qemu/hw/i386/kvmvapic.c
<<
>>
Prefs
   1/*
   2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
   3 *
   4 * Copyright (C) 2007-2008 Qumranet Technologies
   5 * Copyright (C) 2012      Jan Kiszka, Siemens AG
   6 *
   7 * This work is licensed under the terms of the GNU GPL version 2, or
   8 * (at your option) any later version. See the COPYING file in the
   9 * top-level directory.
  10 */
  11#include "sysemu/sysemu.h"
  12#include "sysemu/cpus.h"
  13#include "sysemu/kvm.h"
  14#include "hw/i386/apic_internal.h"
  15#include "hw/sysbus.h"
  16
  17#define VAPIC_IO_PORT           0x7e
  18
  19#define VAPIC_CPU_SHIFT         7
  20
  21#define ROM_BLOCK_SIZE          512
  22#define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
  23
  24typedef enum VAPICMode {
  25    VAPIC_INACTIVE = 0,
  26    VAPIC_ACTIVE   = 1,
  27    VAPIC_STANDBY  = 2,
  28} VAPICMode;
  29
  30typedef struct VAPICHandlers {
  31    uint32_t set_tpr;
  32    uint32_t set_tpr_eax;
  33    uint32_t get_tpr[8];
  34    uint32_t get_tpr_stack;
  35} QEMU_PACKED VAPICHandlers;
  36
  37typedef struct GuestROMState {
  38    char signature[8];
  39    uint32_t vaddr;
  40    uint32_t fixup_start;
  41    uint32_t fixup_end;
  42    uint32_t vapic_vaddr;
  43    uint32_t vapic_size;
  44    uint32_t vcpu_shift;
  45    uint32_t real_tpr_addr;
  46    VAPICHandlers up;
  47    VAPICHandlers mp;
  48} QEMU_PACKED GuestROMState;
  49
  50typedef struct VAPICROMState {
  51    SysBusDevice busdev;
  52    MemoryRegion io;
  53    MemoryRegion rom;
  54    uint32_t state;
  55    uint32_t rom_state_paddr;
  56    uint32_t rom_state_vaddr;
  57    uint32_t vapic_paddr;
  58    uint32_t real_tpr_addr;
  59    GuestROMState rom_state;
  60    size_t rom_size;
  61    bool rom_mapped_writable;
  62    VMChangeStateEntry *vmsentry;
  63} VAPICROMState;
  64
  65#define TYPE_VAPIC "kvmvapic"
  66#define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
  67
  68#define TPR_INSTR_ABS_MODRM             0x1
  69#define TPR_INSTR_MATCH_MODRM_REG       0x2
  70
  71typedef struct TPRInstruction {
  72    uint8_t opcode;
  73    uint8_t modrm_reg;
  74    unsigned int flags;
  75    TPRAccess access;
  76    size_t length;
  77    off_t addr_offset;
  78} TPRInstruction;
  79
  80/* must be sorted by length, shortest first */
  81static const TPRInstruction tpr_instr[] = {
  82    { /* mov abs to eax */
  83        .opcode = 0xa1,
  84        .access = TPR_ACCESS_READ,
  85        .length = 5,
  86        .addr_offset = 1,
  87    },
  88    { /* mov eax to abs */
  89        .opcode = 0xa3,
  90        .access = TPR_ACCESS_WRITE,
  91        .length = 5,
  92        .addr_offset = 1,
  93    },
  94    { /* mov r32 to r/m32 */
  95        .opcode = 0x89,
  96        .flags = TPR_INSTR_ABS_MODRM,
  97        .access = TPR_ACCESS_WRITE,
  98        .length = 6,
  99        .addr_offset = 2,
 100    },
 101    { /* mov r/m32 to r32 */
 102        .opcode = 0x8b,
 103        .flags = TPR_INSTR_ABS_MODRM,
 104        .access = TPR_ACCESS_READ,
 105        .length = 6,
 106        .addr_offset = 2,
 107    },
 108    { /* push r/m32 */
 109        .opcode = 0xff,
 110        .modrm_reg = 6,
 111        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 112        .access = TPR_ACCESS_READ,
 113        .length = 6,
 114        .addr_offset = 2,
 115    },
 116    { /* mov imm32, r/m32 (c7/0) */
 117        .opcode = 0xc7,
 118        .modrm_reg = 0,
 119        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 120        .access = TPR_ACCESS_WRITE,
 121        .length = 10,
 122        .addr_offset = 2,
 123    },
 124};
 125
 126static void read_guest_rom_state(VAPICROMState *s)
 127{
 128    cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
 129                             sizeof(GuestROMState));
 130}
 131
 132static void write_guest_rom_state(VAPICROMState *s)
 133{
 134    cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
 135                              sizeof(GuestROMState));
 136}
 137
 138static void update_guest_rom_state(VAPICROMState *s)
 139{
 140    read_guest_rom_state(s);
 141
 142    s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
 143    s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
 144
 145    write_guest_rom_state(s);
 146}
 147
 148static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
 149{
 150    CPUState *cs = CPU(x86_env_get_cpu(env));
 151    hwaddr paddr;
 152    target_ulong addr;
 153
 154    if (s->state == VAPIC_ACTIVE) {
 155        return 0;
 156    }
 157    /*
 158     * If there is no prior TPR access instruction we could analyze (which is
 159     * the case after resume from hibernation), we need to scan the possible
 160     * virtual address space for the APIC mapping.
