qemu/hw/audio/fmopl.c
<<
>>
Prefs
   1/*
   2**
   3** File: fmopl.c -- software implementation of FM sound generator
   4**
   5** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
   6**
   7** Version 0.37a
   8**
   9*/
  10
  11/*
  12        preliminary :
  13        Problem :
  14        note:
  15*/
  16
  17/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
  18 *
  19 * This library is free software; you can redistribute it and/or
  20 * modify it under the terms of the GNU Lesser General Public
  21 * License as published by the Free Software Foundation; either
  22 * version 2.1 of the License, or (at your option) any later version.
  23 *
  24 * This library is distributed in the hope that it will be useful,
  25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  27 * Lesser General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU Lesser General Public
  30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  31 */
  32
  33#define HAS_YM3812      1
  34
  35#include <stdio.h>
  36#include <stdlib.h>
  37#include <string.h>
  38#include <stdarg.h>
  39#include <math.h>
  40//#include "driver.h"           /* use M.A.M.E. */
  41#include "fmopl.h"
  42
  43#ifndef PI
  44#define PI 3.14159265358979323846
  45#endif
  46
  47#ifndef ARRAY_SIZE
  48#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  49#endif
  50
  51/* -------------------- for debug --------------------- */
  52/* #define OPL_OUTPUT_LOG */
  53#ifdef OPL_OUTPUT_LOG
  54static FILE *opl_dbg_fp = NULL;
  55static FM_OPL *opl_dbg_opl[16];
  56static int opl_dbg_maxchip,opl_dbg_chip;
  57#endif
  58
  59/* -------------------- preliminary define section --------------------- */
  60/* attack/decay rate time rate */
  61#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
  62#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
  63
  64#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
  65
  66#define FREQ_BITS 24                    /* frequency turn          */
  67
  68/* counter bits = 20 , octerve 7 */
  69#define FREQ_RATE   (1<<(FREQ_BITS-20))
  70#define TL_BITS    (FREQ_BITS+2)
  71
  72/* final output shift , limit minimum and maximum */
  73#define OPL_OUTSB   (TL_BITS+3-16)              /* OPL output final shift 16bit */
  74#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
  75#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
  76
  77/* -------------------- quality selection --------------------- */
  78
  79/* sinwave entries */
  80/* used static memory = SIN_ENT * 4 (byte) */
  81#define SIN_ENT 2048
  82
  83/* output level entries (envelope,sinwave) */
  84/* envelope counter lower bits */
  85#define ENV_BITS 16
  86/* envelope output entries */
  87#define EG_ENT   4096
  88/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
  89/* used static  memory = EG_ENT*4 (byte)                     */
  90
  91#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
  92#define EG_DED   EG_OFF
  93#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
  94#define EG_AED   EG_DST
  95#define EG_AST   0                       /* ATTACK START */
  96
  97#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
  98
  99/* LFO table entries */
 100#define VIB_ENT 512
 101#define VIB_SHIFT (32-9)
 102#define AMS_ENT 512
 103#define AMS_SHIFT (32-9)
 104
 105#define VIB_RATE 256
 106
 107/* -------------------- local defines , macros --------------------- */
 108
 109/* register number to channel number , slot offset */
 110#define SLOT1 0
 111#define SLOT2 1
 112
 113/* envelope phase */
 114#define ENV_MOD_RR  0x00
 115#define ENV_MOD_DR  0x01
 116#define ENV_MOD_AR  0x02
 117
 118/* -------------------- tables --------------------- */
 119static const int slot_array[32]=
 120{
 121         0, 2, 4, 1, 3, 5,-1,-1,
 122         6, 8,10, 7, 9,11,-1,-1,
 123        12,14,16,13,15,17,-1,-1,
 124        -1,-1,-1,-1,-1,-1,-1,-1
 125};
 126
 127/* key scale level */
 128/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
 129#define DV (EG_STEP/2)
 130static const UINT32 KSL_TABLE[8*16]=
 131{
 132        /* OCT 0 */
 133         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 134         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 135         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 136         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 137        /* OCT 1 */
 138         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 139         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 140         0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
 141         1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
 142        /* OCT 2 */
 143         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 144         0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
 145         3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
 146         4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
 147        /* OCT 3 */
 148         0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
 149         3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
 150         6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
 151         7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
 152        /* OCT 4 */
 153         0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
 154         6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
 155         9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
 156        10.875/DV,11.250/DV,11.625/DV,12.000/DV,
 157        /* OCT 5 */
 158         0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
 159         9.000/DV,10.125/DV,10.875/DV,11.625/DV,
 160        12.000/DV,12.750/DV,13.125/DV,13.500/DV,
 161        13.875/DV,14.250/DV,14.625/DV,15.000/DV,
 162        /* OCT 6 */
 163         0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
 164        12.000/DV,13.125/DV,13.875/DV,14.625/DV,
 165        15.000/DV,15.750/DV,16.125/DV,16.500/DV,
 166        16.875/DV,17.250/DV,17.625/DV,18.000/DV,
 167        /* OCT 7 */
 168         0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
 169        15.000/DV,16.125/DV,16.875/DV,17.625/DV,
 170        18.000/DV,18.750/DV,19.125/DV,19.500/DV,
 171        19.875/DV,20.250/DV,20.625/DV,21.000/DV
 172};
 173#undef DV
 174
 175/* sustain lebel table (3db per step) */
 176/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
 177#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
 178static const INT32 SL_TABLE[16]={
 179 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
 180 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
 181};
 182#undef SC
 183
 184#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
 185/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
 186/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
