qemu/util/throttle.c
<<
>>
Prefs
   1/*
   2 * QEMU throttling infrastructure
   3 *
   4 * Copyright (C) Nodalink, EURL. 2013-2014
   5 * Copyright (C) Igalia, S.L. 2015
   6 *
   7 * Authors:
   8 *   BenoƮt Canet <benoit.canet@nodalink.com>
   9 *   Alberto Garcia <berto@igalia.com>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License as
  13 * published by the Free Software Foundation; either version 2 or
  14 * (at your option) version 3 of the License.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  23 */
  24
  25#include "qemu/throttle.h"
  26#include "qemu/timer.h"
  27#include "block/aio.h"
  28
  29/* This function make a bucket leak
  30 *
  31 * @bkt:   the bucket to make leak
  32 * @delta_ns: the time delta
  33 */
  34void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
  35{
  36    double leak;
  37
  38    /* compute how much to leak */
  39    leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
  40
  41    /* make the bucket leak */
  42    bkt->level = MAX(bkt->level - leak, 0);
  43}
  44
  45/* Calculate the time delta since last leak and make proportionals leaks
  46 *
  47 * @now:      the current timestamp in ns
  48 */
  49static void throttle_do_leak(ThrottleState *ts, int64_t now)
  50{
  51    /* compute the time elapsed since the last leak */
  52    int64_t delta_ns = now - ts->previous_leak;
  53    int i;
  54
  55    ts->previous_leak = now;
  56
  57    if (delta_ns <= 0) {
  58        return;
  59    }
  60
  61    /* make each bucket leak */
  62    for (i = 0; i < BUCKETS_COUNT; i++) {
  63        throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
  64    }
  65}
  66
  67/* do the real job of computing the time to wait
  68 *
  69 * @limit: the throttling limit
  70 * @extra: the number of operation to delay
  71 * @ret:   the time to wait in ns
  72 */
  73static int64_t throttle_do_compute_wait(double limit, double extra)
  74{
  75    double wait = extra * NANOSECONDS_PER_SECOND;
  76    wait /= limit;
  77    return wait;
  78}
  79
  80/* This function compute the wait time in ns that a leaky bucket should trigger
  81 *
  82 * @bkt: the leaky bucket we operate on
  83 * @ret: the resulting wait time in ns or 0 if the operation can go through
  84 */
  85int64_t throttle_compute_wait(LeakyBucket *bkt)
  86{
  87    double extra; /* the number of extra units blocking the io */
  88
  89    if (!bkt->avg) {
  90        return 0;
  91    }
  92
  93    extra = bkt->level - bkt->max;
  94
  95    if (extra <= 0) {
  96        return 0;
  97    }
  98
  99    return throttle_do_compute_wait(bkt->avg, extra);
 100}
 101
 102/* This function compute the time that must be waited while this IO
 103 *
 104 * @is_write:   true if the current IO is a write, false if it's a read
 105 * @ret:        time to wait
 106 */
 107static int64_t throttle_compute_wait_for(ThrottleState *ts,
 108                                         bool is_write)
 109{
 110    BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
 111                                   THROTTLE_OPS_TOTAL,
 112                                   THROTTLE_BPS_READ,
 113                                   THROTTLE_OPS_READ},
 114                                  {THROTTLE_BPS_TOTAL,
 115                                   THROTTLE_OPS_TOTAL,
 116                                   THROTTLE_BPS_WRITE,
 117                                   THROTTLE_OPS_WRITE}, };
 118    int64_t wait, max_wait = 0;
 119    int i;
 120
 121    for (i = 0; i < 4; i++) {
 122        BucketType index = to_check[is_write][i];
 123        wait = throttle_compute_wait(&ts->cfg.buckets[index]);
 124        if (wait > max_wait) {
 125            max_wait = wait;
 126        }
 127    }
 128
 129    return max_wait;
 130}
 131
 132/* compute the timer for this type of operation
 133 *
 134 * @is_write:   the type of operation
 135 * @now:        the current clock timestamp
 136 * @next_timestamp: the resulting timer
 137 * @ret:        true if a timer must be set
 138 */
 139bool throttle_compute_timer(ThrottleState *ts,
 140                            bool is_write,
 141                            int64_t now,
 142                            int64_t *next_timestamp)
 143{
 144    int64_t wait;
 145
 146    /* leak proportionally to the time elapsed */
 147    throttle_do_leak(ts, now);
 148
 149    /* compute the wait time if any */
 150    wait = throttle_compute_wait_for(ts, is_write);
 151
 152    /* if the code must wait compute when the next timer should fire */
 153    if (wait) {
 154        *next_timestamp = now + wait;
 155        return true;
 156    }
 157
 158    /* else no need to wait at all */
