
 820 */
 821Type type_register(const TypeInfo *info);
 822
 823/**
 824 * object_class_dynamic_cast_assert:
 825 * @klass: The #ObjectClass to attempt to cast.
 826 * @typename: The QOM typename of the class to cast to.
 827 *
 828 * See object_class_dynamic_cast() for a description of the parameters
 829 * of this function.  The only difference in behavior is that this function
 830 * asserts instead of returning #NULL on failure if QOM cast debugging is
 831 * enabled.  This function is not meant to be called directly, but only through
 832 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
 833 */
 834ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
 835                                              const char *typename,
 836                                              const char *file, int line,
 837                                              const char *func);
 838
 839/**
 840 * object_class_dynamic_cast:
 841 * @klass: The #ObjectClass to attempt to cast.
 842 * @typename: The QOM typename of the class to cast to.
 843 *
 844 * Returns: If @typename is a class, this function returns @klass if
 845 * @typename is a subtype of @klass, else returns #NULL.
 846 *
 847 * If @typename is an interface, this function returns the interface
 848 * definition for @klass if @klass implements it unambiguously; #NULL
 849 * is returned if @klass does not implement the interface or if multiple
 850 * classes or interfaces on the hierarchy leading to @klass implement
 851 * it.  (FIXME: perhaps this can be detected at type definition time?)
 852 */
 853ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
 854                                       const char *typename);
 855
 856/**
 857 * object_class_get_parent:
 858 * @klass: The class to obtain the parent for.
 859 *
 860 * Returns: The parent for @klass or %NULL if none.
 861 */
 862ObjectClass *object_class_get_parent(ObjectClass *klass);
 863
 864/**
 865 * object_class_get_name:
 866 * @klass: The class to obtain the QOM typename for.
 867 *
 868 * Returns: The QOM typename for @klass.
 869 */
 870const char *object_class_get_name(ObjectClass *klass);
 871
 872/**
 873 * object_class_is_abstract:
 874 * @klass: The class to obtain the abstractness for.
 875 *
 876 * Returns: %true if @klass is abstract, %false otherwise.
 877 */
 878bool object_class_is_abstract(ObjectClass *klass);
 879
 880/**
 881 * object_class_by_name:
 882 * @typename: The QOM typename to obtain the class for.
 883 *
 884 * Returns: The class for @typename or %NULL if not found.
 885 */
 886ObjectClass *object_class_by_name(const char *typename);
 887
 888void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
 889                          const char *implements_type, bool include_abstract,
 890                          void *opaque);
 891
 892/**
 893 * object_class_get_list:
 894 * @implements_type: The type to filter for, including its derivatives.
 895 * @include_abstract: Whether to include abstract classes.
 896 *
 897 * Returns: A singly-linked list of the classes in reverse hashtable order.
 898 */
 899GSList *object_class_get_list(const char *implements_type,
 900                              bool include_abstract);
 901
 902/**
 903 * object_ref:
 904 * @obj: the object
 905 *
 906 * Increase the reference count of a object.  A object cannot be freed as long
 907 * as its reference count is greater than zero.
 908 */
 909void object_ref(Object *obj);
 910
 911/**
 912 * qdef_unref:
 913 * @obj: the object
 914 *
 915 * Decrease the reference count of a object.  A object cannot be freed as long
 916 * as its reference count is greater than zero.
 917 */
 918void object_unref(Object *obj);
 919
 920/**
 921 * object_property_add:
 922 * @obj: the object to add a property to
 923 * @name: the name of the property.  This can contain any character except for
 924 *  a forward slash.  In general, you should use hyphens '-' instead of
 925 *  underscores '_' when naming properties.
 926 * @type: the type name of the property.  This namespace is pretty loosely
 927 *   defined.  Sub namespaces are constructed by using a prefix and then
 928 *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
 929 *   'link' namespace would be 'link<virtio-net-pci>'.
 930 * @get: The getter to be called to read a property.  If this is NULL, then
 931 *   the property cannot be read.
 932 * @set: the setter to be called to write a property.  If this is NULL,
 933 *   then the property cannot be written.