 187/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
 188static INT32 *TL_TABLE;
 189
 190/* pointers to TL_TABLE with sinwave output offset */
 191static INT32 **SIN_TABLE;
 192
 193/* LFO table */
 194static INT32 *AMS_TABLE;
 195static INT32 *VIB_TABLE;
 196
 197/* envelope output curve table */
 198/* attack + decay + OFF */
 199static INT32 ENV_CURVE[2*EG_ENT+1];
 200
 201/* multiple table */
 202#define ML 2
 203static const UINT32 MUL_TABLE[16]= {
 204/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
 205   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
 206   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
 207};
 208#undef ML
 209
 210/* dummy attack / decay rate ( when rate == 0 ) */
 211static INT32 RATE_0[16]=
 212{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 213
 214/* -------------------- static state --------------------- */
 215
 216/* lock level of common table */
 217static int num_lock = 0;
 218
 219/* work table */
 220static void *cur_chip = NULL;   /* current chip point */
 221/* currenct chip state */
 222/* static OPLSAMPLE  *bufL,*bufR; */
 223static OPL_CH *S_CH;
 224static OPL_CH *E_CH;
 225static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
 226
 227static INT32 outd[1];
 228static INT32 ams;
 229static INT32 vib;
 230static INT32 *ams_table;
 231static INT32 *vib_table;
 232static INT32 amsIncr;
 233static INT32 vibIncr;
 234static INT32 feedback2;         /* connect for SLOT 2 */
 235
 236/* log output level */
 237#define LOG_ERR  3      /* ERROR       */
 238#define LOG_WAR  2      /* WARNING     */
 239#define LOG_INF  1      /* INFORMATION */
 240
 241//#define LOG_LEVEL LOG_INF
 242#define LOG_LEVEL       LOG_ERR
 243
 244//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
 245#define LOG(n,x)
 246
 247/* --------------------- subroutines  --------------------- */
 248
 249static inline int Limit( int val, int max, int min ) {
 250        if ( val > max )
 251                val = max;
 252        else if ( val < min )
 253                val = min;
 254
 255        return val;
 256}
 257
 258/* status set and IRQ handling */
 259static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
 260{
 261        /* set status flag */
 262        OPL->status |= flag;
 263        if(!(OPL->status & 0x80))
 264        {
 265                if(OPL->status & OPL->statusmask)
 266                {       /* IRQ on */
 267                        OPL->status |= 0x80;
 268                        /* callback user interrupt handler (IRQ is OFF to ON) */
 269                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
 270                }
 271        }
 272}
 273
 274/* status reset and IRQ handling */
 275static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
 276{
 277        /* reset status flag */
 278        OPL->status &=~flag;
 279        if((OPL->status & 0x80))
 280        {
 281                if (!(OPL->status & OPL->statusmask) )
 282                {
 283                        OPL->status &= 0x7f;
 284                        /* callback user interrupt handler (IRQ is ON to OFF) */
 285                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
 286                }
 287        }
 288}
 289
 290/* IRQ mask set */
 291static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
 292{
 293        OPL->statusmask = flag;
 294        /* IRQ handling check */
 295        OPL_STATUS_SET(OPL,0);
 296        OPL_STATUS_RESET(OPL,0);
 297}
 298
 299/* ----- key on  ----- */
 300static inline void OPL_KEYON(OPL_SLOT *SLOT)
 301{
 302        /* sin wave restart */
 303        SLOT->Cnt = 0;
 304        /* set attack */
 305        SLOT->evm = ENV_MOD_AR;
 306        SLOT->evs = SLOT->evsa;
 307        SLOT->evc = EG_AST;
 308        SLOT->eve = EG_AED;
 309}
 310/* ----- key off ----- */
 311static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
 312{
 313        if( SLOT->evm > ENV_MOD_RR)
 314        {
 315                /* set envelope counter from envleope output */
 316                SLOT->evm = ENV_MOD_RR;
 317                if( !(SLOT->evc&EG_DST) )
 318                        //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
 319                        SLOT->evc = EG_DST;
 320                SLOT->eve = EG_DED;
 321                SLOT->evs = SLOT->evsr;
 322        }
 323}
 324
 325/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
 326/* return : envelope output */
 327static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
 328{
 329        /* calcrate envelope generator */
 330        if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
 331        {
 332                switch( SLOT->evm ){
 333                case ENV_MOD_AR: /* ATTACK -> DECAY1 */
 334                        /* next DR */
 335                        SLOT->evm = ENV_MOD_DR;
 336                        SLOT->evc = EG_DST;
 337                        SLOT->eve = SLOT->SL;
 338                        SLOT->evs = SLOT->evsd;
 339                        break;
 340                case ENV_MOD_DR: /* DECAY -> SL or RR */
 341                        SLOT->evc = SLOT->SL;
 342                        SLOT->eve = EG_DED;
 343                        if(SLOT->eg_typ)
 344                        {
 345                                SLOT->evs = 0;
 346                        }
 347                        else
 348                        {
 349                                SLOT->evm = ENV_MOD_RR;
 350                                SLOT->evs = SLOT->evsr;
 351                        }
 352                        break;
 353                case ENV_MOD_RR: /* RR -> OFF */
 354                        SLOT->evc = EG_OFF;
 355                        SLOT->eve = EG_OFF+1;
 356                        SLOT->evs = 0;
 357                        break;
 358                }
 359        }
 360        /* calcrate envelope */
 361        return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
 362}
 363
 364/* set algorithm connection */
 365static void set_algorithm( OPL_CH *CH)
 366{
 367        INT32 *carrier = &outd[0];
 368        CH->connect1 = CH->CON ? carrier : &feedback2;
 369        CH->connect2 = carrier;
 370}
 371
 372/* ---------- frequency counter for operater update ---------- */
 373static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
 374{
 375        int ksr;
 376
 377        /* frequency step counter */
 378        SLOT->Incr = CH->fc * SLOT->mul;
 379        ksr = CH->kcode >> SLOT->KSR;
 380
 381        if( SLOT->ksr != ksr )
 382        {
 383                SLOT->ksr = ksr;
 384                /* attack , decay rate recalcration */
 385                SLOT->evsa = SLOT->AR[ksr];
 386                SLOT->evsd = SLOT->DR[ksr];
 387                SLOT->evsr = SLOT->RR[ksr];
 388        }