 161     */
 162    for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
 163        paddr = cpu_get_phys_page_debug(cs, addr);
 164        if (paddr != APIC_DEFAULT_ADDRESS) {
 165            continue;
 166        }
 167        s->real_tpr_addr = addr + 0x80;
 168        update_guest_rom_state(s);
 169        return 0;
 170    }
 171    return -1;
 172}
 173
 174static uint8_t modrm_reg(uint8_t modrm)
 175{
 176    return (modrm >> 3) & 7;
 177}
 178
 179static bool is_abs_modrm(uint8_t modrm)
 180{
 181    return (modrm & 0xc7) == 0x05;
 182}
 183
 184static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
 185{
 186    return opcode[0] == instr->opcode &&
 187        (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
 188        (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
 189         modrm_reg(opcode[1]) == instr->modrm_reg);
 190}
 191
 192static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
 193                                    target_ulong *pip, TPRAccess access)
 194{
 195    CPUState *cs = CPU(cpu);
 196    const TPRInstruction *instr;
 197    target_ulong ip = *pip;
 198    uint8_t opcode[2];
 199    uint32_t real_tpr_addr;
 200    int i;
 201
 202    if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
 203        (ip & 0xf0000000ULL) != 0xe0000000ULL) {
 204        return -1;
 205    }
 206
 207    /*
 208     * Early Windows 2003 SMP initialization contains a
 209     *
 210     *   mov imm32, r/m32
 211     *
 212     * instruction that is patched by TPR optimization. The problem is that
 213     * RSP, used by the patched instruction, is zero, so the guest gets a
 214     * double fault and dies.
 215     */
 216    if (cpu->env.regs[R_ESP] == 0) {
 217        return -1;
 218    }
 219
 220    if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
 221        /*
 222         * KVM without kernel-based TPR access reporting will pass an IP that
 223         * points after the accessing instruction. So we need to look backward
 224         * to find the reason.
 225         */
 226        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 227            instr = &tpr_instr[i];
 228            if (instr->access != access) {
 229                continue;
 230            }
 231            if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
 232                                    sizeof(opcode), 0) < 0) {
 233                return -1;
 234            }
 235            if (opcode_matches(opcode, instr)) {
 236                ip -= instr->length;
 237                goto instruction_ok;
 238            }
 239        }
 240        return -1;
 241    } else {
 242        if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
 243            return -1;
 244        }
 245        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 246            instr = &tpr_instr[i];
 247            if (opcode_matches(opcode, instr)) {
 248                goto instruction_ok;
 249            }
 250        }
 251        return -1;
 252    }
 253
 254instruction_ok:
 255    /*
 256     * Grab the virtual TPR address from the instruction
 257     * and update the cached values.
