qemu/hw/i386/pc.c
<<
>>
Prefs
   1/*
   2 * QEMU PC System Emulator
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "hw/hw.h"
  25#include "hw/i386/pc.h"
  26#include "hw/char/serial.h"
  27#include "hw/i386/apic.h"
  28#include "hw/i386/topology.h"
  29#include "sysemu/cpus.h"
  30#include "hw/block/fdc.h"
  31#include "hw/ide.h"
  32#include "hw/pci/pci.h"
  33#include "hw/pci/pci_bus.h"
  34#include "hw/nvram/fw_cfg.h"
  35#include "hw/timer/hpet.h"
  36#include "hw/smbios/smbios.h"
  37#include "hw/loader.h"
  38#include "elf.h"
  39#include "multiboot.h"
  40#include "hw/timer/mc146818rtc.h"
  41#include "hw/timer/i8254.h"
  42#include "hw/audio/pcspk.h"
  43#include "hw/pci/msi.h"
  44#include "hw/sysbus.h"
  45#include "sysemu/sysemu.h"
  46#include "sysemu/numa.h"
  47#include "sysemu/kvm.h"
  48#include "sysemu/qtest.h"
  49#include "kvm_i386.h"
  50#include "hw/xen/xen.h"
  51#include "sysemu/block-backend.h"
  52#include "hw/block/block.h"
  53#include "ui/qemu-spice.h"
  54#include "exec/memory.h"
  55#include "exec/address-spaces.h"
  56#include "sysemu/arch_init.h"
  57#include "qemu/bitmap.h"
  58#include "qemu/config-file.h"
  59#include "qemu/error-report.h"
  60#include "hw/acpi/acpi.h"
  61#include "hw/acpi/cpu_hotplug.h"
  62#include "hw/boards.h"
  63#include "hw/pci/pci_host.h"
  64#include "acpi-build.h"
  65#include "hw/mem/pc-dimm.h"
  66#include "qapi/visitor.h"
  67#include "qapi-visit.h"
  68
  69/* debug PC/ISA interrupts */
  70//#define DEBUG_IRQ
  71
  72#ifdef DEBUG_IRQ
  73#define DPRINTF(fmt, ...)                                       \
  74    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
  75#else
  76#define DPRINTF(fmt, ...)
  77#endif
  78
  79/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
  80 * (128K) and other BIOS datastructures (less than 4K reported to be used at
  81 * the moment, 32K should be enough for a while).  */
  82static unsigned acpi_data_size = 0x20000 + 0x8000;
  83void pc_set_legacy_acpi_data_size(void)
  84{
  85    acpi_data_size = 0x10000;
  86}
  87
  88#define BIOS_CFG_IOPORT 0x510
  89#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
  90#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
  91#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
  92#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
  93#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
  94
  95#define E820_NR_ENTRIES         16
  96
  97struct e820_entry {
  98    uint64_t address;
  99    uint64_t length;
 100    uint32_t type;
 101} QEMU_PACKED __attribute((__aligned__(4)));
 102
 103struct e820_table {
 104    uint32_t count;
 105    struct e820_entry entry[E820_NR_ENTRIES];
 106} QEMU_PACKED __attribute((__aligned__(4)));
 107
 108static struct e820_table e820_reserve;
 109static struct e820_entry *e820_table;
 110static unsigned e820_entries;
 111struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
 112
 113void gsi_handler(void *opaque, int n, int level)
 114{
 115    GSIState *s = opaque;
 116
 117    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
 118    if (n < ISA_NUM_IRQS) {
 119        qemu_set_irq(s->i8259_irq[n], level);
 120    }
 121    qemu_set_irq(s->ioapic_irq[n], level);
 122}
 123
 124static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
 125                           unsigned size)
 126{
 127}
 128
 129static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
 130{
 131    return 0xffffffffffffffffULL;
 132}
 133
 134/* MSDOS compatibility mode FPU exception support */
 135static qemu_irq ferr_irq;
 136
 137void pc_register_ferr_irq(qemu_irq irq)
 138{
 139    ferr_irq = irq;
 140}
 141
 142/* XXX: add IGNNE support */
 143void cpu_set_ferr(CPUX86State *s)
 144{
 145    qemu_irq_raise(ferr_irq);
 146}
 147
 148static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
 149                           unsigned size)
 150{
 151    qemu_irq_lower(ferr_irq);
 152}
 153
 154static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
 155{
 156    return 0xffffffffffffffffULL;
 157}
 158
 159/* TSC handling */
 160uint64_t cpu_get_tsc(CPUX86State *env)
 161{
 162    return cpu_get_ticks();
 163}
 164
 165/* IRQ handling */
 166int cpu_get_pic_interrupt(CPUX86State *env)
 167{
 168    X86CPU *cpu = x86_env_get_cpu(env);
 169    int intno;
 170
 171    intno = apic_get_interrupt(cpu->apic_state);
 172    if (intno >= 0) {
 173        return intno;
 174    }
 175    /* read the irq from the PIC */
 176    if (!apic_accept_pic_intr(cpu->apic_state)) {
 177        return -1;
 178    }
 179
 180    intno = pic_read_irq(isa_pic);
 181    return intno;
 182}
 183
 184static void pic_irq_request(void *opaque, int irq, int level)
 185{
 186    CPUState *cs = first_cpu;
 187    X86CPU *cpu = X86_CPU(cs);
 188
 189    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
 190    if (cpu->apic_state) {
 191        CPU_FOREACH(cs) {
 192            cpu = X86_CPU(cs);
 193            if (apic_accept_pic_intr(cpu->apic_state)) {
 194                apic_deliver_pic_intr(cpu->apic_state, level);
 195            }
 196        }
 197    } else {
 198        if (level) {
 199            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 200        } else {
 201            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 202        }
 203    }
 204}
 205
 206/* PC cmos mappings */
 207
 208#define REG_EQUIPMENT_BYTE          0x14
 209
 210static int cmos_get_fd_drive_type(FDriveType fd0)
 211{
 212    int val;
 213
 214    switch (fd0) {
 215    case FDRIVE_DRV_144:
 216        /* 1.44 Mb 3"5 drive */
 217        val = 4;
 218        break;
 219    case FDRIVE_DRV_288:
 220        /* 2.88 Mb 3"5 drive */
 221        val = 5;
 222        break;
 223    case FDRIVE_DRV_120:
 224        /* 1.2 Mb 5"5 drive */
 225        val = 2;
 226        break;
 227    case FDRIVE_DRV_NONE:
 228    default:
 229        val = 0;
 230        break;
 231    }
 232    return val;
 233}
 234
 235static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
 236                         int16_t cylinders, int8_t heads, int8_t sectors)
 237{
 238    rtc_set_memory(s, type_ofs, 47);
 239    rtc_set_memory(s, info_ofs, cylinders);
 240    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
 241    rtc_set_memory(s, info_ofs + 2, heads);
 242    rtc_set_memory(s, info_ofs + 3, 0xff);
 243    rtc_set_memory(s, info_ofs + 4, 0xff);
 244    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
 245    rtc_set_memory(s, info_ofs + 6, cylinders);
 246    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
 247    rtc_set_memory(s, info_ofs + 8, sectors);
 248}
 249
 250/* convert boot_device letter to something recognizable by the bios */
 251static int boot_device2nibble(char boot_device)
 252{
 253    switch(boot_device) {
 254    case 'a':
 255    case 'b':
 256        return 0x01; /* floppy boot */
 257    case 'c':
 258        return 0x02; /* hard drive boot */
 259    case 'd':
 260        return 0x03; /* CD-ROM boot */
