1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24#include "hw/hw.h"
25#include "hw/ppc/ppc.h"
26#include "hw/ppc/ppc_e500.h"
27#include "qemu/timer.h"
28#include "sysemu/sysemu.h"
29#include "sysemu/cpus.h"
30#include "hw/timer/m48t59.h"
31#include "qemu/log.h"
32#include "qemu/error-report.h"
33#include "hw/loader.h"
34#include "sysemu/kvm.h"
35#include "kvm_ppc.h"
36#include "trace.h"
37
38
39
40
41#ifdef PPC_DEBUG_IRQ
42# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
43#else
44# define LOG_IRQ(...) do { } while (0)
45#endif
46
47
48#ifdef PPC_DEBUG_TB
49# define LOG_TB(...) qemu_log(__VA_ARGS__)
50#else
51# define LOG_TB(...) do { } while (0)
52#endif
53
54static void cpu_ppc_tb_stop (CPUPPCState *env);
55static void cpu_ppc_tb_start (CPUPPCState *env);
56
57void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
58{
59 CPUState *cs = CPU(cpu);
60 CPUPPCState *env = &cpu->env;
61 unsigned int old_pending = env->pending_interrupts;
62
63 if (level) {
64 env->pending_interrupts |= 1 << n_IRQ;
65 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
66 } else {
67 env->pending_interrupts &= ~(1 << n_IRQ);
68 if (env->pending_interrupts == 0) {
69 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
70 }
71 }
72
73 if (old_pending != env->pending_interrupts) {
74#ifdef CONFIG_KVM
75 kvmppc_set_interrupt(cpu, n_IRQ, level);
76#endif
77 }
78
79 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
80 "req %08x\n", __func__, env, n_IRQ, level,
81 env->pending_interrupts, CPU(cpu)->interrupt_request);
82}
83
84
85static void ppc6xx_set_irq(void *opaque, int pin, int level)
86{
87 PowerPCCPU *cpu = opaque;
88 CPUPPCState *env = &cpu->env;
89 int cur_level;
90
91 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
92 env, pin, level);
93 cur_level = (env->irq_input_state >> pin) & 1;
94
95 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
96 CPUState *cs = CPU(cpu);
97
98 switch (pin) {
99 case PPC6xx_INPUT_TBEN:
100
101 LOG_IRQ("%s: %s the time base\n",
102 __func__, level ? "start" : "stop");
103 if (level) {
104 cpu_ppc_tb_start(env);
105 } else {
106 cpu_ppc_tb_stop(env);
107 }
108 case PPC6xx_INPUT_INT:
109
110 LOG_IRQ("%s: set the external IRQ state to %d\n",
111 __func__, level);
112 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
113 break;
114 case PPC6xx_INPUT_SMI:
115
116 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
117 __func__, level);
118 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
119 break;
120 case PPC6xx_INPUT_MCP:
121
122
123
124
125 if (cur_level == 1 && level == 0) {
126 LOG_IRQ("%s: raise machine check state\n",
127 __func__);
128 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
129 }
130 break;
131 case PPC6xx_INPUT_CKSTP_IN:
132
133
134
135 if (level) {
136 LOG_IRQ("%s: stop the CPU\n", __func__);
137 cs->halted = 1;
138 }
139 break;
140 case PPC6xx_INPUT_HRESET:
141
142 if (level) {
143 LOG_IRQ("%s: reset the CPU\n", __func__);
144 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
145 }
146 break;
147 case PPC6xx_INPUT_SRESET:
148 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
149 __func__, level);
150 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
151 break;
152 default:
153
154 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
155 return;
156 }
157 if (level)
158 env->irq_input_state |= 1 << pin;
159 else
160 env->irq_input_state &= ~(1 << pin);
161 }
162}
163
164void ppc6xx_irq_init(CPUPPCState *env)
165{
166 PowerPCCPU *cpu = ppc_env_get_cpu(env);
167
168 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
169 PPC6xx_INPUT_NB);
170}
171
172#if defined(TARGET_PPC64)
173
174static void ppc970_set_irq(void *opaque, int pin, int level)
175{
176 PowerPCCPU *cpu = opaque;
177 CPUPPCState *env = &cpu->env;
178 int cur_level;
179
180 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
181 env, pin, level);
182 cur_level = (env->irq_input_state >> pin) & 1;
183
184 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