 934 * @release: called when the property is removed from the object.  This is
 935 *   meant to allow a property to free its opaque upon object
 936 *   destruction.  This may be NULL.
 937 * @opaque: an opaque pointer to pass to the callbacks for the property
 938 * @errp: returns an error if this function fails
 939 *
 940 * Returns: The #ObjectProperty; this can be used to set the @resolve
 941 * callback for child and link properties.
 942 */
 943ObjectProperty *object_property_add(Object *obj, const char *name,
 944                                    const char *type,
 945                                    ObjectPropertyAccessor *get,
 946                                    ObjectPropertyAccessor *set,
 947                                    ObjectPropertyRelease *release,
 948                                    void *opaque, Error **errp);
 949
 950void object_property_del(Object *obj, const char *name, Error **errp);
 951
 952/**
 953 * object_property_find:
 954 * @obj: the object
 955 * @name: the name of the property
 956 * @errp: returns an error if this function fails
 957 *
 958 * Look up a property for an object and return its #ObjectProperty if found.
 959 */
 960ObjectProperty *object_property_find(Object *obj, const char *name,
 961                                     Error **errp);
 962
 963void object_unparent(Object *obj);
 964
 965/**
 966 * object_property_get:
 967 * @obj: the object
 968 * @v: the visitor that will receive the property value.  This should be an
 969 *   Output visitor and the data will be written with @name as the name.
 970 * @name: the name of the property
 971 * @errp: returns an error if this function fails
 972 *
 973 * Reads a property from a object.
 974 */
 975void object_property_get(Object *obj, struct Visitor *v, const char *name,
 976                         Error **errp);
 977
 978/**
 979 * object_property_set_str:
 980 * @value: the value to be written to the property
 981 * @name: the name of the property
 982 * @errp: returns an error if this function fails
 983 *
 984 * Writes a string value to a property.
 985 */
 986void object_property_set_str(Object *obj, const char *value,
 987                             const char *name, Error **errp);
 988
 989/**
 990 * object_property_get_str:
 991 * @obj: the object
 992 * @name: the name of the property
 993 * @errp: returns an error if this function fails
 994 *
 995 * Returns: the value of the property, converted to a C string, or NULL if
 996 * an error occurs (including when the property value is not a string).
 997 * The caller should free the string.
 998 */
 999char *object_property_get_str(Object *obj, const char *name,
1000                              Error **errp);
1001
1002/**
1003 * object_property_set_link:
1004 * @value: the value to be written to the property
1005 * @name: the name of the property
1006 * @errp: returns an error if this function fails
1007 *
1008 * Writes an object's canonical path to a property.
1009 */
1010void object_property_set_link(Object *obj, Object *value,
1011                              const char *name, Error **errp);
1012
1013/**
1014 * object_property_get_link:
1015 * @obj: the object
1016 * @name: the name of the property
1017 * @errp: returns an error if this function fails
1018 *
1019 * Returns: the value of the property, resolved from a path to an Object,
1020 * or NULL if an error occurs (including when the property value is not a
1021 * string or not a valid object path).
1022 */
1023Object *object_property_get_link(Object *obj, const char *name,
1024                                 Error **errp);
1025
1026/**
1027 * object_property_set_bool:
1028 * @value: the value to be written to the property
1029 * @name: the name of the property
1030 * @errp: returns an error if this function fails
1031 *
1032 * Writes a bool value to a property.
1033 */
1034void object_property_set_bool(Object *obj, bool value,
1035                              const char *name, Error **errp);
1036
1037/**
1038 * object_property_get_bool:
1039 * @obj: the object
1040 * @name: the name of the property
1041 * @errp: returns an error if this function fails
1042 *
1043 * Returns: the value of the property, converted to a boolean, or NULL if
1044 * an error occurs (including when the property value is not a bool).
1045 */
1046bool object_property_get_bool(Object *obj, const char *name,
1047                              Error **errp);
1048
1049/**
1050 * object_property_set_int:
1051 * @value: the value to be written to the property
1052 * @name: the name of the property
1053 * @errp: returns an error if this function fails
1054 *
1055 * Writes an integer value to a property.