 389        SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 390}
 391
 392/* set multi,am,vib,EG-TYP,KSR,mul */
 393static inline void set_mul(FM_OPL *OPL,int slot,int v)
 394{
 395        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 396        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 397
 398        SLOT->mul    = MUL_TABLE[v&0x0f];
 399        SLOT->KSR    = (v&0x10) ? 0 : 2;
 400        SLOT->eg_typ = (v&0x20)>>5;
 401        SLOT->vib    = (v&0x40);
 402        SLOT->ams    = (v&0x80);
 403        CALC_FCSLOT(CH,SLOT);
 404}
 405
 406/* set ksl & tl */
 407static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
 408{
 409        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 410        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 411        int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
 412
 413        SLOT->ksl = ksl ? 3-ksl : 31;
 414        SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
 415
 416        if( !(OPL->mode&0x80) )
 417        {       /* not CSM latch total level */
 418                SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 419        }
 420}
 421
 422/* set attack rate & decay rate  */
 423static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
 424{
 425        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 426        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 427        int ar = v>>4;
 428        int dr = v&0x0f;
 429
 430        SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
 431        SLOT->evsa = SLOT->AR[SLOT->ksr];
 432        if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
 433
 434        SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
 435        SLOT->evsd = SLOT->DR[SLOT->ksr];
 436        if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
 437}
 438
 439/* set sustain level & release rate */
 440static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
 441{
 442        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 443        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 444        int sl = v>>4;
 445        int rr = v & 0x0f;
 446
 447        SLOT->SL = SL_TABLE[sl];
 448        if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
 449        SLOT->RR = &OPL->DR_TABLE[rr<<2];
 450        SLOT->evsr = SLOT->RR[SLOT->ksr];
 451        if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
 452}
 453
 454/* operator output calcrator */
 455#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
 456/* ---------- calcrate one of channel ---------- */
 457static inline void OPL_CALC_CH( OPL_CH *CH )
 458{
 459        UINT32 env_out;
 460        OPL_SLOT *SLOT;
 461
 462        feedback2 = 0;
 463        /* SLOT 1 */
 464        SLOT = &CH->SLOT[SLOT1];
 465        env_out=OPL_CALC_SLOT(SLOT);
 466        if( env_out < EG_ENT-1 )
 467        {
 468                /* PG */
 469                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 470                else          SLOT->Cnt += SLOT->Incr;
 471                /* connectoion */
 472                if(CH->FB)
 473                {
 474                        int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
 475                        CH->op1_out[1] = CH->op1_out[0];
 476                        *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 477                }
 478                else
 479                {
 480                        *CH->connect1 += OP_OUT(SLOT,env_out,0);
 481                }
 482        }else
 483        {
 484                CH->op1_out[1] = CH->op1_out[0];
 485                CH->op1_out[0] = 0;
 486        }
 487        /* SLOT 2 */
 488        SLOT = &CH->SLOT[SLOT2];
 489        env_out=OPL_CALC_SLOT(SLOT);
 490        if( env_out < EG_ENT-1 )
 491        {
 492                /* PG */
 493                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 494                else          SLOT->Cnt += SLOT->Incr;
 495                /* connectoion */
 496                outd[0] += OP_OUT(SLOT,env_out, feedback2);
 497        }
 498}
 499
 500/* ---------- calcrate rhythm block ---------- */
 501#define WHITE_NOISE_db 6.0
 502static inline void OPL_CALC_RH( OPL_CH *CH )
 503{
 504        UINT32 env_tam,env_sd,env_top,env_hh;
 505        int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
 506        INT32 tone8;
 507
 508        OPL_SLOT *SLOT;
 509        int env_out;
 510
 511        /* BD : same as FM serial mode and output level is large */
 512        feedback2 = 0;
 513        /* SLOT 1 */
 514        SLOT = &CH[6].SLOT[SLOT1];
 515        env_out=OPL_CALC_SLOT(SLOT);
 516        if( env_out < EG_ENT-1 )
 517        {
 518                /* PG */
 519                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 520                else          SLOT->Cnt += SLOT->Incr;
 521                /* connectoion */
 522                if(CH[6].FB)
 523                {
 524                        int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
 525                        CH[6].op1_out[1] = CH[6].op1_out[0];
 526                        feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 527                }
 528                else
 529                {
 530                        feedback2 = OP_OUT(SLOT,env_out,0);
 531                }
 532        }else
 533        {
 534                feedback2 = 0;
 535                CH[6].op1_out[1] = CH[6].op1_out[0];
 536                CH[6].op1_out[0] = 0;
 537        }
 538        /* SLOT 2 */
 539        SLOT = &CH[6].SLOT[SLOT2];
 540        env_out=OPL_CALC_SLOT(SLOT);
 541        if( env_out < EG_ENT-1 )
 542        {
 543                /* PG */
 544                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 545                else          SLOT->Cnt += SLOT->Incr;
 546                /* connectoion */
 547                outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
 548        }
 549
 550        // SD  (17) = mul14[fnum7] + white noise
 551        // TAM (15) = mul15[fnum8]
 552        // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
 553        // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
 554        env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
 555        env_tam=OPL_CALC_SLOT(SLOT8_1);
 556        env_top=OPL_CALC_SLOT(SLOT8_2);
 557        env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
 558
 559        /* PG */
 560        if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
 561        else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
 562        if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
 563        else             SLOT7_2->Cnt += (CH[7].fc*8);
 564        if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
 565        else             SLOT8_1->Cnt += SLOT8_1->Incr;