 159    *next_timestamp = now;
 160    return false;
 161}
 162
 163/* Add timers to event loop */
 164void throttle_timers_attach_aio_context(ThrottleTimers *tt,
 165                                        AioContext *new_context)
 166{
 167    tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
 168                                  tt->read_timer_cb, tt->timer_opaque);
 169    tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
 170                                  tt->write_timer_cb, tt->timer_opaque);
 171}
 172
 173/* To be called first on the ThrottleState */
 174void throttle_init(ThrottleState *ts)
 175{
 176    memset(ts, 0, sizeof(ThrottleState));
 177}
 178
 179/* To be called first on the ThrottleTimers */
 180void throttle_timers_init(ThrottleTimers *tt,
 181                          AioContext *aio_context,
 182                          QEMUClockType clock_type,
 183                          QEMUTimerCB *read_timer_cb,
 184                          QEMUTimerCB *write_timer_cb,
 185                          void *timer_opaque)
 186{
 187    memset(tt, 0, sizeof(ThrottleTimers));
 188
 189    tt->clock_type = clock_type;
 190    tt->read_timer_cb = read_timer_cb;
 191    tt->write_timer_cb = write_timer_cb;
 192    tt->timer_opaque = timer_opaque;
 193    throttle_timers_attach_aio_context(tt, aio_context);
 194}
 195
 196/* destroy a timer */
 197static void throttle_timer_destroy(QEMUTimer **timer)
 198{
 199    assert(*timer != NULL);
 200
 201    timer_del(*timer);
 202    timer_free(*timer);
 203    *timer = NULL;
 204}
 205
 206/* Remove timers from event loop */
 207void throttle_timers_detach_aio_context(ThrottleTimers *tt)
 208{
 209    int i;
 210
 211    for (i = 0; i < 2; i++) {
 212        throttle_timer_destroy(&tt->timers[i]);
 213    }
 214}
 215
 216/* To be called last on the ThrottleTimers */
 217void throttle_timers_destroy(ThrottleTimers *tt)
 218{
 219    throttle_timers_detach_aio_context(tt);
 220}
 221
 222/* is any throttling timer configured */
 223bool throttle_timers_are_initialized(ThrottleTimers *tt)
 224{
 225    if (tt->timers[0]) {
 226        return true;
 227    }
 228
 229    return false;
 230}
 231
 232/* Does any throttling must be done
 233 *
 234 * @cfg: the throttling configuration to inspect
 235 * @ret: true if throttling must be done else false
 236 */
 237bool throttle_enabled(ThrottleConfig *cfg)
 238{
 239    int i;
 240
 241    for (i = 0; i < BUCKETS_COUNT; i++) {
 242        if (cfg->buckets[i].avg > 0) {
 243            return true;
 244        }
 245    }
 246
 247    return false;
 248}
 249
 250/* return true if any two throttling parameters conflicts
 251 *
 252 * @cfg: the throttling configuration to inspect
 253 * @ret: true if any conflict detected else false
 254 */
 255bool throttle_conflicting(ThrottleConfig *cfg)
 256{
 257    bool bps_flag, ops_flag;
 258    bool bps_max_flag, ops_max_flag;
 259
 260    bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
 261               (cfg->buckets[THROTTLE_BPS_READ].avg ||
 262                cfg->buckets[THROTTLE_BPS_WRITE].avg);
 263
 264    ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
 265               (cfg->buckets[THROTTLE_OPS_READ].avg ||
 266                cfg->buckets[THROTTLE_OPS_WRITE].avg);
 267
 268    bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
 269                  (cfg->buckets[THROTTLE_BPS_READ].max  ||
 270                   cfg->buckets[THROTTLE_BPS_WRITE].max);
 271
 272    ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
 273                   (cfg->buckets[THROTTLE_OPS_READ].max ||
 274                   cfg->buckets[THROTTLE_OPS_WRITE].max);
 275
 276    return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
 277}
 278
 279/* check if a throttling configuration is valid
 280 * @cfg: the throttling configuration to inspect
 281 * @ret: true if valid else false
 282 */
 283bool throttle_is_valid(ThrottleConfig *cfg)
 284{
 285    bool invalid = false;
 286    int i;
 287
 288    for (i = 0; i < BUCKETS_COUNT; i++) {
 289        if (cfg->buckets[i].avg < 0) {
 290            invalid = true;
 291        }
 292    }
 293
 294    for (i = 0; i < BUCKETS_COUNT; i++) {
 295        if (cfg->buckets[i].max < 0) {
 296            invalid = true;
 297        }
 298    }
 299
 300    return !invalid;
 301}
 302
 303/* fix bucket parameters */
 304static void throttle_fix_bucket(LeakyBucket *bkt)
 305{
 306    double min;
 307
 308    /* zero bucket level */
 309    bkt->level = 0;
 310
 311    /* The following is done to cope with the Linux CFQ block scheduler
 312     * which regroup reads and writes by block of 100ms in the guest.