1056 */
1057void object_property_set_int(Object *obj, int64_t value,
1058                             const char *name, Error **errp);
1059
1060/**
1061 * object_property_get_int:
1062 * @obj: the object
1063 * @name: the name of the property
1064 * @errp: returns an error if this function fails
1065 *
1066 * Returns: the value of the property, converted to an integer, or NULL if
1067 * an error occurs (including when the property value is not an integer).
1068 */
1069int64_t object_property_get_int(Object *obj, const char *name,
1070                                Error **errp);
1071
1072/**
1073 * object_property_get_enum:
1074 * @obj: the object
1075 * @name: the name of the property
1076 * @typename: the name of the enum data type
1077 * @errp: returns an error if this function fails
1078 *
1079 * Returns: the value of the property, converted to an integer, or
1080 * undefined if an error occurs (including when the property value is not
1081 * an enum).
1082 */
1083int object_property_get_enum(Object *obj, const char *name,
1084                             const char *typename, Error **errp);
1085
1086/**
1087 * object_property_get_uint16List:
1088 * @obj: the object
1089 * @name: the name of the property
1090 * @list: the returned int list
1091 * @errp: returns an error if this function fails
1092 *
1093 * Returns: the value of the property, converted to integers, or
1094 * undefined if an error occurs (including when the property value is not
1095 * an list of integers).
1096 */
1097void object_property_get_uint16List(Object *obj, const char *name,
1098                                    uint16List **list, Error **errp);
1099
1100/**
1101 * object_property_set:
1102 * @obj: the object
1103 * @v: the visitor that will be used to write the property value.  This should
1104 *   be an Input visitor and the data will be first read with @name as the
1105 *   name and then written as the property value.
1106 * @name: the name of the property
1107 * @errp: returns an error if this function fails
1108 *
1109 * Writes a property to a object.
1110 */
1111void object_property_set(Object *obj, struct Visitor *v, const char *name,
1112                         Error **errp);
1113
1114/**
1115 * object_property_parse:
1116 * @obj: the object
1117 * @string: the string that will be used to parse the property value.
1118 * @name: the name of the property
1119 * @errp: returns an error if this function fails
1120 *
1121 * Parses a string and writes the result into a property of an object.
1122 */
1123void object_property_parse(Object *obj, const char *string,
1124                           const char *name, Error **errp);
1125
1126/**
1127 * object_property_print:
1128 * @obj: the object
1129 * @name: the name of the property
1130 * @human: if true, print for human consumption
1131 * @errp: returns an error if this function fails
1132 *
1133 * Returns a string representation of the value of the property.  The
1134 * caller shall free the string.
1135 */
1136char *object_property_print(Object *obj, const char *name, bool human,
1137                            Error **errp);
1138
1139/**
1140 * object_property_get_type:
1141 * @obj: the object
1142 * @name: the name of the property
1143 * @errp: returns an error if this function fails
1144 *
1145 * Returns:  The type name of the property.
1146 */
1147const char *object_property_get_type(Object *obj, const char *name,
1148                                     Error **errp);
1149
1150/**
1151 * object_get_root:
1152 *
1153 * Returns: the root object of the composition tree
1154 */
1155Object *object_get_root(void);
1156
1157
1158/**
1159 * object_get_objects_root:
1160 *
1161 * Get the container object that holds user created
1162 * object instances. This is the object at path
1163 * "/objects"
1164 *
1165 * Returns: the user object container
1166 */
1167Object *object_get_objects_root(void);
1168
1169/**
1170 * object_get_canonical_path_component:
1171 *
1172 * Returns: The final component in the object's canonical path.  The canonical
1173 * path is the path within the composition tree starting from the root.
1174 */
1175gchar *object_get_canonical_path_component(Object *obj);
1176
1177/**
1178 * object_get_canonical_path:
1179 *
1180 * Returns: The canonical path for a object.  This is the path within the
1181 * composition tree starting from the root.