 566        if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
 567        else             SLOT8_2->Cnt += (CH[8].fc*48);
 568
 569        tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
 570
 571        /* SD */
 572        if( env_sd < EG_ENT-1 )
 573                outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
 574        /* TAM */
 575        if( env_tam < EG_ENT-1 )
 576                outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
 577        /* TOP-CY */
 578        if( env_top < EG_ENT-1 )
 579                outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
 580        /* HH */
 581        if( env_hh  < EG_ENT-1 )
 582                outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
 583}
 584
 585/* ----------- initialize time tabls ----------- */
 586static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
 587{
 588        int i;
 589        double rate;
 590
 591        /* make attack rate & decay rate tables */
 592        for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
 593        for (i = 4;i <= 60;i++){
 594                rate  = OPL->freqbase;                                          /* frequency rate */
 595                if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
 596                rate *= 1<<((i>>2)-1);                                          /* b2-5 : shift bit */
 597                rate *= (double)(EG_ENT<<ENV_BITS);
 598                OPL->AR_TABLE[i] = rate / ARRATE;
 599                OPL->DR_TABLE[i] = rate / DRRATE;
 600        }
 601        for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
 602        {
 603                OPL->AR_TABLE[i] = EG_AED-1;
 604                OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
 605        }
 606#if 0
 607        for (i = 0;i < 64 ;i++){        /* make for overflow area */
 608                LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
 609                        ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
 610                        ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
 611        }
 612#endif
 613}
 614
 615/* ---------- generic table initialize ---------- */
 616static int OPLOpenTable( void )
 617{
 618        int s,t;
 619        double rate;
 620        int i,j;
 621        double pom;
 622
 623        /* allocate dynamic tables */
 624        if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
 625                return 0;
 626        if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
 627        {
 628                free(TL_TABLE);
 629                return 0;
 630        }
 631        if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
 632        {
 633                free(TL_TABLE);
 634                free(SIN_TABLE);
 635                return 0;
 636        }
 637        if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
 638        {
 639                free(TL_TABLE);
 640                free(SIN_TABLE);
 641                free(AMS_TABLE);
 642                return 0;
 643        }
 644        /* make total level table */
 645        for (t = 0;t < EG_ENT-1 ;t++){
 646                rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
 647                TL_TABLE[       t] =  (int)rate;
 648                TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
 649/*              LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
 650        }
 651        /* fill volume off area */
 652        for ( t = EG_ENT-1; t < TL_MAX ;t++){
 653                TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
 654        }
 655
 656        /* make sinwave table (total level offet) */
 657        /* degree 0 = degree 180                   = off */
 658        SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
 659        for (s = 1;s <= SIN_ENT/4;s++){
 660                pom = sin(2*PI*s/SIN_ENT); /* sin     */
 661                pom = 20*log10(1/pom);     /* decibel */
 662                j = pom / EG_STEP;         /* TL_TABLE steps */
 663
 664        /* degree 0   -  90    , degree 180 -  90 : plus section */
 665                SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
 666        /* degree 180 - 270    , degree 360 - 270 : minus section */
 667                SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
 668/*              LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
 669        }
 670        for (s = 0;s < SIN_ENT;s++)
 671        {
 672                SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
 673                SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
 674                SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
 675        }
 676
 677        /* envelope counter -> envelope output table */
 678        for (i=0; i<EG_ENT; i++)
 679        {
 680                /* ATTACK curve */
 681                pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
 682                /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
 683                ENV_CURVE[i] = (int)pom;
 684                /* DECAY ,RELEASE curve */
 685                ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
 686        }
 687        /* off */
 688        ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
 689        /* make LFO ams table */
 690        for (i=0; i<AMS_ENT; i++)
 691        {
 692                pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
 693                AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
 694                AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
 695        }
 696        /* make LFO vibrate table */
 697        for (i=0; i<VIB_ENT; i++)
 698        {
 699                /* 100cent = 1seminote = 6% ?? */
 700                pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
 701                VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
 702                VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
 703                /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
 704        }
 705        return 1;
 706}
 707
 708
 709static void OPLCloseTable( void )
 710{
 711        free(TL_TABLE);
 712        free(SIN_TABLE);
 713        free(AMS_TABLE);
 714        free(VIB_TABLE);
 715}
 716
 717/* CSM Key Control */
 718static inline void CSMKeyControll(OPL_CH *CH)
 719{
 720        OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
 721        OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
 722        /* all key off */
 723        OPL_KEYOFF(slot1);
 724        OPL_KEYOFF(slot2);
 725        /* total level latch */
 726        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 727        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 728        /* key on */
 729        CH->op1_out[0] = CH->op1_out[1] = 0;