185 CPUState *cs = CPU(cpu);
186
187 switch (pin) {
188 case PPC970_INPUT_INT:
189
190 LOG_IRQ("%s: set the external IRQ state to %d\n",
191 __func__, level);
192 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
193 break;
194 case PPC970_INPUT_THINT:
195
196 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
197 level);
198 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
199 break;
200 case PPC970_INPUT_MCP:
201
202
203
204
205 if (cur_level == 1 && level == 0) {
206 LOG_IRQ("%s: raise machine check state\n",
207 __func__);
208 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
209 }
210 break;
211 case PPC970_INPUT_CKSTP:
212
213
214 if (level) {
215 LOG_IRQ("%s: stop the CPU\n", __func__);
216 cs->halted = 1;
217 } else {
218 LOG_IRQ("%s: restart the CPU\n", __func__);
219 cs->halted = 0;
220 qemu_cpu_kick(cs);
221 }
222 break;
223 case PPC970_INPUT_HRESET:
224
225 if (level) {
226 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
227 }
228 break;
229 case PPC970_INPUT_SRESET:
230 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
231 __func__, level);
232 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
233 break;
234 case PPC970_INPUT_TBEN:
235 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
236 level);
237
238 break;
239 default:
240
241 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
242 return;
243 }
244 if (level)
245 env->irq_input_state |= 1 << pin;
246 else
247 env->irq_input_state &= ~(1 << pin);
248 }
249}
250
251void ppc970_irq_init(CPUPPCState *env)
252{
253 PowerPCCPU *cpu = ppc_env_get_cpu(env);
254
255 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
256 PPC970_INPUT_NB);
257}
258
259
260static void power7_set_irq(void *opaque, int pin, int level)
261{
262 PowerPCCPU *cpu = opaque;
263 CPUPPCState *env = &cpu->env;
264
265 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
266 env, pin, level);
267
268 switch (pin) {
269 case POWER7_INPUT_INT:
270
271 LOG_IRQ("%s: set the external IRQ state to %d\n",
272 __func__, level);
273 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
274 break;
275 default:
276
277 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
278 return;
279 }
280 if (level) {
281 env->irq_input_state |= 1 << pin;
282 } else {
283 env->irq_input_state &= ~(1 << pin);
284 }
285}
286
287void ppcPOWER7_irq_init(CPUPPCState *env)
288{
289 PowerPCCPU *cpu = ppc_env_get_cpu(env);
290
291 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
292 POWER7_INPUT_NB);
293}
294#endif
295
296
297static void ppc40x_set_irq(void *opaque, int pin, int level)
298{
299 PowerPCCPU *cpu = opaque;
300 CPUPPCState *env = &cpu->env;
301 int cur_level;
302
303 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
304 env, pin, level);
305 cur_level = (env->irq_input_state >> pin) & 1;
306
307 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
308 CPUState *cs = CPU(cpu);
309
310 switch (pin) {
311 case PPC40x_INPUT_RESET_SYS:
312 if (level) {
313 LOG_IRQ("%s: reset the PowerPC system\n",
314 __func__);
315 ppc40x_system_reset(cpu);
316 }
317 break;
318 case PPC40x_INPUT_RESET_CHIP:
319 if (level) {
320 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
321 ppc40x_chip_reset(cpu);
322 }
323 break;
324 case PPC40x_INPUT_RESET_CORE:
325
326 if (level) {
327 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
328 ppc40x_core_reset(cpu);
329 }
330 break;
331 case PPC40x_INPUT_CINT:
332
333 LOG_IRQ("%s: set the critical IRQ state to %d\n",
334 __func__, level);
335 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
336 break;
337 case PPC40x_INPUT_INT:
338
339 LOG_IRQ("%s: set the external IRQ state to %d\n",
340 __func__, level);
341 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
342 break;
343 case PPC40x_INPUT_HALT:
344
345 if (level) {
346 LOG_IRQ("%s: stop the CPU\n", __func__);
347 cs->halted = 1;
348 } else {
349 LOG_IRQ("%s: restart the CPU\n", __func__);
350 cs->halted = 0;
351 qemu_cpu_kick(cs);
352 }
353 break;
354 case PPC40x_INPUT_DEBUG:
355