 258     */
 259    if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
 260                            (void *)&real_tpr_addr,
 261                            sizeof(real_tpr_addr), 0) < 0) {
 262        return -1;
 263    }
 264    real_tpr_addr = le32_to_cpu(real_tpr_addr);
 265    if ((real_tpr_addr & 0xfff) != 0x80) {
 266        return -1;
 267    }
 268    s->real_tpr_addr = real_tpr_addr;
 269    update_guest_rom_state(s);
 270
 271    *pip = ip;
 272    return 0;
 273}
 274
 275static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
 276{
 277    CPUState *cs = CPU(x86_env_get_cpu(env));
 278    hwaddr paddr;
 279    uint32_t rom_state_vaddr;
 280    uint32_t pos, patch, offset;
 281
 282    /* nothing to do if already activated */
 283    if (s->state == VAPIC_ACTIVE) {
 284        return 0;
 285    }
 286
 287    /* bail out if ROM init code was not executed (missing ROM?) */
 288    if (s->state == VAPIC_INACTIVE) {
 289        return -1;
 290    }
 291
 292    /* find out virtual address of the ROM */
 293    rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
 294    paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
 295    if (paddr == -1) {
 296        return -1;
 297    }
 298    paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
 299    if (paddr != s->rom_state_paddr) {
 300        return -1;
 301    }
 302    read_guest_rom_state(s);
 303    if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
 304        return -1;
 305    }
 306    s->rom_state_vaddr = rom_state_vaddr;
 307
 308    /* fixup addresses in ROM if needed */
 309    if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
 310        return 0;
 311    }
 312    for (pos = le32_to_cpu(s->rom_state.fixup_start);
 313         pos < le32_to_cpu(s->rom_state.fixup_end);
 314         pos += 4) {
 315        cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
 316                                 &offset, sizeof(offset));
 317        offset = le32_to_cpu(offset);
 318        cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
 319        patch = le32_to_cpu(patch);
 320        patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
 321        patch = cpu_to_le32(patch);
 322        cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
 323    }
 324    read_guest_rom_state(s);
 325    s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
 326        le32_to_cpu(s->rom_state.vaddr);
 327
 328    return 0;
 329}
 330
 331/*
 332 * Tries to read the unique processor number from the Kernel Processor Control
 333 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
 334 * cannot be accessed or is considered invalid. This also ensures that we are
 335 * not patching the wrong guest.
 336 */
 337static int get_kpcr_number(X86CPU *cpu)
 338{
 339    CPUX86State *env = &cpu->env;
 340    struct kpcr {
 341        uint8_t  fill1[0x1c];
 342        uint32_t self;
 343        uint8_t  fill2[0x31];
 344        uint8_t  number;
 345    } QEMU_PACKED kpcr;
 346
 347    if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
 348                            (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
 349        kpcr.self != env->segs[R_FS].base) {
 350        return -1;
 351    }
 352    return kpcr.number;
 353}
 354
 355static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
 356{
 357    int cpu_number = get_kpcr_number(cpu);
 358    hwaddr vapic_paddr;
 359    static const uint8_t enabled = 1;
 360
 361    if (cpu_number < 0) {
 362        return -1;
 363    }
 364    vapic_paddr = s->vapic_paddr +
 365        (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
 366    cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
 367                              &enabled, sizeof(enabled));
 368    apic_enable_vapic(cpu->apic_state, vapic_paddr);
 369
 370    s->state = VAPIC_ACTIVE;
 371
 372    return 0;
 373}
 374
 375static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
 376{
 377    cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
 378}
 379
 380static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
 381                       uint32_t target)
 382{
 383    uint32_t offset;
 384
 385    offset = cpu_to_le32(target - ip - 5);
 386    patch_byte(cpu, ip, 0xe8); /* call near */
 387    cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
 388}
 389
 390static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
 391{
 392    CPUState *cs = CPU(cpu);
 393    CPUX86State *env = &cpu->env;
 394    VAPICHandlers *handlers;
 395    uint8_t opcode[2];
 396    uint32_t imm32;
 397    target_ulong current_pc = 0;
 398    target_ulong current_cs_base = 0;
 399    int current_flags = 0;
 400
 401    if (smp_cpus == 1) {
 402        handlers = &s->rom_state.up;
 403    } else {
 404        handlers = &s->rom_state.mp;
 405    }
 406
 407    if (!kvm_enabled()) {
 408        cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
 409                             &current_flags);
 410    }
 411
 412    pause_all_vcpus();
 413
 414    cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
 415
 416    switch (opcode[0]) {