 730        OPL_KEYON(slot1);
 731        OPL_KEYON(slot2);
 732}
 733
 734/* ---------- opl initialize ---------- */
 735static void OPL_initialize(FM_OPL *OPL)
 736{
 737        int fn;
 738
 739        /* frequency base */
 740        OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
 741        /* Timer base time */
 742        OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
 743        /* make time tables */
 744        init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
 745        /* make fnumber -> increment counter table */
 746        for( fn=0 ; fn < 1024 ; fn++ )
 747        {
 748                OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
 749        }
 750        /* LFO freq.table */
 751        OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
 752        OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
 753}
 754
 755/* ---------- write a OPL registers ---------- */
 756static void OPLWriteReg(FM_OPL *OPL, int r, int v)
 757{
 758        OPL_CH *CH;
 759        int slot;
 760        int block_fnum;
 761
 762        switch(r&0xe0)
 763        {
 764        case 0x00: /* 00-1f:control */
 765                switch(r&0x1f)
 766                {
 767                case 0x01:
 768                        /* wave selector enable */
 769                        if(OPL->type&OPL_TYPE_WAVESEL)
 770                        {
 771                                OPL->wavesel = v&0x20;
 772                                if(!OPL->wavesel)
 773                                {
 774                                        /* preset compatible mode */
 775                                        int c;
 776                                        for(c=0;c<OPL->max_ch;c++)
 777                                        {
 778                                                OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
 779                                                OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
 780                                        }
 781                                }
 782                        }
 783                        return;
 784                case 0x02:      /* Timer 1 */
 785                        OPL->T[0] = (256-v)*4;
 786                        break;
 787                case 0x03:      /* Timer 2 */
 788                        OPL->T[1] = (256-v)*16;
 789                        return;
 790                case 0x04:      /* IRQ clear / mask and Timer enable */
 791                        if(v&0x80)
 792                        {       /* IRQ flag clear */
 793                                OPL_STATUS_RESET(OPL,0x7f);
 794                        }
 795                        else
 796                        {       /* set IRQ mask ,timer enable*/
 797                                UINT8 st1 = v&1;
 798                                UINT8 st2 = (v>>1)&1;
 799                                /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
 800                                OPL_STATUS_RESET(OPL,v&0x78);
 801                                OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
 802                                /* timer 2 */
 803                                if(OPL->st[1] != st2)
 804                                {
 805                                        double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
 806                                        OPL->st[1] = st2;
 807                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
 808                                }
 809                                /* timer 1 */
 810                                if(OPL->st[0] != st1)
 811                                {
 812                                        double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
 813                                        OPL->st[0] = st1;
 814                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
 815                                }
 816                        }
 817                        return;
 818#if BUILD_Y8950
 819                case 0x06:              /* Key Board OUT */
 820                        if(OPL->type&OPL_TYPE_KEYBOARD)
 821                        {
 822                                if(OPL->keyboardhandler_w)
 823                                        OPL->keyboardhandler_w(OPL->keyboard_param,v);
 824                                else
 825                                        LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
 826                        }
 827                        return;
 828                case 0x07:      /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
 829                        if(OPL->type&OPL_TYPE_ADPCM)
 830                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
 831                        return;
 832                case 0x08:      /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
 833                        OPL->mode = v;
 834                        v&=0x1f;        /* for DELTA-T unit */
 835                case 0x09:              /* START ADD */
 836                case 0x0a:
 837                case 0x0b:              /* STOP ADD  */
 838                case 0x0c:
 839                case 0x0d:              /* PRESCALE   */
 840                case 0x0e:
 841                case 0x0f:              /* ADPCM data */
 842                case 0x10:              /* DELTA-N    */
 843                case 0x11:              /* DELTA-N    */
 844                case 0x12:              /* EG-CTRL    */
 845                        if(OPL->type&OPL_TYPE_ADPCM)
 846                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
 847                        return;
 848#if 0
 849                case 0x15:              /* DAC data    */
 850                case 0x16:
 851                case 0x17:              /* SHIFT    */
 852                        return;
 853                case 0x18:              /* I/O CTRL (Direction) */
 854                        if(OPL->type&OPL_TYPE_IO)
 855                                OPL->portDirection = v&0x0f;
 856                        return;
 857                case 0x19:              /* I/O DATA */
 858                        if(OPL->type&OPL_TYPE_IO)
 859                        {
 860                                OPL->portLatch = v;
 861                                if(OPL->porthandler_w)
 862                                        OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
 863                        }
 864                        return;
 865                case 0x1a:              /* PCM data */
 866                        return;
 867#endif
 868#endif
 869                }
 870                break;
 871        case 0x20:      /* am,vib,ksr,eg type,mul */
 872                slot = slot_array[r&0x1f];