1182 */
1183gchar *object_get_canonical_path(Object *obj);
1184
1185/**
1186 * object_resolve_path:
1187 * @path: the path to resolve
1188 * @ambiguous: returns true if the path resolution failed because of an
1189 *   ambiguous match
1190 *
1191 * There are two types of supported paths--absolute paths and partial paths.
1192 * 
1193 * Absolute paths are derived from the root object and can follow child<> or
1194 * link<> properties.  Since they can follow link<> properties, they can be
1195 * arbitrarily long.  Absolute paths look like absolute filenames and are
1196 * prefixed with a leading slash.
1197 * 
1198 * Partial paths look like relative filenames.  They do not begin with a
1199 * prefix.  The matching rules for partial paths are subtle but designed to make
1200 * specifying objects easy.  At each level of the composition tree, the partial
1201 * path is matched as an absolute path.  The first match is not returned.  At
1202 * least two matches are searched for.  A successful result is only returned if
1203 * only one match is found.  If more than one match is found, a flag is
1204 * returned to indicate that the match was ambiguous.
1205 *
1206 * Returns: The matched object or NULL on path lookup failure.
1207 */
1208Object *object_resolve_path(const char *path, bool *ambiguous);
1209
1210/**
1211 * object_resolve_path_type:
1212 * @path: the path to resolve
1213 * @typename: the type to look for.
1214 * @ambiguous: returns true if the path resolution failed because of an
1215 *   ambiguous match
1216 *
1217 * This is similar to object_resolve_path.  However, when looking for a
1218 * partial path only matches that implement the given type are considered.
1219 * This restricts the search and avoids spuriously flagging matches as
1220 * ambiguous.
1221 *
1222 * For both partial and absolute paths, the return value goes through
1223 * a dynamic cast to @typename.  This is important if either the link,
1224 * or the typename itself are of interface types.
1225 *
1226 * Returns: The matched object or NULL on path lookup failure.
1227 */
1228Object *object_resolve_path_type(const char *path, const char *typename,
1229                                 bool *ambiguous);
1230
1231/**
1232 * object_resolve_path_component:
1233 * @parent: the object in which to resolve the path
1234 * @part: the component to resolve.
1235 *
1236 * This is similar to object_resolve_path with an absolute path, but it
1237 * only resolves one element (@part) and takes the others from @parent.
1238 *
1239 * Returns: The resolved object or NULL on path lookup failure.
1240 */
1241Object *object_resolve_path_component(Object *parent, const gchar *part);
1242
1243/**
1244 * object_property_add_child:
1245 * @obj: the object to add a property to
1246 * @name: the name of the property
1247 * @child: the child object
1248 * @errp: if an error occurs, a pointer to an area to store the area
1249 *
1250 * Child properties form the composition tree.  All objects need to be a child
1251 * of another object.  Objects can only be a child of one object.
1252 *
1253 * There is no way for a child to determine what its parent is.  It is not
1254 * a bidirectional relationship.  This is by design.
1255 *
1256 * The value of a child property as a C string will be the child object's
1257 * canonical path. It can be retrieved using object_property_get_str().
1258 * The child object itself can be retrieved using object_property_get_link().
1259 */
1260void object_property_add_child(Object *obj, const char *name,
1261                               Object *child, Error **errp);
1262
1263typedef enum {
1264    /* Unref the link pointer when the property is deleted */
1265    OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1,
1266} ObjectPropertyLinkFlags;
1267
1268/**
1269 * object_property_allow_set_link:
1270 *
1271 * The default implementation of the object_property_add_link() check()
1272 * callback function.  It allows the link property to be set and never returns
1273 * an error.
1274 */
1275void object_property_allow_set_link(Object *, const char *,
1276                                    Object *, Error **);
1277
1278/**
1279 * object_property_add_link:
1280 * @obj: the object to add a property to
1281 * @name: the name of the property
1282 * @type: the qobj type of the link
1283 * @child: a pointer to where the link object reference is stored
1284 * @check: callback to veto setting or NULL if the property is read-only
1285 * @flags: additional options for the link
1286 * @errp: if an error occurs, a pointer to an area to store the area
1287 *
1288 * Links establish relationships between objects.  Links are unidirectional
1289 * although two links can be combined to form a bidirectional relationship
1290 * between objects.
