qemu/hw/core/ptimer.c
<<
>>
Prefs
   1/*
   2 * General purpose implementation of a simple periodic countdown timer.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GNU LGPL.
   7 */
   8#include "hw/hw.h"
   9#include "qemu/timer.h"
  10#include "hw/ptimer.h"
  11#include "qemu/host-utils.h"
  12#include "sysemu/replay.h"
  13
  14struct ptimer_state
  15{
  16    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
  17    uint64_t limit;
  18    uint64_t delta;
  19    uint32_t period_frac;
  20    int64_t period;
  21    int64_t last_event;
  22    int64_t next_event;
  23    QEMUBH *bh;
  24    QEMUTimer *timer;
  25};
  26
  27/* Use a bottom-half routine to avoid reentrancy issues.  */
  28static void ptimer_trigger(ptimer_state *s)
  29{
  30    if (s->bh) {
  31        replay_bh_schedule_event(s->bh);
  32    }
  33}
  34
  35static void ptimer_reload(ptimer_state *s)
  36{
  37    if (s->delta == 0) {
  38        ptimer_trigger(s);
  39        s->delta = s->limit;
  40    }
  41    if (s->delta == 0 || s->period == 0) {
  42        fprintf(stderr, "Timer with period zero, disabling\n");
  43        s->enabled = 0;
  44        return;
  45    }
  46
  47    s->last_event = s->next_event;
  48    s->next_event = s->last_event + s->delta * s->period;
  49    if (s->period_frac) {
  50        s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
  51    }
  52    timer_mod(s->timer, s->next_event);
  53}
  54
  55static void ptimer_tick(void *opaque)
  56{
  57    ptimer_state *s = (ptimer_state *)opaque;
  58    ptimer_trigger(s);
  59    s->delta = 0;
  60    if (s->enabled == 2) {
  61        s->enabled = 0;
  62    } else {
  63        ptimer_reload(s);
  64    }
  65}
  66
  67uint64_t ptimer_get_count(ptimer_state *s)
  68{
  69    int64_t now;
  70    uint64_t counter;
  71
  72    if (s->enabled) {
  73        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  74        /* Figure out the current counter value.  */
  75        if (now - s->next_event > 0
  76            || s->period == 0) {
  77            /* Prevent timer underflowing if it should already have
  78               triggered.  */
  79            counter = 0;
  80        } else {
  81            uint64_t rem;
  82            uint64_t div;
  83            int clz1, clz2;
  84            int shift;
  85
  86            /* We need to divide time by period, where time is stored in
  87               rem (64-bit integer) and period is stored in period/period_frac
  88               (64.32 fixed point).
  89              
  90               Doing full precision division is hard, so scale values and
  91               do a 64-bit division.  The result should be rounded down,
  92               so that the rounding error never causes the timer to go
  93               backwards.
  94            */
  95
  96            rem = s->next_event - now;
  97            div = s->period;
  98
  99            clz1 = clz64(rem);
 100            clz2 = clz64(div);
 101            shift = clz1 < clz2 ? clz1 : clz2;
 102
 103            rem <<= shift;
 104            div <<= shift;
 105            if (shift >= 32) {
 106                div |= ((uint64_t)s->period_frac << (shift - 32));
 107            } else {
 108                if (shift != 0)
 109                    div |= (s->period_frac >> (32 - shift));
 110                /* Look at remaining bits of period_frac and round div up if 
 111                   necessary.  */
 112                if ((uint32_t)(s->period_frac << shift))
 113                    div += 1;
 114            }
 115            counter = rem / div;
 116        }
 117    } else {
 118        counter = s->delta;
 119    }
 120    return counter;
 121}
 122
 123void ptimer_set_count(ptimer_state *s, uint64_t count)
 124{
 125    s->delta = count;
 126    if (s->enabled) {
 127        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 128        ptimer_reload(s);
 129    }
 130}
 131
 132void ptimer_run(ptimer_state *s, int oneshot)
 133{
 134    if (s->enabled) {
 135        return;
 136    }
 137    if (s->period == 0) {
 138        fprintf(stderr, "Timer with period zero, disabling\n");
 139        return;
 140    }
 141    s->enabled = oneshot ? 2 : 1;
 142    s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 143    ptimer_reload(s);
 144}
 145
 146/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 147   is immediately restarted.  */
 148void ptimer_stop(ptimer_state *s)
 149{
 150    if (!s->enabled)
 151        return;
 152
 153    s->delta = ptimer_get_count(s);
 154    timer_del(s->timer);
 155    s->enabled = 0;
 156}
 157
 158/* Set counter increment interval in nanoseconds.  */
 159void ptimer_set_period(ptimer_state *s, int64_t period)
 160{
 161    s->period = period;
 162    s->period_frac = 0;
 163    if (s->enabled) {
 164        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 165        ptimer_reload(s);
 166    }
 167}
 168
 169/* Set counter frequency in Hz.  */
 170void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 171{
 172    s->period = 1000000000ll / freq;
 173    s->period_frac = (1000000000ll << 32) / freq;
 174    if (s->enabled) {
 175        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 176        ptimer_reload(s);
 177    }
 178}
 179
 180/* Set the initial countdown value.  If reload is nonzero then also set
 181   count = limit.  */
 182void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 183{
 184    /*
 185     * Artificially limit timeout rate to something
 186     * achievable under QEMU.  Otherwise, QEMU spends all
 187     * its time generating timer interrupts, and there
 188     * is no forward progress.
 189     * About ten microseconds is the fastest that really works
 190     * on the current generation of host machines.
 191     */
 192
 193    if (!use_icount && limit * s->period < 10000 && s->period) {
 194        limit = 10000 / s->period;
 195    }
 196
 197    s->limit = limit;
 198    if (reload)
 199        s->delta = limit;
 200    if (s->enabled && reload) {
 201        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 202        ptimer_reload(s);
 203    }
 204}
 205
 206const VMStateDescription vmstate_ptimer = {
 207    .name = "ptimer",
 208    .version_id = 1,
 209    .minimum_version_id = 1,
 210    .fields = (VMStateField[]) {
 211        VMSTATE_UINT8(enabled, ptimer_state),
 212        VMSTATE_UINT64(limit, ptimer_state),
 213        VMSTATE_UINT64(delta, ptimer_state),
 214        VMSTATE_UINT32(period_frac, ptimer_state),
 215        VMSTATE_INT64(period, ptimer_state),
 216        VMSTATE_INT64(last_event, ptimer_state),
 217        VMSTATE_INT64(next_event, ptimer_state),
 218        VMSTATE_TIMER_PTR(timer, ptimer_state),
 219        VMSTATE_END_OF_LIST()
 220    }
 221};
 222
 223ptimer_state *ptimer_init(QEMUBH *bh)
 224{
 225    ptimer_state *s;
 226
 227    s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
 228    s->bh = bh;
 229    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 230    return s;
 231}
 232