 261    case 'n':
 262        return 0x04; /* Network boot */
 263    }
 264    return 0;
 265}
 266
 267static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
 268{
 269#define PC_MAX_BOOT_DEVICES 3
 270    int nbds, bds[3] = { 0, };
 271    int i;
 272
 273    nbds = strlen(boot_device);
 274    if (nbds > PC_MAX_BOOT_DEVICES) {
 275        error_setg(errp, "Too many boot devices for PC");
 276        return;
 277    }
 278    for (i = 0; i < nbds; i++) {
 279        bds[i] = boot_device2nibble(boot_device[i]);
 280        if (bds[i] == 0) {
 281            error_setg(errp, "Invalid boot device for PC: '%c'",
 282                       boot_device[i]);
 283            return;
 284        }
 285    }
 286    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
 287    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
 288}
 289
 290static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
 291{
 292    set_boot_dev(opaque, boot_device, errp);
 293}
 294
 295static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
 296{
 297    int val, nb, i;
 298    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
 299
 300    /* floppy type */
 301    if (floppy) {
 302        for (i = 0; i < 2; i++) {
 303            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
 304        }
 305    }
 306    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
 307        cmos_get_fd_drive_type(fd_type[1]);
 308    rtc_set_memory(rtc_state, 0x10, val);
 309
 310    val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
 311    nb = 0;
 312    if (fd_type[0] < FDRIVE_DRV_NONE) {
 313        nb++;
 314    }
 315    if (fd_type[1] < FDRIVE_DRV_NONE) {
 316        nb++;
 317    }
 318    switch (nb) {
 319    case 0:
 320        break;
 321    case 1:
 322        val |= 0x01; /* 1 drive, ready for boot */
 323        break;
 324    case 2:
 325        val |= 0x41; /* 2 drives, ready for boot */
 326        break;
 327    }
 328    rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
 329}
 330
 331typedef struct pc_cmos_init_late_arg {
 332    ISADevice *rtc_state;
 333    BusState *idebus[2];
 334} pc_cmos_init_late_arg;
 335
 336typedef struct check_fdc_state {
 337    ISADevice *floppy;
 338    bool multiple;
 339} CheckFdcState;
 340
 341static int check_fdc(Object *obj, void *opaque)
 342{
 343    CheckFdcState *state = opaque;
 344    Object *fdc;
 345    uint32_t iobase;
 346    Error *local_err = NULL;
 347
 348    fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
 349    if (!fdc) {
 350        return 0;
 351    }
 352
 353    iobase = object_property_get_int(obj, "iobase", &local_err);
 354    if (local_err || iobase != 0x3f0) {
 355        error_free(local_err);
 356        return 0;
 357    }
 358
 359    if (state->floppy) {
 360        state->multiple = true;
 361    } else {
 362        state->floppy = ISA_DEVICE(obj);
 363    }
 364    return 0;
 365}
 366
 367static const char * const fdc_container_path[] = {
 368    "/unattached", "/peripheral", "/peripheral-anon"
 369};
 370
 371static void pc_cmos_init_late(void *opaque)
 372{
 373    pc_cmos_init_late_arg *arg = opaque;
 374    ISADevice *s = arg->rtc_state;
 375    int16_t cylinders;
 376    int8_t heads, sectors;
 377    int val;
 378    int i, trans;
 379    Object *container;
 380    CheckFdcState state = { 0 };
 381
 382    val = 0;
 383    if (ide_get_geometry(arg->idebus[0], 0,
 384                         &cylinders, &heads, &sectors) >= 0) {
 385        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
 386        val |= 0xf0;
 387    }
 388    if (ide_get_geometry(arg->idebus[0], 1,
 389                         &cylinders, &heads, &sectors) >= 0) {
 390        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
 391        val |= 0x0f;
 392    }
 393    rtc_set_memory(s, 0x12, val);
 394
 395    val = 0;
 396    for (i = 0; i < 4; i++) {
 397        /* NOTE: ide_get_geometry() returns the physical
 398           geometry.  It is always such that: 1 <= sects <= 63, 1
 399           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
 400           geometry can be different if a translation is done. */
 401        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
 402                             &cylinders, &heads, &sectors) >= 0) {
 403            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
 404            assert((trans & ~3) == 0);
 405            val |= trans << (i * 2);
 406        }
 407    }
 408    rtc_set_memory(s, 0x39, val);
 409
 410    /*
 411     * Locate the FDC at IO address 0x3f0, and configure the CMOS registers
 412     * accordingly.
 413     */
 414    for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
 415        container = container_get(qdev_get_machine(), fdc_container_path[i]);
 416        object_child_foreach(container, check_fdc, &state);
 417    }
 418
 419    if (state.multiple) {
 420        error_report("warning: multiple floppy disk controllers with "
 421                     "iobase=0x3f0 have been found;\n"
 422                     "the one being picked for CMOS setup might not reflect "
 423                     "your intent");
 424    }
 425    pc_cmos_init_floppy(s, state.floppy);
 426
 427    qemu_unregister_reset(pc_cmos_init_late, opaque);
 428}
 429
 430void pc_cmos_init(PCMachineState *pcms,
 431                  BusState *idebus0, BusState *idebus1,
 432                  ISADevice *s)
 433{
 434    int val;
 435    static pc_cmos_init_late_arg arg;
 436    Error *local_err = NULL;
 437
 438    /* various important CMOS locations needed by PC/Bochs bios */
 439
 440    /* memory size */
 441    /* base memory (first MiB) */
 442    val = MIN(pcms->below_4g_mem_size / 1024, 640);
 443    rtc_set_memory(s, 0x15, val);
 444    rtc_set_memory(s, 0x16, val >> 8);
 445    /* extended memory (next 64MiB) */
 446    if (pcms->below_4g_mem_size > 1024 * 1024) {
 447        val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
 448    } else {
 449        val = 0;
 450    }
 451    if (val > 65535)
 452        val = 65535;
 453    rtc_set_memory(s, 0x17, val);
 454    rtc_set_memory(s, 0x18, val >> 8);
 455    rtc_set_memory(s, 0x30, val);
 456    rtc_set_memory(s, 0x31, val >> 8);
 457    /* memory between 16MiB and 4GiB */
 458    if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
 459        val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
 460    } else {
 461        val = 0;
 462    }
 463    if (val > 65535)
 464        val = 65535;
 465    rtc_set_memory(s, 0x34, val);
 466    rtc_set_memory(s, 0x35, val >> 8);
 467    /* memory above 4GiB */
 468    val = pcms->above_4g_mem_size / 65536;
 469    rtc_set_memory(s, 0x5b, val);
 470    rtc_set_memory(s, 0x5c, val >> 8);
 471    rtc_set_memory(s, 0x5d, val >> 16);
 472
 473    /* set the number of CPU */
 474    rtc_set_memory(s, 0x5f, smp_cpus - 1);
 475
 476    object_property_add_link(OBJECT(pcms), "rtc_state",
 477                             TYPE_ISA_DEVICE,