1291 *
1292 * Links form the graph in the object model.
1293 *
1294 * The <code>@check()</code> callback is invoked when
1295 * object_property_set_link() is called and can raise an error to prevent the
1296 * link being set.  If <code>@check</code> is NULL, the property is read-only
1297 * and cannot be set.
1298 *
1299 * Ownership of the pointer that @child points to is transferred to the
1300 * link property.  The reference count for <code>*@child</code> is
1301 * managed by the property from after the function returns till the
1302 * property is deleted with object_property_del().  If the
1303 * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set,
1304 * the reference count is decremented when the property is deleted.
1305 */
1306void object_property_add_link(Object *obj, const char *name,
1307                              const char *type, Object **child,
1308                              void (*check)(Object *obj, const char *name,
1309                                            Object *val, Error **errp),
1310                              ObjectPropertyLinkFlags flags,
1311                              Error **errp);
1312
1313/**
1314 * object_property_add_str:
1315 * @obj: the object to add a property to
1316 * @name: the name of the property
1317 * @get: the getter or NULL if the property is write-only.  This function must
1318 *   return a string to be freed by g_free().
1319 * @set: the setter or NULL if the property is read-only
1320 * @errp: if an error occurs, a pointer to an area to store the error
1321 *
1322 * Add a string property using getters/setters.  This function will add a
1323 * property of type 'string'.
1324 */
1325void object_property_add_str(Object *obj, const char *name,
1326                             char *(*get)(Object *, Error **),
1327                             void (*set)(Object *, const char *, Error **),
1328                             Error **errp);
1329
1330/**
1331 * object_property_add_bool:
1332 * @obj: the object to add a property to
1333 * @name: the name of the property
1334 * @get: the getter or NULL if the property is write-only.
1335 * @set: the setter or NULL if the property is read-only
1336 * @errp: if an error occurs, a pointer to an area to store the error
1337 *
1338 * Add a bool property using getters/setters.  This function will add a
1339 * property of type 'bool'.
1340 */
1341void object_property_add_bool(Object *obj, const char *name,
1342                              bool (*get)(Object *, Error **),
1343                              void (*set)(Object *, bool, Error **),
1344                              Error **errp);
1345
1346/**
1347 * object_property_add_enum:
1348 * @obj: the object to add a property to
1349 * @name: the name of the property
1350 * @typename: the name of the enum data type
1351 * @get: the getter or %NULL if the property is write-only.
1352 * @set: the setter or %NULL if the property is read-only
1353 * @errp: if an error occurs, a pointer to an area to store the error
1354 *
1355 * Add an enum property using getters/setters.  This function will add a
1356 * property of type '@typename'.
1357 */
1358void object_property_add_enum(Object *obj, const char *name,
1359                              const char *typename,
1360                              const char * const *strings,
1361                              int (*get)(Object *, Error **),
1362                              void (*set)(Object *, int, Error **),
1363                              Error **errp);
1364
1365/**
1366 * object_property_add_tm:
1367 * @obj: the object to add a property to
1368 * @name: the name of the property
1369 * @get: the getter or NULL if the property is write-only.
1370 * @errp: if an error occurs, a pointer to an area to store the error
1371 *
1372 * Add a read-only struct tm valued property using a getter function.
1373 * This function will add a property of type 'struct tm'.
1374 */
1375void object_property_add_tm(Object *obj, const char *name,
1376                            void (*get)(Object *, struct tm *, Error **),
1377                            Error **errp);
1378
1379/**
1380 * object_property_add_uint8_ptr:
1381 * @obj: the object to add a property to
1382 * @name: the name of the property
1383 * @v: pointer to value
1384 * @errp: if an error occurs, a pointer to an area to store the error
1385 *
1386 * Add an integer property in memory.  This function will add a
1387 * property of type 'uint8'.