356 LOG_IRQ("%s: set the debug pin state to %d\n",
357 __func__, level);
358 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
359 break;
360 default:
361
362 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
363 return;
364 }
365 if (level)
366 env->irq_input_state |= 1 << pin;
367 else
368 env->irq_input_state &= ~(1 << pin);
369 }
370}
371
372void ppc40x_irq_init(CPUPPCState *env)
373{
374 PowerPCCPU *cpu = ppc_env_get_cpu(env);
375
376 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
377 cpu, PPC40x_INPUT_NB);
378}
379
380
381static void ppce500_set_irq(void *opaque, int pin, int level)
382{
383 PowerPCCPU *cpu = opaque;
384 CPUPPCState *env = &cpu->env;
385 int cur_level;
386
387 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
388 env, pin, level);
389 cur_level = (env->irq_input_state >> pin) & 1;
390
391 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
392 switch (pin) {
393 case PPCE500_INPUT_MCK:
394 if (level) {
395 LOG_IRQ("%s: reset the PowerPC system\n",
396 __func__);
397 qemu_system_reset_request();
398 }
399 break;
400 case PPCE500_INPUT_RESET_CORE:
401 if (level) {
402 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
403 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
404 }
405 break;
406 case PPCE500_INPUT_CINT:
407
408 LOG_IRQ("%s: set the critical IRQ state to %d\n",
409 __func__, level);
410 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
411 break;
412 case PPCE500_INPUT_INT:
413
414 LOG_IRQ("%s: set the core IRQ state to %d\n",
415 __func__, level);
416 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
417 break;
418 case PPCE500_INPUT_DEBUG:
419
420 LOG_IRQ("%s: set the debug pin state to %d\n",
421 __func__, level);
422 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
423 break;
424 default:
425
426 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
427 return;
428 }
429 if (level)
430 env->irq_input_state |= 1 << pin;
431 else
432 env->irq_input_state &= ~(1 << pin);
433 }
434}
435
436void ppce500_irq_init(CPUPPCState *env)
437{
438 PowerPCCPU *cpu = ppc_env_get_cpu(env);
439
440 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
441 cpu, PPCE500_INPUT_NB);
442}
443
444
445void ppce500_set_mpic_proxy(bool enabled)
446{
447 CPUState *cs;
448
449 CPU_FOREACH(cs) {
450 PowerPCCPU *cpu = POWERPC_CPU(cs);
451
452 cpu->env.mpic_proxy = enabled;
453 if (kvm_enabled()) {
454 kvmppc_set_mpic_proxy(cpu, enabled);
455 }
456 }
457}
458
459
460
461
462uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
463{
464
465 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
466}
467
468uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
469{
470 ppc_tb_t *tb_env = env->tb_env;
471 uint64_t tb;
472
473 if (kvm_enabled()) {
474 return env->spr[SPR_TBL];
475 }
476
477 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
478 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
479
480 return tb;
481}
482
483static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
484{
485 ppc_tb_t *tb_env = env->tb_env;
486 uint64_t tb;
487
488 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
489 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
490
491 return tb >> 32;
492}
493
494uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
495{
496 if (kvm_enabled()) {
497 return env->spr[SPR_TBU];
498 }
499
500 return _cpu_ppc_load_tbu(env);
501}
502
503static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
504 int64_t *tb_offsetp, uint64_t value)
505{
506 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
507 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
508 __func__, value, *tb_offsetp);
509}
510
511void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
512{
513 ppc_tb_t *tb_env = env->tb_env;
514 uint64_t tb;
515
516 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
517 tb &= 0xFFFFFFFF00000000ULL;
518 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
519 &tb_env->tb_offset, tb | (uint64_t)value);
520}
521
522static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