 478                             (Object **)&pcms->rtc,
 479                             object_property_allow_set_link,
 480                             OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
 481    object_property_set_link(OBJECT(pcms), OBJECT(s),
 482                             "rtc_state", &error_abort);
 483
 484    set_boot_dev(s, MACHINE(pcms)->boot_order, &local_err);
 485    if (local_err) {
 486        error_report_err(local_err);
 487        exit(1);
 488    }
 489
 490    val = 0;
 491    val |= 0x02; /* FPU is there */
 492    val |= 0x04; /* PS/2 mouse installed */
 493    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
 494
 495    /* hard drives and FDC */
 496    arg.rtc_state = s;
 497    arg.idebus[0] = idebus0;
 498    arg.idebus[1] = idebus1;
 499    qemu_register_reset(pc_cmos_init_late, &arg);
 500}
 501
 502#define TYPE_PORT92 "port92"
 503#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
 504
 505/* port 92 stuff: could be split off */
 506typedef struct Port92State {
 507    ISADevice parent_obj;
 508
 509    MemoryRegion io;
 510    uint8_t outport;
 511    qemu_irq *a20_out;
 512} Port92State;
 513
 514static void port92_write(void *opaque, hwaddr addr, uint64_t val,
 515                         unsigned size)
 516{
 517    Port92State *s = opaque;
 518    int oldval = s->outport;
 519
 520    DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
 521    s->outport = val;
 522    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
 523    if ((val & 1) && !(oldval & 1)) {
 524        qemu_system_reset_request();
 525    }
 526}
 527
 528static uint64_t port92_read(void *opaque, hwaddr addr,
 529                            unsigned size)
 530{
 531    Port92State *s = opaque;
 532    uint32_t ret;
 533
 534    ret = s->outport;
 535    DPRINTF("port92: read 0x%02x\n", ret);
 536    return ret;
 537}
 538
 539static void port92_init(ISADevice *dev, qemu_irq *a20_out)
 540{
 541    Port92State *s = PORT92(dev);
 542
 543    s->a20_out = a20_out;
 544}
 545
 546static const VMStateDescription vmstate_port92_isa = {
 547    .name = "port92",
 548    .version_id = 1,
 549    .minimum_version_id = 1,
 550    .fields = (VMStateField[]) {
 551        VMSTATE_UINT8(outport, Port92State),
 552        VMSTATE_END_OF_LIST()
 553    }
 554};
 555
 556static void port92_reset(DeviceState *d)
 557{
 558    Port92State *s = PORT92(d);
 559
 560    s->outport &= ~1;
 561}
 562
 563static const MemoryRegionOps port92_ops = {
 564    .read = port92_read,
 565    .write = port92_write,
 566    .impl = {
 567        .min_access_size = 1,
 568        .max_access_size = 1,
 569    },
 570    .endianness = DEVICE_LITTLE_ENDIAN,
 571};
 572
 573static void port92_initfn(Object *obj)
 574{
 575    Port92State *s = PORT92(obj);
 576
 577    memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
 578
 579    s->outport = 0;
 580}
 581
 582static void port92_realizefn(DeviceState *dev, Error **errp)
 583{
 584    ISADevice *isadev = ISA_DEVICE(dev);
 585    Port92State *s = PORT92(dev);
 586
 587    isa_register_ioport(isadev, &s->io, 0x92);
 588}
 589
 590static void port92_class_initfn(ObjectClass *klass, void *data)
 591{
 592    DeviceClass *dc = DEVICE_CLASS(klass);
 593
 594    dc->realize = port92_realizefn;
 595    dc->reset = port92_reset;
 596    dc->vmsd = &vmstate_port92_isa;
 597    /*
 598     * Reason: unlike ordinary ISA devices, this one needs additional
 599     * wiring: its A20 output line needs to be wired up by
 600     * port92_init().
 601     */
 602    dc->cannot_instantiate_with_device_add_yet = true;
 603}
 604
 605static const TypeInfo port92_info = {
 606    .name          = TYPE_PORT92,
 607    .parent        = TYPE_ISA_DEVICE,
 608    .instance_size = sizeof(Port92State),
 609    .instance_init = port92_initfn,
 610    .class_init    = port92_class_initfn,
 611};
 612
 613static void port92_register_types(void)
 614{
 615    type_register_static(&port92_info);
 616}
 617
 618type_init(port92_register_types)
 619
 620static void handle_a20_line_change(void *opaque, int irq, int level)
 621{
 622    X86CPU *cpu = opaque;
 623
 624    /* XXX: send to all CPUs ? */
 625    /* XXX: add logic to handle multiple A20 line sources */
 626    x86_cpu_set_a20(cpu, level);
 627}
 628
 629int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
 630{
 631    int index = le32_to_cpu(e820_reserve.count);
 632    struct e820_entry *entry;
 633
 634    if (type != E820_RAM) {
 635        /* old FW_CFG_E820_TABLE entry -- reservations only */
 636        if (index >= E820_NR_ENTRIES) {
 637            return -EBUSY;
 638        }
 639        entry = &e820_reserve.entry[index++];
 640
 641        entry->address = cpu_to_le64(address);
 642        entry->length = cpu_to_le64(length);
 643        entry->type = cpu_to_le32(type);
 644
 645        e820_reserve.count = cpu_to_le32(index);
 646    }
 647
 648    /* new "etc/e820" file -- include ram too */
 649    e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
 650    e820_table[e820_entries].address = cpu_to_le64(address);
 651    e820_table[e820_entries].length = cpu_to_le64(length);
 652    e820_table[e820_entries].type = cpu_to_le32(type);
 653    e820_entries++;
 654
 655    return e820_entries;
 656}
 657
 658int e820_get_num_entries(void)
 659{
 660    return e820_entries;
 661}
 662
 663bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
 664{
 665    if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
 666        *address = le64_to_cpu(e820_table[idx].address);
 667        *length = le64_to_cpu(e820_table[idx].length);
 668        return true;
 669    }
 670    return false;
 671}
 672
 673/* Enables contiguous-apic-ID mode, for compatibility */
 674static bool compat_apic_id_mode;
 675
 676void enable_compat_apic_id_mode(void)
 677{
 678    compat_apic_id_mode = true;
 679}
 680
 681/* Calculates initial APIC ID for a specific CPU index
 682 *
 683 * Currently we need to be able to calculate the APIC ID from the CPU index
 684 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
 685 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
 686 * all CPUs up to max_cpus.
 687 */
 688static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
 689{
 690    uint32_t correct_id;
 691    static bool warned;
 692
 693    correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
 694    if (compat_apic_id_mode) {
 695        if (cpu_index != correct_id && !warned && !qtest_enabled()) {
 696            error_report("APIC IDs set in compatibility mode, "
 697                         "CPU topology won't match the configuration");
 698            warned = true;
 699        }
 700        return cpu_index;
 701    } else {
 702        return correct_id;
 703    }
 704}
 705
 706/* Calculates the limit to CPU APIC ID values
 707 *
 708 * This function returns the limit for the APIC ID value, so that all
 709 * CPU APIC IDs are < pc_apic_id_limit().