1388 */
1389void object_property_add_uint8_ptr(Object *obj, const char *name,
1390                                   const uint8_t *v, Error **errp);
1391
1392/**
1393 * object_property_add_uint16_ptr:
1394 * @obj: the object to add a property to
1395 * @name: the name of the property
1396 * @v: pointer to value
1397 * @errp: if an error occurs, a pointer to an area to store the error
1398 *
1399 * Add an integer property in memory.  This function will add a
1400 * property of type 'uint16'.
1401 */
1402void object_property_add_uint16_ptr(Object *obj, const char *name,
1403                                    const uint16_t *v, Error **errp);
1404
1405/**
1406 * object_property_add_uint32_ptr:
1407 * @obj: the object to add a property to
1408 * @name: the name of the property
1409 * @v: pointer to value
1410 * @errp: if an error occurs, a pointer to an area to store the error
1411 *
1412 * Add an integer property in memory.  This function will add a
1413 * property of type 'uint32'.
1414 */
1415void object_property_add_uint32_ptr(Object *obj, const char *name,
1416                                    const uint32_t *v, Error **errp);
1417
1418/**
1419 * object_property_add_uint64_ptr:
1420 * @obj: the object to add a property to
1421 * @name: the name of the property
1422 * @v: pointer to value
1423 * @errp: if an error occurs, a pointer to an area to store the error
1424 *
1425 * Add an integer property in memory.  This function will add a
1426 * property of type 'uint64'.
1427 */
1428void object_property_add_uint64_ptr(Object *obj, const char *name,
1429                                    const uint64_t *v, Error **Errp);
1430
1431/**
1432 * object_property_add_alias:
1433 * @obj: the object to add a property to
1434 * @name: the name of the property
1435 * @target_obj: the object to forward property access to
1436 * @target_name: the name of the property on the forwarded object
1437 * @errp: if an error occurs, a pointer to an area to store the error
1438 *
1439 * Add an alias for a property on an object.  This function will add a property
1440 * of the same type as the forwarded property.
1441 *
1442 * The caller must ensure that <code>@target_obj</code> stays alive as long as
1443 * this property exists.  In the case of a child object or an alias on the same
1444 * object this will be the case.  For aliases to other objects the caller is
1445 * responsible for taking a reference.
1446 */
1447void object_property_add_alias(Object *obj, const char *name,
1448                               Object *target_obj, const char *target_name,
1449                               Error **errp);
1450
1451/**
1452 * object_property_add_const_link:
1453 * @obj: the object to add a property to
1454 * @name: the name of the property
1455 * @target: the object to be referred by the link
1456 * @errp: if an error occurs, a pointer to an area to store the error
1457 *
1458 * Add an unmodifiable link for a property on an object.  This function will
1459 * add a property of type link<TYPE> where TYPE is the type of @target.
1460 *
1461 * The caller must ensure that @target stays alive as long as
1462 * this property exists.  In the case @target is a child of @obj,
1463 * this will be the case.  Otherwise, the caller is responsible for
1464 * taking a reference.
1465 */
1466void object_property_add_const_link(Object *obj, const char *name,
1467                                    Object *target, Error **errp);
1468
1469/**
1470 * object_property_set_description:
1471 * @obj: the object owning the property
1472 * @name: the name of the property
1473 * @description: the description of the property on the object
1474 * @errp: if an error occurs, a pointer to an area to store the error
1475 *
1476 * Set an object property's description.
1477 *
1478 */
1479void object_property_set_description(Object *obj, const char *name,
1480                                     const char *description, Error **errp);
1481
1482/**
1483 * object_child_foreach:
1484 * @obj: the object whose children will be navigated
1485 * @fn: the iterator function to be called
1486 * @opaque: an opaque value that will be passed to the iterator
1487 *
1488 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1489 * non-zero.
1490 *
1491 * Returns: The last value returned by @fn, or 0 if there is no child.
1492 */
1493int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1494                         void *opaque);
1495
1496/**
1497 * container_get:
1498 * @root: root of the #path, e.g., object_get_root()
1499 * @path: path to the container
1500 *
1501 * Return a container object whose path is @path.  Create more containers
1502 * along the path if necessary.
1503 *
1504 * Returns: the container object.
1505 */
1506Object *container_get(Object *root, const char *path);
1507
1508
1509#endif
1510