 873                if(slot == -1) return;
 874                set_mul(OPL,slot,v);
 875                return;
 876        case 0x40:
 877                slot = slot_array[r&0x1f];
 878                if(slot == -1) return;
 879                set_ksl_tl(OPL,slot,v);
 880                return;
 881        case 0x60:
 882                slot = slot_array[r&0x1f];
 883                if(slot == -1) return;
 884                set_ar_dr(OPL,slot,v);
 885                return;
 886        case 0x80:
 887                slot = slot_array[r&0x1f];
 888                if(slot == -1) return;
 889                set_sl_rr(OPL,slot,v);
 890                return;
 891        case 0xa0:
 892                switch(r)
 893                {
 894                case 0xbd:
 895                        /* amsep,vibdep,r,bd,sd,tom,tc,hh */
 896                        {
 897                        UINT8 rkey = OPL->rhythm^v;
 898                        OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
 899                        OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
 900                        OPL->rhythm  = v&0x3f;
 901                        if(OPL->rhythm&0x20)
 902                        {
 903#if 0
 904                                usrintf_showmessage("OPL Rhythm mode select");
 905#endif
 906                                /* BD key on/off */
 907                                if(rkey&0x10)
 908                                {
 909                                        if(v&0x10)
 910                                        {
 911                                                OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
 912                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
 913                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
 914                                        }
 915                                        else
 916                                        {
 917                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
 918                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
 919                                        }
 920                                }
 921                                /* SD key on/off */
 922                                if(rkey&0x08)
 923                                {
 924                                        if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
 925                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
 926                                }/* TAM key on/off */
 927                                if(rkey&0x04)
 928                                {
 929                                        if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
 930                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
 931                                }
 932                                /* TOP-CY key on/off */
 933                                if(rkey&0x02)
 934                                {
 935                                        if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
 936                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
 937                                }
 938                                /* HH key on/off */
 939                                if(rkey&0x01)
 940                                {
 941                                        if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
 942                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
 943                                }
 944                        }
 945                        }
 946                        return;
 947                }
 948                /* keyon,block,fnum */
 949                if( (r&0x0f) > 8) return;
 950                CH = &OPL->P_CH[r&0x0f];
 951                if(!(r&0x10))
 952                {       /* a0-a8 */
 953                        block_fnum  = (CH->block_fnum&0x1f00) | v;
 954                }
 955                else
 956                {       /* b0-b8 */
 957                        int keyon = (v>>5)&1;
 958                        block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
 959                        if(CH->keyon != keyon)
 960                        {
 961                                if( (CH->keyon=keyon) )
 962                                {
 963                                        CH->op1_out[0] = CH->op1_out[1] = 0;
 964                                        OPL_KEYON(&CH->SLOT[SLOT1]);
 965                                        OPL_KEYON(&CH->SLOT[SLOT2]);
 966                                }
 967                                else
 968                                {
 969                                        OPL_KEYOFF(&CH->SLOT[SLOT1]);
 970                                        OPL_KEYOFF(&CH->SLOT[SLOT2]);
 971                                }
 972                        }
 973                }
 974                /* update */
 975                if(CH->block_fnum != block_fnum)
 976                {
 977                        int blockRv = 7-(block_fnum>>10);
 978                        int fnum   = block_fnum&0x3ff;
 979                        CH->block_fnum = block_fnum;
 980
 981                        CH->ksl_base = KSL_TABLE[block_fnum>>6];
 982                        CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
 983                        CH->kcode = CH->block_fnum>>9;
 984                        if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
 985                        CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
 986                        CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
 987                }
 988                return;
 989        case 0xc0:
 990                /* FB,C */
 991                if( (r&0x0f) > 8) return;
 992                CH = &OPL->P_CH[r&0x0f];
 993                {
 994                int feedback = (v>>1)&7;
 995                CH->FB   = feedback ? (8+1) - feedback : 0;
 996                CH->CON = v&1;
 997                set_algorithm(CH);
 998                }
 999                return;
1000        case 0xe0: /* wave type */
1001                slot = slot_array[r&0x1f];
1002                if(slot == -1) return;
1003                CH = &OPL->P_CH[slot/2];
1004                if(OPL->wavesel)
1005                {
1006                        /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1007                        CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1008                }
1009                return;
1010        }
1011}
1012
1013/* lock/unlock for common table */
1014static int OPL_LockTable(void)
1015{
1016        num_lock++;
1017        if(num_lock>1) return 0;
1018        /* first time */