 710 *
 711 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
 712 */
 713static unsigned int pc_apic_id_limit(unsigned int max_cpus)
 714{
 715    return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
 716}
 717
 718static void pc_build_smbios(FWCfgState *fw_cfg)
 719{
 720    uint8_t *smbios_tables, *smbios_anchor;
 721    size_t smbios_tables_len, smbios_anchor_len;
 722    struct smbios_phys_mem_area *mem_array;
 723    unsigned i, array_count;
 724
 725    smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
 726    if (smbios_tables) {
 727        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
 728                         smbios_tables, smbios_tables_len);
 729    }
 730
 731    /* build the array of physical mem area from e820 table */
 732    mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
 733    for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
 734        uint64_t addr, len;
 735
 736        if (e820_get_entry(i, E820_RAM, &addr, &len)) {
 737            mem_array[array_count].address = addr;
 738            mem_array[array_count].length = len;
 739            array_count++;
 740        }
 741    }
 742    smbios_get_tables(mem_array, array_count,
 743                      &smbios_tables, &smbios_tables_len,
 744                      &smbios_anchor, &smbios_anchor_len);
 745    g_free(mem_array);
 746
 747    if (smbios_anchor) {
 748        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
 749                        smbios_tables, smbios_tables_len);
 750        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
 751                        smbios_anchor, smbios_anchor_len);
 752    }
 753}
 754
 755static FWCfgState *bochs_bios_init(AddressSpace *as)
 756{
 757    FWCfgState *fw_cfg;
 758    uint64_t *numa_fw_cfg;
 759    int i, j;
 760    unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
 761
 762    fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
 763
 764    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
 765     *
 766     * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
 767     * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
 768     * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
 769     * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
 770     * may see".
 771     *
 772     * So, this means we must not use max_cpus, here, but the maximum possible
 773     * APIC ID value, plus one.
 774     *
 775     * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
 776     *     the APIC ID, not the "CPU index"
 777     */
 778    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
 779    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
 780    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
 781                     acpi_tables, acpi_tables_len);
 782    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
 783
 784    pc_build_smbios(fw_cfg);
 785
 786    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
 787                     &e820_reserve, sizeof(e820_reserve));
 788    fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
 789                    sizeof(struct e820_entry) * e820_entries);
 790
 791    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
 792    /* allocate memory for the NUMA channel: one (64bit) word for the number
 793     * of nodes, one word for each VCPU->node and one word for each node to
 794     * hold the amount of memory.
 795     */
 796    numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
 797    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
 798    for (i = 0; i < max_cpus; i++) {
 799        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
 800        assert(apic_id < apic_id_limit);
 801        for (j = 0; j < nb_numa_nodes; j++) {
 802            if (test_bit(i, numa_info[j].node_cpu)) {
 803                numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
 804                break;
 805            }
 806        }
 807    }
 808    for (i = 0; i < nb_numa_nodes; i++) {
 809        numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
 810    }
 811    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
 812                     (1 + apic_id_limit + nb_numa_nodes) *
 813                     sizeof(*numa_fw_cfg));
 814
 815    return fw_cfg;
 816}
 817
 818static long get_file_size(FILE *f)
 819{
 820    long where, size;
 821
 822    /* XXX: on Unix systems, using fstat() probably makes more sense */
 823
 824    where = ftell(f);
 825    fseek(f, 0, SEEK_END);
 826    size = ftell(f);
 827    fseek(f, where, SEEK_SET);
 828
 829    return size;
 830}
 831
 832static void load_linux(PCMachineState *pcms,
 833                       FWCfgState *fw_cfg)
 834{
 835    uint16_t protocol;
 836    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
 837    uint32_t initrd_max;
 838    uint8_t header[8192], *setup, *kernel, *initrd_data;
 839    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
 840    FILE *f;
 841    char *vmode;
 842    MachineState *machine = MACHINE(pcms);
 843    const char *kernel_filename = machine->kernel_filename;
 844    const char *initrd_filename = machine->initrd_filename;
 845    const char *kernel_cmdline = machine->kernel_cmdline;
 846
 847    /* Align to 16 bytes as a paranoia measure */
 848    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
 849
 850    /* load the kernel header */
 851    f = fopen(kernel_filename, "rb");
 852    if (!f || !(kernel_size = get_file_size(f)) ||
 853        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
 854        MIN(ARRAY_SIZE(header), kernel_size)) {
 855        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
 856                kernel_filename, strerror(errno));
 857        exit(1);
 858    }
 859
 860    /* kernel protocol version */
 861#if 0
 862    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
 863#endif
 864    if (ldl_p(header+0x202) == 0x53726448) {
 865        protocol = lduw_p(header+0x206);
 866    } else {
 867        /* This looks like a multiboot kernel. If it is, let's stop
 868           treating it like a Linux kernel. */
 869        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
 870                           kernel_cmdline, kernel_size, header)) {
 871            return;
 872        }
 873        protocol = 0;
 874    }
 875
 876    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
 877        /* Low kernel */
 878        real_addr    = 0x90000;
 879        cmdline_addr = 0x9a000 - cmdline_size;
 880        prot_addr    = 0x10000;
 881    } else if (protocol < 0x202) {
 882        /* High but ancient kernel */
 883        real_addr    = 0x90000;
 884        cmdline_addr = 0x9a000 - cmdline_size;
 885        prot_addr    = 0x100000;
 886    } else {
 887        /* High and recent kernel */
 888        real_addr    = 0x10000;
 889        cmdline_addr = 0x20000;
 890        prot_addr    = 0x100000;
 891    }
 892
 893#if 0
 894    fprintf(stderr,
 895            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
 896            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
 897            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
 898            real_addr,
 899            cmdline_addr,
 900            prot_addr);
 901#endif
 902
 903    /* highest address for loading the initrd */
 904    if (protocol >= 0x203) {
 905        initrd_max = ldl_p(header+0x22c);
 906    } else {
 907        initrd_max = 0x37ffffff;
 908    }
 909
 910    if (initrd_max >= pcms->below_4g_mem_size - acpi_data_size) {
 911        initrd_max = pcms->below_4g_mem_size - acpi_data_size - 1;
 912    }
 913
 914    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
 915    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
 916    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
 917
 918    if (protocol >= 0x202) {
 919        stl_p(header+0x228, cmdline_addr);
 920    } else {
 921        stw_p(header+0x20, 0xA33F);
 922        stw_p(header+0x22, cmdline_addr-real_addr);
 923    }
 924
 925    /* handle vga= parameter */
 926    vmode = strstr(kernel_cmdline, "vga=");
 927    if (vmode) {
 928        unsigned int video_mode;
 929        /* skip "vga=" */
 930        vmode += 4;
 931        if (!strncmp(vmode, "normal", 6)) {
 932            video_mode = 0xffff;
 933        } else if (!strncmp(vmode, "ext", 3)) {
 934            video_mode = 0xfffe;
 935        } else if (!strncmp(vmode, "ask", 3)) {
 936            video_mode = 0xfffd;
 937        } else {
 938            video_mode = strtol(vmode, NULL, 0);
 939        }
 940        stw_p(header+0x1fa, video_mode);
 941    }
 942
 943    /* loader type */
 944    /* High nybble = B reserved for QEMU; low nybble is revision number.