 417    case 0x89: /* mov r32 to r/m32 */
 418        patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
 419        patch_call(s, cpu, ip + 1, handlers->set_tpr);
 420        break;
 421    case 0x8b: /* mov r/m32 to r32 */
 422        patch_byte(cpu, ip, 0x90);
 423        patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
 424        break;
 425    case 0xa1: /* mov abs to eax */
 426        patch_call(s, cpu, ip, handlers->get_tpr[0]);
 427        break;
 428    case 0xa3: /* mov eax to abs */
 429        patch_call(s, cpu, ip, handlers->set_tpr_eax);
 430        break;
 431    case 0xc7: /* mov imm32, r/m32 (c7/0) */
 432        patch_byte(cpu, ip, 0x68);  /* push imm32 */
 433        cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
 434        cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
 435        patch_call(s, cpu, ip + 5, handlers->set_tpr);
 436        break;
 437    case 0xff: /* push r/m32 */
 438        patch_byte(cpu, ip, 0x50); /* push eax */
 439        patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
 440        break;
 441    default:
 442        abort();
 443    }
 444
 445    resume_all_vcpus();
 446
 447    if (!kvm_enabled()) {
 448        cs->current_tb = NULL;
 449        tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
 450        cpu_resume_from_signal(cs, NULL);
 451    }
 452}
 453
 454void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
 455                             TPRAccess access)
 456{
 457    VAPICROMState *s = VAPIC(dev);
 458    X86CPU *cpu = X86_CPU(cs);
 459    CPUX86State *env = &cpu->env;
 460
 461    cpu_synchronize_state(cs);
 462
 463    if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
 464        if (s->state == VAPIC_ACTIVE) {
 465            vapic_enable(s, cpu);
 466        }
 467        return;
 468    }
 469    if (update_rom_mapping(s, env, ip) < 0) {
 470        return;
 471    }
 472    if (vapic_enable(s, cpu) < 0) {
 473        return;
 474    }
 475    patch_instruction(s, cpu, ip);
 476}
 477
 478typedef struct VAPICEnableTPRReporting {
 479    DeviceState *apic;
 480    bool enable;
 481} VAPICEnableTPRReporting;
 482
 483static void vapic_do_enable_tpr_reporting(void *data)
 484{
 485    VAPICEnableTPRReporting *info = data;
 486
 487    apic_enable_tpr_access_reporting(info->apic, info->enable);
 488}
 489
 490static void vapic_enable_tpr_reporting(bool enable)
 491{
 492    VAPICEnableTPRReporting info = {
 493        .enable = enable,
 494    };
 495    CPUState *cs;
 496    X86CPU *cpu;
 497
 498    CPU_FOREACH(cs) {
 499        cpu = X86_CPU(cs);
 500        info.apic = cpu->apic_state;
 501        run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
 502    }
 503}
 504
 505static void vapic_reset(DeviceState *dev)
 506{
 507    VAPICROMState *s = VAPIC(dev);
 508
 509    s->state = VAPIC_INACTIVE;
 510    s->rom_state_paddr = 0;
 511    vapic_enable_tpr_reporting(false);
 512}
 513
 514/*
 515 * Set the IRQ polling hypercalls to the supported variant:
 516 *  - vmcall if using KVM in-kernel irqchip
 517 *  - 32-bit VAPIC port write otherwise
 518 */
 519static int patch_hypercalls(VAPICROMState *s)
 520{
 521    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 522    static const uint8_t vmcall_pattern[] = { /* vmcall */
 523        0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
 524    };
 525    static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
 526        0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
 527    };
 528    uint8_t alternates[2];
 529    const uint8_t *pattern;
 530    const uint8_t *patch;
 531    int patches = 0;
 532    off_t pos;
 533    uint8_t *rom;
 534
 535    rom = g_malloc(s->rom_size);
 536    cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
 537
 538    for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
 539        if (kvm_irqchip_in_kernel()) {
 540            pattern = outl_pattern;
 541            alternates[0] = outl_pattern[7];
 542            alternates[1] = outl_pattern[7];
 543            patch = &vmcall_pattern[5];
 544        } else {
 545            pattern = vmcall_pattern;
 546            alternates[0] = vmcall_pattern[7];
 547            alternates[1] = 0xd9; /* AMD's VMMCALL */
 548            patch = &outl_pattern[5];
 549        }
 550        if (memcmp(rom + pos, pattern, 7) == 0 &&
 551            (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
 552            cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
 553            /*
 554             * Don't flush the tb here. Under ordinary conditions, the patched
 555             * calls are miles away from the current IP. Under malicious
 556             * conditions, the guest could trick us to crash.
 557             */
 558        }
 559    }
 560
 561    g_free(rom);
 562
 563    if (patches != 0 && patches != 2) {
 564        return -1;
 565    }
 566
 567    return 0;
 568}
 569
 570/*
 571 * For TCG mode or the time KVM honors read-only memory regions, we need to
 572 * enable write access to the option ROM so that variables can be updated by
 573 * the guest.