523{
524 ppc_tb_t *tb_env = env->tb_env;
525 uint64_t tb;
526
527 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
528 tb &= 0x00000000FFFFFFFFULL;
529 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
530 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
531}
532
533void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
534{
535 _cpu_ppc_store_tbu(env, value);
536}
537
538uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
539{
540 ppc_tb_t *tb_env = env->tb_env;
541 uint64_t tb;
542
543 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
544 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
545
546 return tb;
547}
548
549uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
550{
551 ppc_tb_t *tb_env = env->tb_env;
552 uint64_t tb;
553
554 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
555 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
556
557 return tb >> 32;
558}
559
560void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
561{
562 ppc_tb_t *tb_env = env->tb_env;
563 uint64_t tb;
564
565 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
566 tb &= 0xFFFFFFFF00000000ULL;
567 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
568 &tb_env->atb_offset, tb | (uint64_t)value);
569}
570
571void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
572{
573 ppc_tb_t *tb_env = env->tb_env;
574 uint64_t tb;
575
576 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
577 tb &= 0x00000000FFFFFFFFULL;
578 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
579 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
580}
581
582static void cpu_ppc_tb_stop (CPUPPCState *env)
583{
584 ppc_tb_t *tb_env = env->tb_env;
585 uint64_t tb, atb, vmclk;
586
587
588 if (tb_env->tb_freq != 0) {
589 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
590
591 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
592
593 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
594
595 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
596
597 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
598
599 tb_env->tb_freq = 0;
600
601 }
602}
603
604static void cpu_ppc_tb_start (CPUPPCState *env)
605{
606 ppc_tb_t *tb_env = env->tb_env;
607 uint64_t tb, atb, vmclk;
608
609
610 if (tb_env->tb_freq == 0) {
611 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
612
613 tb = tb_env->tb_offset;
614
615 atb = tb_env->atb_offset;
616
617 tb_env->tb_freq = tb_env->decr_freq;
618
619 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
620
621 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
622 }
623}
624
625bool ppc_decr_clear_on_delivery(CPUPPCState *env)
626{
627 ppc_tb_t *tb_env = env->tb_env;
628 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
629 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
630}
631
632static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
633{
634 ppc_tb_t *tb_env = env->tb_env;
635 uint32_t decr;
636 int64_t diff;
637
638 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
639 if (diff >= 0) {
640 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
641 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
642 decr = 0;
643 } else {
644 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
645 }
646 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
647
648 return decr;
649}
650
651uint32_t cpu_ppc_load_decr (CPUPPCState *env)
652{
653 ppc_tb_t *tb_env = env->tb_env;
654
655 if (kvm_enabled()) {
656 return env->spr[SPR_DECR];
657 }
658
659 return _cpu_ppc_load_decr(env, tb_env->decr_next);
660}
661
662uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
663{
664 ppc_tb_t *tb_env = env->tb_env;
665
666 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
667}
668
669uint64_t cpu_ppc_load_purr (CPUPPCState *env)
670{
671 ppc_tb_t *tb_env = env->tb_env;
672 uint64_t diff;
673
674 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
675
676 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
677}
678
679
680
681