 945       If this code is substantially changed, you may want to consider
 946       incrementing the revision. */
 947    if (protocol >= 0x200) {
 948        header[0x210] = 0xB0;
 949    }
 950    /* heap */
 951    if (protocol >= 0x201) {
 952        header[0x211] |= 0x80;  /* CAN_USE_HEAP */
 953        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
 954    }
 955
 956    /* load initrd */
 957    if (initrd_filename) {
 958        if (protocol < 0x200) {
 959            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
 960            exit(1);
 961        }
 962
 963        initrd_size = get_image_size(initrd_filename);
 964        if (initrd_size < 0) {
 965            fprintf(stderr, "qemu: error reading initrd %s: %s\n",
 966                    initrd_filename, strerror(errno));
 967            exit(1);
 968        }
 969
 970        initrd_addr = (initrd_max-initrd_size) & ~4095;
 971
 972        initrd_data = g_malloc(initrd_size);
 973        load_image(initrd_filename, initrd_data);
 974
 975        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
 976        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
 977        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
 978
 979        stl_p(header+0x218, initrd_addr);
 980        stl_p(header+0x21c, initrd_size);
 981    }
 982
 983    /* load kernel and setup */
 984    setup_size = header[0x1f1];
 985    if (setup_size == 0) {
 986        setup_size = 4;
 987    }
 988    setup_size = (setup_size+1)*512;
 989    if (setup_size > kernel_size) {
 990        fprintf(stderr, "qemu: invalid kernel header\n");
 991        exit(1);
 992    }
 993    kernel_size -= setup_size;
 994
 995    setup  = g_malloc(setup_size);
 996    kernel = g_malloc(kernel_size);
 997    fseek(f, 0, SEEK_SET);
 998    if (fread(setup, 1, setup_size, f) != setup_size) {
 999        fprintf(stderr, "fread() failed\n");
1000        exit(1);
1001    }
1002    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1003        fprintf(stderr, "fread() failed\n");
1004        exit(1);
1005    }
1006    fclose(f);
1007    memcpy(setup, header, MIN(sizeof(header), setup_size));
1008
1009    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1010    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1011    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1012
1013    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1014    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1015    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1016
1017    option_rom[nb_option_roms].name = "linuxboot.bin";
1018    option_rom[nb_option_roms].bootindex = 0;
1019    nb_option_roms++;
1020}
1021
1022#define NE2000_NB_MAX 6
1023
1024static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1025                                              0x280, 0x380 };
1026static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1027
1028void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1029{
1030    static int nb_ne2k = 0;
1031
1032    if (nb_ne2k == NE2000_NB_MAX)
1033        return;
1034    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1035                    ne2000_irq[nb_ne2k], nd);
1036    nb_ne2k++;
1037}
1038
1039DeviceState *cpu_get_current_apic(void)
1040{
1041    if (current_cpu) {
1042        X86CPU *cpu = X86_CPU(current_cpu);
1043        return cpu->apic_state;
1044    } else {
1045        return NULL;
1046    }
1047}
1048
1049void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1050{
1051    X86CPU *cpu = opaque;
1052
1053    if (level) {
1054        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1055    }
1056}
1057
1058static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1059                          Error **errp)
1060{
1061    X86CPU *cpu = NULL;
1062    Error *local_err = NULL;
1063
1064    cpu = cpu_x86_create(cpu_model, &local_err);
1065    if (local_err != NULL) {
1066        goto out;
1067    }
1068
1069    object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1070    object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1071
1072out:
1073    if (local_err) {
1074        error_propagate(errp, local_err);
1075        object_unref(OBJECT(cpu));
1076        cpu = NULL;
1077    }
1078    return cpu;
1079}
1080
1081void pc_hot_add_cpu(const int64_t id, Error **errp)
1082{
1083    X86CPU *cpu;
1084    MachineState *machine = MACHINE(qdev_get_machine());
1085    int64_t apic_id = x86_cpu_apic_id_from_index(id);
1086    Error *local_err = NULL;
1087
1088    if (id < 0) {
1089        error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1090        return;
1091    }
1092
1093    if (cpu_exists(apic_id)) {
1094        error_setg(errp, "Unable to add CPU: %" PRIi64
1095                   ", it already exists", id);
1096        return;
1097    }
1098
1099    if (id >= max_cpus) {
1100        error_setg(errp, "Unable to add CPU: %" PRIi64
1101                   ", max allowed: %d", id, max_cpus - 1);
1102        return;
1103    }
1104
1105    if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1106        error_setg(errp, "Unable to add CPU: %" PRIi64
1107                   ", resulting APIC ID (%" PRIi64 ") is too large",
1108                   id, apic_id);
1109        return;
1110    }
1111
1112    cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1113    if (local_err) {
1114        error_propagate(errp, local_err);
1115        return;
1116    }
1117    object_unref(OBJECT(cpu));
1118}
1119
1120void pc_cpus_init(PCMachineState *pcms)
1121{
1122    int i;
1123    X86CPU *cpu = NULL;
1124    MachineState *machine = MACHINE(pcms);
1125    Error *error = NULL;
1126    unsigned long apic_id_limit;
1127
1128    /* init CPUs */
1129    if (machine->cpu_model == NULL) {
1130#ifdef TARGET_X86_64
1131        machine->cpu_model = "qemu64";
1132#else
1133        machine->cpu_model = "qemu32";
1134#endif
1135    }
1136
1137    apic_id_limit = pc_apic_id_limit(max_cpus);
1138    if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1139        error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1140                     apic_id_limit - 1);
1141        exit(1);
1142    }
1143
1144    for (i = 0; i < smp_cpus; i++) {
1145        cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1146                         &error);
1147        if (error) {
1148            error_report_err(error);
1149            exit(1);
1150        }
1151        object_unref(OBJECT(cpu));
1152    }
1153
1154    /* tell smbios about cpuid version and features */
1155    smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1156}
1157
1158/* pci-info ROM file. Little endian format */
1159typedef struct PcRomPciInfo {
1160    uint64_t w32_min;
1161    uint64_t w32_max;
1162    uint64_t w64_min;
1163    uint64_t w64_max;
1164} PcRomPciInfo;
1165
1166typedef struct PcGuestInfoState {
1167    PcGuestInfo info;
1168    Notifier machine_done;
1169} PcGuestInfoState;
1170
1171static
1172void pc_guest_info_machine_done(Notifier *notifier, void *data)
1173{
1174    PcGuestInfoState *guest_info_state = container_of(notifier,
1175                                                      PcGuestInfoState,
1176                                                      machine_done);
1177    PCIBus *bus = find_i440fx();
1178
1179    if (bus) {
1180        int extra_hosts = 0;
1181
1182        QLIST_FOREACH(bus, &bus->child, sibling) {
1183            /* look for expander root buses */
1184            if (pci_bus_is_root(bus)) {
1185                extra_hosts++;
1186            }
1187        }
1188        if (extra_hosts && guest_info_state->info.fw_cfg) {
1189            uint64_t *val = g_malloc(sizeof(*val));
1190            *val = cpu_to_le64(extra_hosts);
1191            fw_cfg_add_file(guest_info_state->info.fw_cfg,
1192                    "etc/extra-pci-roots", val, sizeof(*val));
1193        }
1194    }
1195
1196    acpi_setup(&guest_info_state->info);
1197}
1198
1199PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1200{
1201    PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1202    PcGuestInfo *guest_info = &guest_info_state->info;
1203    int i, j;
1204
1205    guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1206    guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1207    guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1208    guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1209    guest_info->numa_nodes = nb_numa_nodes;
1210    guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1211                                    sizeof *guest_info->node_mem);
1212    for (i = 0; i < nb_numa_nodes; i++) {
1213        guest_info->node_mem[i] = numa_info[i].node_mem;
1214    }
1215
1216    guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1217                                     sizeof *guest_info->node_cpu);
1218
1219    for (i = 0; i < max_cpus; i++) {
1220        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1221        assert(apic_id < guest_info->apic_id_limit);
1222        for (j = 0; j < nb_numa_nodes; j++) {
1223            if (test_bit(i, numa_info[j].node_cpu)) {
1224                guest_info->node_cpu[apic_id] = j;
1225                break;
1226            }
1227        }
1228    }
1229
1230    guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1231    qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1232    return guest_info;
1233}
1234