 574 */
 575static int vapic_map_rom_writable(VAPICROMState *s)
 576{
 577    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 578    MemoryRegionSection section;
 579    MemoryRegion *as;
 580    size_t rom_size;
 581    uint8_t *ram;
 582
 583    as = sysbus_address_space(&s->busdev);
 584
 585    if (s->rom_mapped_writable) {
 586        memory_region_del_subregion(as, &s->rom);
 587        object_unparent(OBJECT(&s->rom));
 588    }
 589
 590    /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
 591    section = memory_region_find(as, 0, 1);
 592
 593    /* read ROM size from RAM region */
 594    if (rom_paddr + 2 >= memory_region_size(section.mr)) {
 595        return -1;
 596    }
 597    ram = memory_region_get_ram_ptr(section.mr);
 598    rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
 599    if (rom_size == 0) {
 600        return -1;
 601    }
 602    s->rom_size = rom_size;
 603
 604    /* We need to round to avoid creating subpages
 605     * from which we cannot run code. */
 606    rom_size += rom_paddr & ~TARGET_PAGE_MASK;
 607    rom_paddr &= TARGET_PAGE_MASK;
 608    rom_size = TARGET_PAGE_ALIGN(rom_size);
 609
 610    memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
 611                             rom_paddr, rom_size);
 612    memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
 613    s->rom_mapped_writable = true;
 614    memory_region_unref(section.mr);
 615
 616    return 0;
 617}
 618
 619static int vapic_prepare(VAPICROMState *s)
 620{
 621    if (vapic_map_rom_writable(s) < 0) {
 622        return -1;
 623    }
 624
 625    if (patch_hypercalls(s) < 0) {
 626        return -1;
 627    }
 628
 629    vapic_enable_tpr_reporting(true);
 630
 631    return 0;
 632}
 633
 634static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
 635                        unsigned int size)
 636{
 637    CPUState *cs = current_cpu;
 638    X86CPU *cpu = X86_CPU(cs);
 639    CPUX86State *env = &cpu->env;
 640    hwaddr rom_paddr;
 641    VAPICROMState *s = opaque;
 642
 643    cpu_synchronize_state(cs);
 644
 645    /*
 646     * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
 647     *  o 16-bit write access:
 648     *    Reports the option ROM initialization to the hypervisor. Written
 649     *    value is the offset of the state structure in the ROM.
 650     *  o 8-bit write access:
 651     *    Reactivates the VAPIC after a guest hibernation, i.e. after the
 652     *    option ROM content has been re-initialized by a guest power cycle.
 653     *  o 32-bit write access:
 654     *    Poll for pending IRQs, considering the current VAPIC state.
 655     */
 656    switch (size) {
 657    case 2:
 658        if (s->state == VAPIC_INACTIVE) {
 659            rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
 660            s->rom_state_paddr = rom_paddr + data;
 661
 662            s->state = VAPIC_STANDBY;
 663        }
 664        if (vapic_prepare(s) < 0) {
 665            s->state = VAPIC_INACTIVE;
 666            s->rom_state_paddr = 0;
 667            break;
 668        }
 669        break;
 670    case 1:
 671        if (kvm_enabled()) {
 672            /*
 673             * Disable triggering instruction in ROM by writing a NOP.
 674             *
 675             * We cannot do this in TCG mode as the reported IP is not
 676             * accurate.
 677             */
 678            pause_all_vcpus();
 679            patch_byte(cpu, env->eip - 2, 0x66);
 680            patch_byte(cpu, env->eip - 1, 0x90);
 681            resume_all_vcpus();
 682        }
 683
 684        if (s->state == VAPIC_ACTIVE) {
 685            break;
 686        }
 687        if (update_rom_mapping(s, env, env->eip) < 0) {
 688            break;
 689        }
 690        if (find_real_tpr_addr(s, env) < 0) {
 691            break;
 692        }
 693        vapic_enable(s, cpu);
 694        break;
 695    default:
 696    case 4:
 697        if (!kvm_irqchip_in_kernel()) {
 698            apic_poll_irq(cpu->apic_state);
 699        }
 700        break;
 701    }
 702}
 703
 704static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
 705{
 706    return 0xffffffff;
 707}
 708
 709static const MemoryRegionOps vapic_ops = {
 710    .write = vapic_write,
 711    .read = vapic_read,
 712    .endianness = DEVICE_NATIVE_ENDIAN,
 713};
 714
 715static void vapic_realize(DeviceState *dev, Error **errp)
 716{
 717    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 718    VAPICROMState *s = VAPIC(dev);
 719
 720    memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
 721    sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