682static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
683{
684
685 LOG_TB("raise decrementer exception\n");
686 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
687}
688
689static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
690{
691 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
692}
693
694static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
695{
696
697 LOG_TB("raise decrementer exception\n");
698 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
699}
700
701static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
702{
703 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
704}
705
706static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
707 QEMUTimer *timer,
708 void (*raise_excp)(void *),
709 void (*lower_excp)(PowerPCCPU *),
710 uint32_t decr, uint32_t value)
711{
712 CPUPPCState *env = &cpu->env;
713 ppc_tb_t *tb_env = env->tb_env;
714 uint64_t now, next;
715
716 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
717 decr, value);
718
719 if (kvm_enabled()) {
720
721 return;
722 }
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737 if ((value < 3) ||
738 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
739 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
740 && !(decr & 0x80000000))) {
741 (*raise_excp)(cpu);
742 return;
743 }
744
745
746 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
747 (*lower_excp)(cpu);
748 }
749
750
751 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
752 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
753 *nextp = next;
754
755
756 timer_mod(timer, next);
757}
758
759static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
760 uint32_t value)
761{
762 ppc_tb_t *tb_env = cpu->env.tb_env;
763
764 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
765 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
766 value);
767}
768
769void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
770{
771 PowerPCCPU *cpu = ppc_env_get_cpu(env);
772
773 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
774}
775
776static void cpu_ppc_decr_cb(void *opaque)
777{
778 PowerPCCPU *cpu = opaque;
779
780 cpu_ppc_decr_excp(cpu);
781}
782
783static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
784 uint32_t value)
785{
786 ppc_tb_t *tb_env = cpu->env.tb_env;
787
788 if (tb_env->hdecr_timer != NULL) {
789 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
790 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
791 hdecr, value);
792 }
793}
794
795void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
796{
797 PowerPCCPU *cpu = ppc_env_get_cpu(env);
798
799 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
800}
801
802static void cpu_ppc_hdecr_cb(void *opaque)
803{
804 PowerPCCPU *cpu = opaque;
805
806 cpu_ppc_hdecr_excp(cpu);
807}
808
809static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
810{
811 ppc_tb_t *tb_env = cpu->env.tb_env;
812
813 tb_env->purr_load = value;
814 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
815}
816
817static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
818{
819 CPUPPCState *env = opaque;
820 PowerPCCPU *cpu = ppc_env_get_cpu(env);
821 ppc_tb_t *tb_env = env->tb_env;
822
823 tb_env->tb_freq = freq;
824 tb_env->decr_freq = freq;
825
826
827
828
829 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
830 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
831 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
832}
833
834static void timebase_pre_save(void *opaque)
835{
836 PPCTimebase *tb = opaque;
837 uint64_t ticks = cpu_get_host_ticks();
838 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
839
840 if (!first_ppc_cpu->env.tb_env) {
841 error_report("No timebase object");
842 return;
843 }
844
845 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
846
847
848
849
850 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
851}
852
853static int timebase_post_load(void *opaque, int version_id)
854{
855 PPCTimebase *tb_remote = opaque;
856 CPUState *cpu;