1235/* setup pci memory address space mapping into system address space */
1236void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1237                            MemoryRegion *pci_address_space)
1238{
1239    /* Set to lower priority than RAM */
1240    memory_region_add_subregion_overlap(system_memory, 0x0,
1241                                        pci_address_space, -1);
1242}
1243
1244void pc_acpi_init(const char *default_dsdt)
1245{
1246    char *filename;
1247
1248    if (acpi_tables != NULL) {
1249        /* manually set via -acpitable, leave it alone */
1250        return;
1251    }
1252
1253    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1254    if (filename == NULL) {
1255        fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1256    } else {
1257        QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1258                                          &error_abort);
1259        Error *err = NULL;
1260
1261        qemu_opt_set(opts, "file", filename, &error_abort);
1262
1263        acpi_table_add_builtin(opts, &err);
1264        if (err) {
1265            error_report("WARNING: failed to load %s: %s", filename,
1266                         error_get_pretty(err));
1267            error_free(err);
1268        }
1269        g_free(filename);
1270    }
1271}
1272
1273FWCfgState *xen_load_linux(PCMachineState *pcms,
1274                           PcGuestInfo *guest_info)
1275{
1276    int i;
1277    FWCfgState *fw_cfg;
1278
1279    assert(MACHINE(pcms)->kernel_filename != NULL);
1280
1281    fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1282    rom_set_fw(fw_cfg);
1283
1284    load_linux(pcms, fw_cfg);
1285    for (i = 0; i < nb_option_roms; i++) {
1286        assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1287               !strcmp(option_rom[i].name, "multiboot.bin"));
1288        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1289    }
1290    guest_info->fw_cfg = fw_cfg;
1291    return fw_cfg;
1292}
1293
1294FWCfgState *pc_memory_init(PCMachineState *pcms,
1295                           MemoryRegion *system_memory,
1296                           MemoryRegion *rom_memory,
1297                           MemoryRegion **ram_memory,
1298                           PcGuestInfo *guest_info)
1299{
1300    int linux_boot, i;
1301    MemoryRegion *ram, *option_rom_mr;
1302    MemoryRegion *ram_below_4g, *ram_above_4g;
1303    FWCfgState *fw_cfg;
1304    MachineState *machine = MACHINE(pcms);
1305
1306    assert(machine->ram_size == pcms->below_4g_mem_size +
1307                                pcms->above_4g_mem_size);
1308
1309    linux_boot = (machine->kernel_filename != NULL);
1310
1311    /* Allocate RAM.  We allocate it as a single memory region and use
1312     * aliases to address portions of it, mostly for backwards compatibility
1313     * with older qemus that used qemu_ram_alloc().
1314     */
1315    ram = g_malloc(sizeof(*ram));
1316    memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1317                                         machine->ram_size);
1318    *ram_memory = ram;
1319    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1320    memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1321                             0, pcms->below_4g_mem_size);
1322    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1323    e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1324    if (pcms->above_4g_mem_size > 0) {
1325        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1326        memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1327                                 pcms->below_4g_mem_size,
1328                                 pcms->above_4g_mem_size);
1329        memory_region_add_subregion(system_memory, 0x100000000ULL,
1330                                    ram_above_4g);
1331        e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1332    }
1333
1334    if (!guest_info->has_reserved_memory &&
1335        (machine->ram_slots ||
1336         (machine->maxram_size > machine->ram_size))) {
1337        MachineClass *mc = MACHINE_GET_CLASS(machine);
1338
1339        error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1340                     mc->name);
1341        exit(EXIT_FAILURE);
1342    }
1343
1344    /* initialize hotplug memory address space */
1345    if (guest_info->has_reserved_memory &&
1346        (machine->ram_size < machine->maxram_size)) {
1347        ram_addr_t hotplug_mem_size =
1348            machine->maxram_size - machine->ram_size;
1349
1350        if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1351            error_report("unsupported amount of memory slots: %"PRIu64,
1352                         machine->ram_slots);
1353            exit(EXIT_FAILURE);
1354        }
1355
1356        if (QEMU_ALIGN_UP(machine->maxram_size,
1357                          TARGET_PAGE_SIZE) != machine->maxram_size) {
1358            error_report("maximum memory size must by aligned to multiple of "
1359                         "%d bytes", TARGET_PAGE_SIZE);
1360            exit(EXIT_FAILURE);
1361        }
1362
1363        pcms->hotplug_memory.base =
1364            ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1365
1366        if (pcms->enforce_aligned_dimm) {
1367            /* size hotplug region assuming 1G page max alignment per slot */
1368            hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1369        }
1370
1371        if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1372            hotplug_mem_size) {
1373            error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1374                         machine->maxram_size);
1375            exit(EXIT_FAILURE);
1376        }
1377
1378        memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1379                           "hotplug-memory", hotplug_mem_size);
1380        memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1381                                    &pcms->hotplug_memory.mr);
1382    }
1383
1384    /* Initialize PC system firmware */
1385    pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1386
1387    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1388    memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1389                           &error_fatal);
1390    vmstate_register_ram_global(option_rom_mr);
1391    memory_region_add_subregion_overlap(rom_memory,
1392                                        PC_ROM_MIN_VGA,
1393                                        option_rom_mr,
1394                                        1);
1395
1396    fw_cfg = bochs_bios_init(&address_space_memory);
1397
1398    rom_set_fw(fw_cfg);
1399
1400    if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1401        uint64_t *val = g_malloc(sizeof(*val));
1402        PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1403        uint64_t res_mem_end = pcms->hotplug_memory.base;
1404
1405        if (!pcmc->broken_reserved_end) {
1406            res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1407        }
1408        *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1409        fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1410    }
1411
1412    if (linux_boot) {
1413        load_linux(pcms, fw_cfg);
1414    }
1415
1416    for (i = 0; i < nb_option_roms; i++) {
1417        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1418    }
1419    guest_info->fw_cfg = fw_cfg;
1420    return fw_cfg;
1421}
1422
1423qemu_irq pc_allocate_cpu_irq(void)
1424{
1425    return qemu_allocate_irq(pic_irq_request, NULL, 0);
1426}
1427
1428DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1429{
1430    DeviceState *dev = NULL;
1431
1432    if (pci_bus) {
1433        PCIDevice *pcidev = pci_vga_init(pci_bus);
1434        dev = pcidev ? &pcidev->qdev : NULL;
1435    } else if (isa_bus) {
1436        ISADevice *isadev = isa_vga_init(isa_bus);
1437        dev = isadev ? DEVICE(isadev) : NULL;
1438    }
1439    return dev;
1440}
1441
1442static const MemoryRegionOps ioport80_io_ops = {
1443    .write = ioport80_write,
1444    .read = ioport80_read,
1445    .endianness = DEVICE_NATIVE_ENDIAN,
1446    .impl = {
1447        .min_access_size = 1,
1448        .max_access_size = 1,
1449    },
1450};
1451
1452static const MemoryRegionOps ioportF0_io_ops = {
1453    .write = ioportF0_write,
1454    .read = ioportF0_read,
1455    .endianness = DEVICE_NATIVE_ENDIAN,
1456    .impl = {
1457        .min_access_size = 1,
1458        .max_access_size = 1,
1459    },
1460};
1461
1462void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1463                          ISADevice **rtc_state,
1464                          bool create_fdctrl,
1465                          bool no_vmport,
1466                          uint32 hpet_irqs)
1467{
1468    int i;
1469    DriveInfo *fd[MAX_FD];
1470    DeviceState *hpet = NULL;
1471    int pit_isa_irq = 0;
1472    qemu_irq pit_alt_irq = NULL;
1473    qemu_irq rtc_irq = NULL;
1474    qemu_irq *a20_line;
1475    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1476    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1477    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1478
1479    memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1480    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1481
1482    memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1483    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1484
1485    /*
1486     * Check if an HPET shall be created.