 722    sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
 723
 724    option_rom[nb_option_roms].name = "kvmvapic.bin";
 725    option_rom[nb_option_roms].bootindex = -1;
 726    nb_option_roms++;
 727}
 728
 729static void do_vapic_enable(void *data)
 730{
 731    VAPICROMState *s = data;
 732    X86CPU *cpu = X86_CPU(first_cpu);
 733
 734    static const uint8_t enabled = 1;
 735    cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
 736                              &enabled, sizeof(enabled));
 737    apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
 738    s->state = VAPIC_ACTIVE;
 739}
 740
 741static void kvmvapic_vm_state_change(void *opaque, int running,
 742                                     RunState state)
 743{
 744    VAPICROMState *s = opaque;
 745    uint8_t *zero;
 746
 747    if (!running) {
 748        return;
 749    }
 750
 751    if (s->state == VAPIC_ACTIVE) {
 752        if (smp_cpus == 1) {
 753            run_on_cpu(first_cpu, do_vapic_enable, s);
 754        } else {
 755            zero = g_malloc0(s->rom_state.vapic_size);
 756            cpu_physical_memory_write(s->vapic_paddr, zero,
 757                                      s->rom_state.vapic_size);
 758            g_free(zero);
 759        }
 760    }
 761
 762    qemu_del_vm_change_state_handler(s->vmsentry);
 763}
 764
 765static int vapic_post_load(void *opaque, int version_id)
 766{
 767    VAPICROMState *s = opaque;
 768
 769    /*
 770     * The old implementation of qemu-kvm did not provide the state
 771     * VAPIC_STANDBY. Reconstruct it.
 772     */
 773    if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
 774        s->state = VAPIC_STANDBY;
 775    }
 776
 777    if (s->state != VAPIC_INACTIVE) {
 778        if (vapic_prepare(s) < 0) {
 779            return -1;
 780        }
 781    }
 782
 783    if (!s->vmsentry) {
 784        s->vmsentry =
 785            qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
 786    }
 787    return 0;
 788}
 789
 790static const VMStateDescription vmstate_handlers = {
 791    .name = "kvmvapic-handlers",
 792    .version_id = 1,
 793    .minimum_version_id = 1,
 794    .fields = (VMStateField[]) {
 795        VMSTATE_UINT32(set_tpr, VAPICHandlers),
 796        VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
 797        VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
 798        VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
 799        VMSTATE_END_OF_LIST()
 800    }
 801};
 802
 803static const VMStateDescription vmstate_guest_rom = {
 804    .name = "kvmvapic-guest-rom",
 805    .version_id = 1,
 806    .minimum_version_id = 1,
 807    .fields = (VMStateField[]) {
 808        VMSTATE_UNUSED(8),     /* signature */
 809        VMSTATE_UINT32(vaddr, GuestROMState),
 810        VMSTATE_UINT32(fixup_start, GuestROMState),
 811        VMSTATE_UINT32(fixup_end, GuestROMState),
 812        VMSTATE_UINT32(vapic_vaddr, GuestROMState),
 813        VMSTATE_UINT32(vapic_size, GuestROMState),
 814        VMSTATE_UINT32(vcpu_shift, GuestROMState),
 815        VMSTATE_UINT32(real_tpr_addr, GuestROMState),
 816        VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 817        VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 818        VMSTATE_END_OF_LIST()
 819    }
 820};
 821
 822static const VMStateDescription vmstate_vapic = {
 823    .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
 824    .version_id = 1,
 825    .minimum_version_id = 1,
 826    .post_load = vapic_post_load,
 827    .fields = (VMStateField[]) {
 828        VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
 829                       GuestROMState),
 830        VMSTATE_UINT32(state, VAPICROMState),
 831        VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
 832        VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
 833        VMSTATE_UINT32(vapic_paddr, VAPICROMState),
 834        VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
 835        VMSTATE_END_OF_LIST()
 836    }
 837};
 838
 839static void vapic_class_init(ObjectClass *klass, void *data)
 840{
 841    DeviceClass *dc = DEVICE_CLASS(klass);
 842
 843    dc->reset   = vapic_reset;
 844    dc->vmsd    = &vmstate_vapic;
 845    dc->realize = vapic_realize;
 846}
 847
 848static const TypeInfo vapic_type = {
 849    .name          = TYPE_VAPIC,
 850    .parent        = TYPE_SYS_BUS_DEVICE,
 851    .instance_size = sizeof(VAPICROMState),
 852    .class_init    = vapic_class_init,
 853};
 854
 855static void vapic_register(void)
 856{
 857    type_register_static(&vapic_type);
 858}
 859
 860type_init(vapic_register);
 861