857 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
858 int64_t tb_off_adj, tb_off, ns_diff;
859 int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
860 unsigned long freq;
861
862 if (!first_ppc_cpu->env.tb_env) {
863 error_report("No timebase object");
864 return -1;
865 }
866
867 freq = first_ppc_cpu->env.tb_env->tb_freq;
868
869
870
871
872
873
874 host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
875 ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
876 migration_duration_ns = MIN(NANOSECONDS_PER_SECOND, ns_diff);
877 migration_duration_tb = muldiv64(migration_duration_ns, freq,
878 NANOSECONDS_PER_SECOND);
879 guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
880
881 tb_off_adj = guest_tb - cpu_get_host_ticks();
882
883 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
884 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
885 (tb_off_adj - tb_off) / freq);
886
887
888 CPU_FOREACH(cpu) {
889 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
890 pcpu->env.tb_env->tb_offset = tb_off_adj;
891 }
892
893 return 0;
894}
895
896const VMStateDescription vmstate_ppc_timebase = {
897 .name = "timebase",
898 .version_id = 1,
899 .minimum_version_id = 1,
900 .minimum_version_id_old = 1,
901 .pre_save = timebase_pre_save,
902 .post_load = timebase_post_load,
903 .fields = (VMStateField []) {
904 VMSTATE_UINT64(guest_timebase, PPCTimebase),
905 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
906 VMSTATE_END_OF_LIST()
907 },
908};
909
910
911clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
912{
913 PowerPCCPU *cpu = ppc_env_get_cpu(env);
914 ppc_tb_t *tb_env;
915
916 tb_env = g_malloc0(sizeof(ppc_tb_t));
917 env->tb_env = tb_env;
918 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
919 if (env->insns_flags & PPC_SEGMENT_64B) {
920
921 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
922 }
923
924 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
925 if (0) {
926
927
928 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
929 cpu);
930 } else {
931 tb_env->hdecr_timer = NULL;
932 }
933 cpu_ppc_set_tb_clk(env, freq);
934
935 return &cpu_ppc_set_tb_clk;
936}
937
938
939#if 0
940static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
941{
942 return cpu_ppc_tb_init(env, 7812500);
943}
944#endif
945
946void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
947{
948 _cpu_ppc_store_tbu(env, value);
949}
950
951uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
952{
953 return _cpu_ppc_load_tbu(env);
954}
955
956void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
957{
958 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
959}
960
961uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
962{
963 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
964}
965
966
967
968
969
970typedef struct ppc40x_timer_t ppc40x_timer_t;
971struct ppc40x_timer_t {
972 uint64_t pit_reload;
973 uint64_t fit_next;
974 QEMUTimer *fit_timer;
975 uint64_t wdt_next;
976 QEMUTimer *wdt_timer;
977
978
979 unsigned int decr_excp;
980};
981
982
983static void cpu_4xx_fit_cb (void *opaque)
984{
985 PowerPCCPU *cpu;
986 CPUPPCState *env;
987 ppc_tb_t *tb_env;
988 ppc40x_timer_t *ppc40x_timer;
989 uint64_t now, next;
990
991 env = opaque;
992 cpu = ppc_env_get_cpu(env);
993 tb_env = env->tb_env;
994 ppc40x_timer = tb_env->opaque;
995 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
996 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
997 case 0:
998 next = 1 << 9;
999 break;
1000 case 1:
1001 next = 1 << 13;
1002 break;
1003 case 2:
1004 next = 1 << 17;
1005 break;
1006 case 3:
1007 next = 1 << 21;
1008 break;
1009 default:
1010
1011 return;
1012 }
1013 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
1014 if (next == now)
1015 next++;
1016 timer_mod(ppc40x_timer->fit_timer, next);
1017 env->spr[SPR_40x_TSR] |= 1 << 26;
1018 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1019 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1020 }