1487     *
1488     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1489     * when the HPET wants to take over. Thus we have to disable the latter.
1490     */
1491    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1492        /* In order to set property, here not using sysbus_try_create_simple */
1493        hpet = qdev_try_create(NULL, TYPE_HPET);
1494        if (hpet) {
1495            /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1496             * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1497             * IRQ8 and IRQ2.
1498             */
1499            uint8_t compat = object_property_get_int(OBJECT(hpet),
1500                    HPET_INTCAP, NULL);
1501            if (!compat) {
1502                qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1503            }
1504            qdev_init_nofail(hpet);
1505            sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1506
1507            for (i = 0; i < GSI_NUM_PINS; i++) {
1508                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1509            }
1510            pit_isa_irq = -1;
1511            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1512            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1513        }
1514    }
1515    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1516
1517    qemu_register_boot_set(pc_boot_set, *rtc_state);
1518
1519    if (!xen_enabled()) {
1520        if (kvm_irqchip_in_kernel()) {
1521            pit = kvm_pit_init(isa_bus, 0x40);
1522        } else {
1523            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1524        }
1525        if (hpet) {
1526            /* connect PIT to output control line of the HPET */
1527            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1528        }
1529        pcspk_init(isa_bus, pit);
1530    }
1531
1532    serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1533    parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1534
1535    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1536    i8042 = isa_create_simple(isa_bus, "i8042");
1537    i8042_setup_a20_line(i8042, &a20_line[0]);
1538    if (!no_vmport) {
1539        vmport_init(isa_bus);
1540        vmmouse = isa_try_create(isa_bus, "vmmouse");
1541    } else {
1542        vmmouse = NULL;
1543    }
1544    if (vmmouse) {
1545        DeviceState *dev = DEVICE(vmmouse);
1546        qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1547        qdev_init_nofail(dev);
1548    }
1549    port92 = isa_create_simple(isa_bus, "port92");
1550    port92_init(port92, &a20_line[1]);
1551
1552    DMA_init(0);
1553
1554    for(i = 0; i < MAX_FD; i++) {
1555        fd[i] = drive_get(IF_FLOPPY, 0, i);
1556        create_fdctrl |= !!fd[i];
1557    }
1558    if (create_fdctrl) {
1559        fdctrl_init_isa(isa_bus, fd);
1560    }
1561}
1562
1563void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1564{
1565    int i;
1566
1567    for (i = 0; i < nb_nics; i++) {
1568        NICInfo *nd = &nd_table[i];
1569
1570        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1571            pc_init_ne2k_isa(isa_bus, nd);
1572        } else {
1573            pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1574        }
1575    }
1576}
1577
1578void pc_pci_device_init(PCIBus *pci_bus)
1579{
1580    int max_bus;
1581    int bus;
1582
1583    max_bus = drive_get_max_bus(IF_SCSI);
1584    for (bus = 0; bus <= max_bus; bus++) {
1585        pci_create_simple(pci_bus, -1, "lsi53c895a");
1586    }
1587}
1588
1589void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1590{
1591    DeviceState *dev;
1592    SysBusDevice *d;
1593    unsigned int i;
1594
1595    if (kvm_irqchip_in_kernel()) {
1596        dev = qdev_create(NULL, "kvm-ioapic");
1597    } else {
1598        dev = qdev_create(NULL, "ioapic");
1599    }
1600    if (parent_name) {
1601        object_property_add_child(object_resolve_path(parent_name, NULL),
1602                                  "ioapic", OBJECT(dev), NULL);
1603    }
1604    qdev_init_nofail(dev);
1605    d = SYS_BUS_DEVICE(dev);
1606    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1607
1608    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1609        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1610    }
1611}
1612
1613static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1614                         DeviceState *dev, Error **errp)
1615{
1616    HotplugHandlerClass *hhc;
1617    Error *local_err = NULL;
1618    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1619    PCDIMMDevice *dimm = PC_DIMM(dev);
1620    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1621    MemoryRegion *mr = ddc->get_memory_region(dimm);
1622    uint64_t align = TARGET_PAGE_SIZE;
1623
1624    if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1625        align = memory_region_get_alignment(mr);
1626    }
1627
1628    if (!pcms->acpi_dev) {
1629        error_setg(&local_err,
1630                   "memory hotplug is not enabled: missing acpi device");
1631        goto out;
1632    }
1633
1634    pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1635    if (local_err) {
1636        goto out;
1637    }
1638
1639    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1640    hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1641out:
1642    error_propagate(errp, local_err);
1643}
1644
1645static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1646                                   DeviceState *dev, Error **errp)
1647{
1648    HotplugHandlerClass *hhc;
1649    Error *local_err = NULL;
1650    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1651
1652    if (!pcms->acpi_dev) {
1653        error_setg(&local_err,
1654                   "memory hotplug is not enabled: missing acpi device");
1655        goto out;
1656    }
1657
1658    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1659    hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1660
1661out:
1662    error_propagate(errp, local_err);
1663}
1664
1665static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1666                           DeviceState *dev, Error **errp)
1667{
1668    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1669    PCDIMMDevice *dimm = PC_DIMM(dev);
1670    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1671    MemoryRegion *mr = ddc->get_memory_region(dimm);
1672    HotplugHandlerClass *hhc;
1673    Error *local_err = NULL;
1674
1675    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1676    hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1677
1678    if (local_err) {
1679        goto out;
1680    }
1681
1682    pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1683    object_unparent(OBJECT(dev));
1684
1685 out:
1686    error_propagate(errp, local_err);
1687}
1688
1689static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1690                        DeviceState *dev, Error **errp)
1691{
1692    HotplugHandlerClass *hhc;
1693    Error *local_err = NULL;
1694    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1695
1696    if (!dev->hotplugged) {
1697        goto out;
1698    }
1699
1700    if (!pcms->acpi_dev) {
1701        error_setg(&local_err,
1702                   "cpu hotplug is not enabled: missing acpi device");
1703        goto out;
1704    }
1705
1706    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1707    hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1708    if (local_err) {
1709        goto out;
1710    }
1711
1712    /* increment the number of CPUs */
1713    rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1714out:
1715    error_propagate(errp, local_err);
1716}
1717
1718static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1719                                      DeviceState *dev, Error **errp)
1720{
1721    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1722        pc_dimm_plug(hotplug_dev, dev, errp);
1723    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1724        pc_cpu_plug(hotplug_dev, dev, errp);
1725    }
1726}
1727
1728static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1729                                                DeviceState *dev, Error **errp)
1730{
1731    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1732        pc_dimm_unplug_request(hotplug_dev, dev, errp);
1733    } else {
1734        error_setg(errp, "acpi: device unplug request for not supported device"
1735                   " type: %s", object_get_typename(OBJECT(dev)));
1736    }
1737}
1738
1739static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1740                                        DeviceState *dev, Error **errp)
1741{
1742    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1743        pc_dimm_unplug(hotplug_dev, dev, errp);
1744    } else {
1745        error_setg(errp, "acpi: device unplug for not supported device"
1746                   " type: %s", object_get_typename(OBJECT(dev)));
1747    }
1748}
1749
1750static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1751                                             DeviceState *dev)
1752{
1753    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1754
1755    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1756        object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1757        return HOTPLUG_HANDLER(machine);
1758    }
1759
1760    return pcmc->get_hotplug_handler ?