1019        cur_chip = NULL;
1020        /* allocate total level table (128kb space) */
1021        if( !OPLOpenTable() )
1022        {
1023                num_lock--;
1024                return -1;
1025        }
1026        return 0;
1027}
1028
1029static void OPL_UnLockTable(void)
1030{
1031        if(num_lock) num_lock--;
1032        if(num_lock) return;
1033        /* last time */
1034        cur_chip = NULL;
1035        OPLCloseTable();
1036}
1037
1038#if (BUILD_YM3812 || BUILD_YM3526)
1039/*******************************************************************************/
1040/*              YM3812 local section                                                   */
1041/*******************************************************************************/
1042
1043/* ---------- update one of chip ----------- */
1044void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1045{
1046    int i;
1047        int data;
1048        OPLSAMPLE *buf = buffer;
1049        UINT32 amsCnt  = OPL->amsCnt;
1050        UINT32 vibCnt  = OPL->vibCnt;
1051        UINT8 rhythm = OPL->rhythm&0x20;
1052        OPL_CH *CH,*R_CH;
1053
1054        if( (void *)OPL != cur_chip ){
1055                cur_chip = (void *)OPL;
1056                /* channel pointers */
1057                S_CH = OPL->P_CH;
1058                E_CH = &S_CH[9];
1059                /* rhythm slot */
1060                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1061                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1062                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1063                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1064                /* LFO state */
1065                amsIncr = OPL->amsIncr;
1066                vibIncr = OPL->vibIncr;
1067                ams_table = OPL->ams_table;
1068                vib_table = OPL->vib_table;
1069        }
1070        R_CH = rhythm ? &S_CH[6] : E_CH;
1071    for( i=0; i < length ; i++ )
1072        {
1073                /*            channel A         channel B         channel C      */
1074                /* LFO */
1075                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1076                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1077                outd[0] = 0;
1078                /* FM part */
1079                for(CH=S_CH ; CH < R_CH ; CH++)
1080                        OPL_CALC_CH(CH);
1081                /* Rythn part */
1082                if(rhythm)
1083                        OPL_CALC_RH(S_CH);
1084                /* limit check */
1085                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1086                /* store to sound buffer */
1087                buf[i] = data >> OPL_OUTSB;
1088        }
1089
1090        OPL->amsCnt = amsCnt;
1091        OPL->vibCnt = vibCnt;
1092#ifdef OPL_OUTPUT_LOG
1093        if(opl_dbg_fp)
1094        {
1095                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1096                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1097                fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1098        }
1099#endif
1100}
1101#endif /* (BUILD_YM3812 || BUILD_YM3526) */
1102
1103#if BUILD_Y8950
1104
1105void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1106{
1107    int i;
1108        int data;
1109        OPLSAMPLE *buf = buffer;
1110        UINT32 amsCnt  = OPL->amsCnt;
1111        UINT32 vibCnt  = OPL->vibCnt;
1112        UINT8 rhythm = OPL->rhythm&0x20;
1113        OPL_CH *CH,*R_CH;
1114        YM_DELTAT *DELTAT = OPL->deltat;
1115
1116        /* setup DELTA-T unit */
1117        YM_DELTAT_DECODE_PRESET(DELTAT);
1118
1119        if( (void *)OPL != cur_chip ){
1120                cur_chip = (void *)OPL;
1121                /* channel pointers */
1122                S_CH = OPL->P_CH;
1123                E_CH = &S_CH[9];
1124                /* rhythm slot */
1125                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1126                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1127                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1128                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1129                /* LFO state */
1130                amsIncr = OPL->amsIncr;
1131                vibIncr = OPL->vibIncr;
1132                ams_table = OPL->ams_table;
1133                vib_table = OPL->vib_table;
1134        }
1135        R_CH = rhythm ? &S_CH[6] : E_CH;
1136    for( i=0; i < length ; i++ )
1137        {
1138                /*            channel A         channel B         channel C      */
1139                /* LFO */
1140                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1141                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1142                outd[0] = 0;
1143                /* deltaT ADPCM */
1144                if( DELTAT->portstate )
1145                        YM_DELTAT_ADPCM_CALC(DELTAT);
1146                /* FM part */
1147                for(CH=S_CH ; CH < R_CH ; CH++)
1148                        OPL_CALC_CH(CH);
1149                /* Rythn part */
1150                if(rhythm)
1151                        OPL_CALC_RH(S_CH);
1152                /* limit check */
1153                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1154                /* store to sound buffer */
1155                buf[i] = data >> OPL_OUTSB;
1156        }
1157        OPL->amsCnt = amsCnt;
1158        OPL->vibCnt = vibCnt;
1159        /* deltaT START flag */
1160        if( !DELTAT->portstate )
1161                OPL->status &= 0xfe;
1162}
1163#endif
1164
1165/* ---------- reset one of chip ---------- */
1166void OPLResetChip(FM_OPL *OPL)
1167{
1168        int c,s;
1169        int i;
1170
1171        /* reset chip */
1172        OPL->mode   = 0;        /* normal mode */
1173        OPL_STATUS_RESET(OPL,0x7f);
1174        /* reset with register write */
1175        OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1176        OPLWriteReg(OPL,0x02,0); /* Timer1 */
1177        OPLWriteReg(OPL,0x03,0); /* Timer2 */
1178        OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1179        for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1180        /* reset operator parameter */
1181        for( c = 0 ; c < OPL->max_ch ; c++ )
1182        {
1183                OPL_CH *CH = &OPL->P_CH[c];
1184                /* OPL->P_CH[c].PAN = OPN_CENTER; */
1185                for(s = 0 ; s < 2 ; s++ )
1186                {
1187                        /* wave table */
1188                        CH->SLOT[s].wavetable = &SIN_TABLE[0];
1189                        /* CH->SLOT[s].evm = ENV_MOD_RR; */
1190                        CH->SLOT[s].evc = EG_OFF;
1191                        CH->SLOT[s].eve = EG_OFF+1;
1192                        CH->SLOT[s].evs = 0;