1021 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1022 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1023 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1024}
1025
1026
1027static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1028{
1029 ppc40x_timer_t *ppc40x_timer;
1030 uint64_t now, next;
1031
1032 ppc40x_timer = tb_env->opaque;
1033 if (ppc40x_timer->pit_reload <= 1 ||
1034 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1035 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1036
1037 LOG_TB("%s: stop PIT\n", __func__);
1038 timer_del(tb_env->decr_timer);
1039 } else {
1040 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1041 __func__, ppc40x_timer->pit_reload);
1042 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1043 next = now + muldiv64(ppc40x_timer->pit_reload,
1044 get_ticks_per_sec(), tb_env->decr_freq);
1045 if (is_excp)
1046 next += tb_env->decr_next - now;
1047 if (next == now)
1048 next++;
1049 timer_mod(tb_env->decr_timer, next);
1050 tb_env->decr_next = next;
1051 }
1052}
1053
1054static void cpu_4xx_pit_cb (void *opaque)
1055{
1056 PowerPCCPU *cpu;
1057 CPUPPCState *env;
1058 ppc_tb_t *tb_env;
1059 ppc40x_timer_t *ppc40x_timer;
1060
1061 env = opaque;
1062 cpu = ppc_env_get_cpu(env);
1063 tb_env = env->tb_env;
1064 ppc40x_timer = tb_env->opaque;
1065 env->spr[SPR_40x_TSR] |= 1 << 27;
1066 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1067 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1068 }
1069 start_stop_pit(env, tb_env, 1);
1070 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1071 "%016" PRIx64 "\n", __func__,
1072 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1073 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1074 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1075 ppc40x_timer->pit_reload);
1076}
1077
1078
1079static void cpu_4xx_wdt_cb (void *opaque)
1080{
1081 PowerPCCPU *cpu;
1082 CPUPPCState *env;
1083 ppc_tb_t *tb_env;
1084 ppc40x_timer_t *ppc40x_timer;
1085 uint64_t now, next;
1086
1087 env = opaque;
1088 cpu = ppc_env_get_cpu(env);
1089 tb_env = env->tb_env;
1090 ppc40x_timer = tb_env->opaque;
1091 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1092 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1093 case 0:
1094 next = 1 << 17;
1095 break;
1096 case 1:
1097 next = 1 << 21;
1098 break;
1099 case 2:
1100 next = 1 << 25;
1101 break;
1102 case 3:
1103 next = 1 << 29;
1104 break;
1105 default:
1106
1107 return;
1108 }
1109 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
1110 if (next == now)
1111 next++;
1112 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1113 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1114 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1115 case 0x0:
1116 case 0x1:
1117 timer_mod(ppc40x_timer->wdt_timer, next);
1118 ppc40x_timer->wdt_next = next;
1119 env->spr[SPR_40x_TSR] |= 1U << 31;
1120 break;
1121 case 0x2:
1122 timer_mod(ppc40x_timer->wdt_timer, next);
1123 ppc40x_timer->wdt_next = next;
1124 env->spr[SPR_40x_TSR] |= 1 << 30;
1125 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1126 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1127 }
1128 break;
1129 case 0x3:
1130 env->spr[SPR_40x_TSR] &= ~0x30000000;
1131 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1132 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1133 case 0x0:
1134
1135 break;
1136 case 0x1:
1137 ppc40x_core_reset(cpu);
1138 break;
1139 case 0x2:
1140 ppc40x_chip_reset(cpu);
1141 break;
1142 case 0x3:
1143 ppc40x_system_reset(cpu);
1144 break;
1145 }
1146 }
1147}
1148
1149void store_40x_pit (CPUPPCState *env, target_ulong val)
1150{
1151 ppc_tb_t *tb_env;
1152 ppc40x_timer_t *ppc40x_timer;
1153
1154 tb_env = env->tb_env;
1155 ppc40x_timer = tb_env->opaque;
1156 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1157 ppc40x_timer->pit_reload = val;
1158 start_stop_pit(env, tb_env, 0);
1159}
1160
1161target_ulong load_40x_pit (CPUPPCState *env)
1162{
1163 return cpu_ppc_load_decr(env);
1164}