1761        pcmc->get_hotplug_handler(machine, dev) : NULL;
1762}
1763
1764static void
1765pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1766                                          const char *name, Error **errp)
1767{
1768    PCMachineState *pcms = PC_MACHINE(obj);
1769    int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1770
1771    visit_type_int(v, &value, name, errp);
1772}
1773
1774static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1775                                         void *opaque, const char *name,
1776                                         Error **errp)
1777{
1778    PCMachineState *pcms = PC_MACHINE(obj);
1779    uint64_t value = pcms->max_ram_below_4g;
1780
1781    visit_type_size(v, &value, name, errp);
1782}
1783
1784static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1785                                         void *opaque, const char *name,
1786                                         Error **errp)
1787{
1788    PCMachineState *pcms = PC_MACHINE(obj);
1789    Error *error = NULL;
1790    uint64_t value;
1791
1792    visit_type_size(v, &value, name, &error);
1793    if (error) {
1794        error_propagate(errp, error);
1795        return;
1796    }
1797    if (value > (1ULL << 32)) {
1798        error_setg(&error,
1799                   "Machine option 'max-ram-below-4g=%"PRIu64
1800                   "' expects size less than or equal to 4G", value);
1801        error_propagate(errp, error);
1802        return;
1803    }
1804
1805    if (value < (1ULL << 20)) {
1806        error_report("Warning: small max_ram_below_4g(%"PRIu64
1807                     ") less than 1M.  BIOS may not work..",
1808                     value);
1809    }
1810
1811    pcms->max_ram_below_4g = value;
1812}
1813
1814static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1815                                  const char *name, Error **errp)
1816{
1817    PCMachineState *pcms = PC_MACHINE(obj);
1818    OnOffAuto vmport = pcms->vmport;
1819
1820    visit_type_OnOffAuto(v, &vmport, name, errp);
1821}
1822
1823static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1824                                  const char *name, Error **errp)
1825{
1826    PCMachineState *pcms = PC_MACHINE(obj);
1827
1828    visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1829}
1830
1831bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1832{
1833    bool smm_available = false;
1834
1835    if (pcms->smm == ON_OFF_AUTO_OFF) {
1836        return false;
1837    }
1838
1839    if (tcg_enabled() || qtest_enabled()) {
1840        smm_available = true;
1841    } else if (kvm_enabled()) {
1842        smm_available = kvm_has_smm();
1843    }
1844
1845    if (smm_available) {
1846        return true;
1847    }
1848
1849    if (pcms->smm == ON_OFF_AUTO_ON) {
1850        error_report("System Management Mode not supported by this hypervisor.");
1851        exit(1);
1852    }
1853    return false;
1854}
1855
1856static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1857                              const char *name, Error **errp)
1858{
1859    PCMachineState *pcms = PC_MACHINE(obj);
1860    OnOffAuto smm = pcms->smm;
1861
1862    visit_type_OnOffAuto(v, &smm, name, errp);
1863}
1864
1865static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1866                                  const char *name, Error **errp)
1867{
1868    PCMachineState *pcms = PC_MACHINE(obj);
1869
1870    visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1871}
1872
1873static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1874{
1875    PCMachineState *pcms = PC_MACHINE(obj);
1876
1877    return pcms->enforce_aligned_dimm;
1878}
1879
1880static void pc_machine_initfn(Object *obj)
1881{
1882    PCMachineState *pcms = PC_MACHINE(obj);
1883
1884    object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1885                        pc_machine_get_hotplug_memory_region_size,
1886                        NULL, NULL, NULL, &error_abort);
1887
1888    pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1889    object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1890                        pc_machine_get_max_ram_below_4g,
1891                        pc_machine_set_max_ram_below_4g,
1892                        NULL, NULL, &error_abort);
1893    object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1894                                    "Maximum ram below the 4G boundary (32bit boundary)",
1895                                    &error_abort);
1896
1897    pcms->smm = ON_OFF_AUTO_AUTO;
1898    object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1899                        pc_machine_get_smm,
1900                        pc_machine_set_smm,
1901                        NULL, NULL, &error_abort);
1902    object_property_set_description(obj, PC_MACHINE_SMM,
1903                                    "Enable SMM (pc & q35)",
1904                                    &error_abort);
1905
1906    pcms->vmport = ON_OFF_AUTO_AUTO;
1907    object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1908                        pc_machine_get_vmport,
1909                        pc_machine_set_vmport,
1910                        NULL, NULL, &error_abort);
1911    object_property_set_description(obj, PC_MACHINE_VMPORT,
1912                                    "Enable vmport (pc & q35)",
1913                                    &error_abort);
1914
1915    pcms->enforce_aligned_dimm = true;
1916    object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1917                             pc_machine_get_aligned_dimm,
1918                             NULL, &error_abort);
1919}
1920
1921static void pc_machine_reset(void)
1922{
1923    CPUState *cs;
1924    X86CPU *cpu;
1925
1926    qemu_devices_reset();
1927
1928    /* Reset APIC after devices have been reset to cancel
1929     * any changes that qemu_devices_reset() might have done.
1930     */
1931    CPU_FOREACH(cs) {
1932        cpu = X86_CPU(cs);
1933
1934        if (cpu->apic_state) {
1935            device_reset(cpu->apic_state);
1936        }
1937    }
1938}
1939
1940static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1941{
1942    X86CPUTopoInfo topo;
1943    x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1944                          &topo);
1945    return topo.pkg_id;
1946}
1947
1948static void pc_machine_class_init(ObjectClass *oc, void *data)
1949{
1950    MachineClass *mc = MACHINE_CLASS(oc);
1951    PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1952    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1953
1954    pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1955    mc->get_hotplug_handler = pc_get_hotpug_handler;
1956    mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1957    mc->default_boot_order = "cad";
1958    mc->hot_add_cpu = pc_hot_add_cpu;
1959    mc->max_cpus = 255;
1960    mc->reset = pc_machine_reset;
1961    hc->plug = pc_machine_device_plug_cb;
1962    hc->unplug_request = pc_machine_device_unplug_request_cb;
1963    hc->unplug = pc_machine_device_unplug_cb;
1964}
1965
1966static const TypeInfo pc_machine_info = {
1967    .name = TYPE_PC_MACHINE,
1968    .parent = TYPE_MACHINE,
1969    .abstract = true,
1970    .instance_size = sizeof(PCMachineState),
1971    .instance_init = pc_machine_initfn,
1972    .class_size = sizeof(PCMachineClass),
1973    .class_init = pc_machine_class_init,
1974    .interfaces = (InterfaceInfo[]) {
1975         { TYPE_HOTPLUG_HANDLER },
1976         { }
1977    },
1978};
1979
1980static void pc_machine_register_types(void)
1981{
1982    type_register_static(&pc_machine_info);
1983}
1984
1985type_init(pc_machine_register_types)
1986