 313     * When they are two process one making reads and one making writes cfq
 314     * make a pattern looking like the following:
 315     * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
 316     * Having a max burst value of 100ms of the average will help smooth the
 317     * throttling
 318     */
 319    min = bkt->avg / 10;
 320    if (bkt->avg && !bkt->max) {
 321        bkt->max = min;
 322    }
 323}
 324
 325/* take care of canceling a timer */
 326static void throttle_cancel_timer(QEMUTimer *timer)
 327{
 328    assert(timer != NULL);
 329
 330    timer_del(timer);
 331}
 332
 333/* Used to configure the throttle
 334 *
 335 * @ts: the throttle state we are working on
 336 * @tt: the throttle timers we use in this aio context
 337 * @cfg: the config to set
 338 */
 339void throttle_config(ThrottleState *ts,
 340                     ThrottleTimers *tt,
 341                     ThrottleConfig *cfg)
 342{
 343    int i;
 344
 345    ts->cfg = *cfg;
 346
 347    for (i = 0; i < BUCKETS_COUNT; i++) {
 348        throttle_fix_bucket(&ts->cfg.buckets[i]);
 349    }
 350
 351    ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
 352
 353    for (i = 0; i < 2; i++) {
 354        throttle_cancel_timer(tt->timers[i]);
 355    }
 356}
 357
 358/* used to get config
 359 *
 360 * @ts:  the throttle state we are working on
 361 * @cfg: the config to write
 362 */
 363void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
 364{
 365    *cfg = ts->cfg;
 366}
 367
 368
 369/* Schedule the read or write timer if needed
 370 *
 371 * NOTE: this function is not unit tested due to it's usage of timer_mod
 372 *
 373 * @tt:       the timers structure
 374 * @is_write: the type of operation (read/write)
 375 * @ret:      true if the timer has been scheduled else false
 376 */
 377bool throttle_schedule_timer(ThrottleState *ts,
 378                             ThrottleTimers *tt,
 379                             bool is_write)
 380{
 381    int64_t now = qemu_clock_get_ns(tt->clock_type);
 382    int64_t next_timestamp;
 383    bool must_wait;
 384
 385    must_wait = throttle_compute_timer(ts,
 386                                       is_write,
 387                                       now,
 388                                       &next_timestamp);
 389
 390    /* request not throttled */
 391    if (!must_wait) {
 392        return false;
 393    }
 394
 395    /* request throttled and timer pending -> do nothing */
 396    if (timer_pending(tt->timers[is_write])) {
 397        return true;
 398    }
 399
 400    /* request throttled and timer not pending -> arm timer */
 401    timer_mod(tt->timers[is_write], next_timestamp);
 402    return true;
 403}
 404
 405/* do the accounting for this operation
 406 *
 407 * @is_write: the type of operation (read/write)
 408 * @size:     the size of the operation
 409 */
 410void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
 411{
 412    double units = 1.0;
 413
 414    /* if cfg.op_size is defined and smaller than size we compute unit count */
 415    if (ts->cfg.op_size && size > ts->cfg.op_size) {
 416        units = (double) size / ts->cfg.op_size;
 417    }
 418
 419    ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
 420    ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
 421
 422    if (is_write) {
 423        ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
 424        ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
 425    } else {
 426        ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
 427        ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
 428    }
 429}
 430
 431