1193                }
1194        }
1195#if BUILD_Y8950
1196        if(OPL->type&OPL_TYPE_ADPCM)
1197        {
1198                YM_DELTAT *DELTAT = OPL->deltat;
1199
1200                DELTAT->freqbase = OPL->freqbase;
1201                DELTAT->output_pointer = outd;
1202                DELTAT->portshift = 5;
1203                DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1204                YM_DELTAT_ADPCM_Reset(DELTAT,0);
1205        }
1206#endif
1207}
1208
1209/* ----------  Create one of vietual YM3812 ----------       */
1210/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1211FM_OPL *OPLCreate(int type, int clock, int rate)
1212{
1213        char *ptr;
1214        FM_OPL *OPL;
1215        int state_size;
1216        int max_ch = 9; /* normaly 9 channels */
1217
1218        if( OPL_LockTable() ==-1) return NULL;
1219        /* allocate OPL state space */
1220        state_size  = sizeof(FM_OPL);
1221        state_size += sizeof(OPL_CH)*max_ch;
1222#if BUILD_Y8950
1223        if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1224#endif
1225        /* allocate memory block */
1226        ptr = malloc(state_size);
1227        if(ptr==NULL) return NULL;
1228        /* clear */
1229        memset(ptr,0,state_size);
1230        OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1231        OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1232#if BUILD_Y8950
1233        if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1234#endif
1235        /* set channel state pointer */
1236        OPL->type  = type;
1237        OPL->clock = clock;
1238        OPL->rate  = rate;
1239        OPL->max_ch = max_ch;
1240        /* init grobal tables */
1241        OPL_initialize(OPL);
1242        /* reset chip */
1243        OPLResetChip(OPL);
1244#ifdef OPL_OUTPUT_LOG
1245        if(!opl_dbg_fp)
1246        {
1247                opl_dbg_fp = fopen("opllog.opl","wb");
1248                opl_dbg_maxchip = 0;
1249        }
1250        if(opl_dbg_fp)
1251        {
1252                opl_dbg_opl[opl_dbg_maxchip] = OPL;
1253                fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1254                        type,
1255                        clock&0xff,
1256                        (clock/0x100)&0xff,
1257                        (clock/0x10000)&0xff,
1258                        (clock/0x1000000)&0xff);
1259                opl_dbg_maxchip++;
1260        }
1261#endif
1262        return OPL;
1263}
1264
1265/* ----------  Destroy one of vietual YM3812 ----------       */
1266void OPLDestroy(FM_OPL *OPL)
1267{
1268#ifdef OPL_OUTPUT_LOG
1269        if(opl_dbg_fp)
1270        {
1271                fclose(opl_dbg_fp);
1272                opl_dbg_fp = NULL;
1273        }
1274#endif
1275        OPL_UnLockTable();
1276        free(OPL);
1277}
1278
1279/* ----------  Option handlers ----------       */
1280
1281void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1282{
1283        OPL->TimerHandler   = TimerHandler;
1284        OPL->TimerParam = channelOffset;
1285}
1286void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1287{
1288        OPL->IRQHandler     = IRQHandler;
1289        OPL->IRQParam = param;
1290}
1291void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1292{
1293        OPL->UpdateHandler = UpdateHandler;
1294        OPL->UpdateParam = param;
1295}
1296#if BUILD_Y8950
1297void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1298{
1299        OPL->porthandler_w = PortHandler_w;
1300        OPL->porthandler_r = PortHandler_r;
1301        OPL->port_param = param;
1302}
1303
1304void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1305{
1306        OPL->keyboardhandler_w = KeyboardHandler_w;
1307        OPL->keyboardhandler_r = KeyboardHandler_r;
1308        OPL->keyboard_param = param;
1309}
1310#endif
1311/* ---------- YM3812 I/O interface ---------- */
1312int OPLWrite(FM_OPL *OPL,int a,int v)
1313{
1314        if( !(a&1) )
1315        {       /* address port */
1316                OPL->address = v & 0xff;
1317        }
1318        else
1319        {       /* data port */
1320                if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1321#ifdef OPL_OUTPUT_LOG
1322        if(opl_dbg_fp)
1323        {
1324                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1325                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1326                fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1327        }
1328#endif
1329                OPLWriteReg(OPL,OPL->address,v);
1330        }
1331        return OPL->status>>7;
1332}
1333
1334unsigned char OPLRead(FM_OPL *OPL,int a)
1335{
1336        if( !(a&1) )
1337        {       /* status port */
1338                return OPL->status & (OPL->statusmask|0x80);
1339        }
1340        /* data port */
1341        switch(OPL->address)
1342        {
1343        case 0x05: /* KeyBoard IN */
1344                if(OPL->type&OPL_TYPE_KEYBOARD)
1345                {
1346                        if(OPL->keyboardhandler_r)
1347                                return OPL->keyboardhandler_r(OPL->keyboard_param);
1348                        else {
1349                                LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1350                        }
1351                }
1352                return 0;
1353#if 0
1354        case 0x0f: /* ADPCM-DATA  */
1355                return 0;
1356#endif
1357        case 0x19: /* I/O DATA    */
1358                if(OPL->type&OPL_TYPE_IO)
1359                {
1360                        if(OPL->porthandler_r)
1361                                return OPL->porthandler_r(OPL->port_param);
1362                        else {
1363                                LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1364                        }
1365                }
1366                return 0;
1367        case 0x1a: /* PCM-DATA    */
1368                return 0;
1369        }
1370        return 0;
1371}
1372
1373int OPLTimerOver(FM_OPL *OPL,int c)
1374{
1375        if( c )
1376        {       /* Timer B */
1377                OPL_STATUS_SET(OPL,0x20);
1378        }
1379        else
1380        {       /* Timer A */
1381                OPL_STATUS_SET(OPL,0x40);
1382                /* CSM mode key,TL control */
1383                if( OPL->mode & 0x80 )
1384                {       /* CSM mode total level latch and auto key on */
1385                        int ch;
1386                        if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1387                        for(ch=0;ch<9;ch++)
1388                                CSMKeyControll( &OPL->P_CH[ch] );
1389                }
1390        }
1391        /* reload timer */
1392        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1393        return OPL->status>>7;
1394}
1395