1165
1166static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1167{
1168 CPUPPCState *env = opaque;
1169 ppc_tb_t *tb_env = env->tb_env;
1170
1171 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1172 freq);
1173 tb_env->tb_freq = freq;
1174 tb_env->decr_freq = freq;
1175
1176}
1177
1178clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1179 unsigned int decr_excp)
1180{
1181 ppc_tb_t *tb_env;
1182 ppc40x_timer_t *ppc40x_timer;
1183
1184 tb_env = g_malloc0(sizeof(ppc_tb_t));
1185 env->tb_env = tb_env;
1186 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1187 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1188 tb_env->tb_freq = freq;
1189 tb_env->decr_freq = freq;
1190 tb_env->opaque = ppc40x_timer;
1191 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1192 if (ppc40x_timer != NULL) {
1193
1194 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1195 ppc40x_timer->fit_timer =
1196 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1197 ppc40x_timer->wdt_timer =
1198 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1199 ppc40x_timer->decr_excp = decr_excp;
1200 }
1201
1202 return &ppc_40x_set_tb_clk;
1203}
1204
1205
1206
1207typedef struct ppc_dcrn_t ppc_dcrn_t;
1208struct ppc_dcrn_t {
1209 dcr_read_cb dcr_read;
1210 dcr_write_cb dcr_write;
1211 void *opaque;
1212};
1213
1214
1215
1216
1217#define DCRN_NB 1024
1218struct ppc_dcr_t {
1219 ppc_dcrn_t dcrn[DCRN_NB];
1220 int (*read_error)(int dcrn);
1221 int (*write_error)(int dcrn);
1222};
1223
1224int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1225{
1226 ppc_dcrn_t *dcr;
1227
1228 if (dcrn < 0 || dcrn >= DCRN_NB)
1229 goto error;
1230 dcr = &dcr_env->dcrn[dcrn];
1231 if (dcr->dcr_read == NULL)
1232 goto error;
1233 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1234
1235 return 0;
1236
1237 error:
1238 if (dcr_env->read_error != NULL)
1239 return (*dcr_env->read_error)(dcrn);
1240
1241 return -1;
1242}
1243
1244int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1245{
1246 ppc_dcrn_t *dcr;
1247
1248 if (dcrn < 0 || dcrn >= DCRN_NB)
1249 goto error;
1250 dcr = &dcr_env->dcrn[dcrn];
1251 if (dcr->dcr_write == NULL)
1252 goto error;
1253 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1254
1255 return 0;
1256
1257 error:
1258 if (dcr_env->write_error != NULL)
1259 return (*dcr_env->write_error)(dcrn);
1260
1261 return -1;
1262}
1263
1264int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1265 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1266{
1267 ppc_dcr_t *dcr_env;
1268 ppc_dcrn_t *dcr;
1269
1270 dcr_env = env->dcr_env;
1271 if (dcr_env == NULL)
1272 return -1;
1273 if (dcrn < 0 || dcrn >= DCRN_NB)
1274 return -1;
1275 dcr = &dcr_env->dcrn[dcrn];
1276 if (dcr->opaque != NULL ||
1277 dcr->dcr_read != NULL ||
1278 dcr->dcr_write != NULL)
1279 return -1;
1280 dcr->opaque = opaque;
1281 dcr->dcr_read = dcr_read;
1282 dcr->dcr_write = dcr_write;
1283
1284 return 0;
1285}
1286
1287int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1288 int (*write_error)(int dcrn))
1289{
1290 ppc_dcr_t *dcr_env;
1291
1292 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1293 dcr_env->read_error = read_error;
1294 dcr_env->write_error = write_error;
1295 env->dcr_env = dcr_env;
1296
1297 return 0;
1298}
1299
1300
1301
1302void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1303{
1304 addr &= 0xF;
1305 switch (addr) {
1306 case 0:
1307 printf("%c", val);
1308 break;
1309 case 1:
1310 printf("\n");
1311 fflush(stdout);
1312 break;
1313 case 2:
1314 printf("Set loglevel to %04" PRIx32 "\n", val);
1315 qemu_set_log(val | 0x100);
1316 break;
1317 }
1318}
1319
1320
1321int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1322{
1323 return cpu->cpu_dt_id;
1324}
1325
1326PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1327{
1328 CPUState *cs;
1329
1330 CPU_FOREACH(cs) {
1331 PowerPCCPU *cpu = POWERPC_CPU(cs);
1332
1333 if (cpu->cpu_dt_id == cpu_dt_id) {
1334 return cpu;
1335 }
1336 }
1337
1338 return NULL;
1339}
1340