1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33#define HAS_YM3812 1
34
35#include <stdio.h>
36#include <stdlib.h>
37#include <string.h>
38#include <stdarg.h>
39#include <math.h>
40
41#include "fmopl.h"
42
43#ifndef PI
44#define PI 3.14159265358979323846
45#endif
46
47#ifndef ARRAY_SIZE
48#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
49#endif
50
51
52
53#ifdef OPL_OUTPUT_LOG
54static FILE *opl_dbg_fp = NULL;
55static FM_OPL *opl_dbg_opl[16];
56static int opl_dbg_maxchip,opl_dbg_chip;
57#endif
58
59
60
61#define OPL_ARRATE 141280
62#define OPL_DRRATE 1956000
63
64#define DELTAT_MIXING_LEVEL (1)
65
66#define FREQ_BITS 24
67
68
69#define FREQ_RATE (1<<(FREQ_BITS-20))
70#define TL_BITS (FREQ_BITS+2)
71
72
73#define OPL_OUTSB (TL_BITS+3-16)
74#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
75#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
76
77
78
79
80
81#define SIN_ENT 2048
82
83
84
85#define ENV_BITS 16
86
87#define EG_ENT 4096
88
89
90
91#define EG_OFF ((2*EG_ENT)<<ENV_BITS)
92#define EG_DED EG_OFF
93#define EG_DST (EG_ENT<<ENV_BITS)
94#define EG_AED EG_DST
95#define EG_AST 0
96
97#define EG_STEP (96.0/EG_ENT)
98
99
100#define VIB_ENT 512
101#define VIB_SHIFT (32-9)
102#define AMS_ENT 512
103#define AMS_SHIFT (32-9)
104
105#define VIB_RATE 256
106
107
108
109
110#define SLOT1 0
111#define SLOT2 1
112
113
114#define ENV_MOD_RR 0x00
115#define ENV_MOD_DR 0x01
116#define ENV_MOD_AR 0x02
117
118
119static const int slot_array[32]=
120{
121 0, 2, 4, 1, 3, 5,-1,-1,
122 6, 8,10, 7, 9,11,-1,-1,
123 12,14,16,13,15,17,-1,-1,
124 -1,-1,-1,-1,-1,-1,-1,-1
125};
126
127
128
129#define DV (EG_STEP/2)
130static const UINT32 KSL_TABLE[8*16]=
131{
132
133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137
138 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
139 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
140 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
141 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
142
143 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
144 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
145 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
146 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
147
148 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
149 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
150 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
151 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
152
153 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
154 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
155 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
156 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
157
158 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
159 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
160 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
161 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
162
163 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
164 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
165 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
166 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
167
168 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
169 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
170 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
171 19.875/DV,20.250/DV,20.625/DV,21.000/DV
172};
173#undef DV
174
175
176
177#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
178static const INT32 SL_TABLE[16]={
179 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
180 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
181};
182#undef SC
183
184#define TL_MAX (EG_ENT*2)
185
186
187
188static INT32 *TL_TABLE;
189
190
191static INT32 **SIN_TABLE;
192
193
194static INT32 *AMS_TABLE;
195static INT32 *VIB_TABLE;
196
197
198
199static INT32 ENV_CURVE[2*EG_ENT+1];
200
201
202#define ML 2
203static const UINT32 MUL_TABLE[16]= {
204
205 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
206 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
207};
208#undef ML
209
210
211static INT32 RATE_0[16]=
212{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
213
214
215
216
217static int num_lock = 0;
218
219
220static void *cur_chip = NULL;
221
222
223static OPL_CH *S_CH;
224static OPL_CH *E_CH;
225static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
226
227static INT32 outd[1];
228static INT32 ams;
229static INT32 vib;
230static INT32 *ams_table;
231static INT32 *vib_table;
232static INT32 amsIncr;
233static INT32 vibIncr;
234static INT32 feedback2;
235
236
237#define LOG_ERR 3
238#define LOG_WAR 2
239#define LOG_INF 1
240
241
242#define LOG_LEVEL LOG_ERR
243
244
245#define LOG(n,x)
246
247
248
249static inline int Limit( int val, int max, int min ) {
250 if ( val > max )
251 val = max;
252 else if ( val < min )
253 val = min;
254
255 return val;
256}
257
258
259static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
260{
261
262 OPL->status |= flag;
263 if(!(OPL->status & 0x80))
264 {
265 if(OPL->status & OPL->statusmask)
266 {
267 OPL->status |= 0x80;
268
269 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
270 }
271 }
272}
273
274
275static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
276{
277
278 OPL->status &=~flag;
279 if((OPL->status & 0x80))
280 {
281 if (!(OPL->status & OPL->statusmask) )
282 {
283 OPL->status &= 0x7f;
284
285 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
286 }
287 }
288}
289
290
291static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
292{
293 OPL->statusmask = flag;
294
295 OPL_STATUS_SET(OPL,0);
296 OPL_STATUS_RESET(OPL,0);
297}
298
299
300static inline void OPL_KEYON(OPL_SLOT *SLOT)
301{
302
303 SLOT->Cnt = 0;
304
305 SLOT->evm = ENV_MOD_AR;
306 SLOT->evs = SLOT->evsa;
307 SLOT->evc = EG_AST;
308 SLOT->eve = EG_AED;
309}
310
311static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
312{
313 if( SLOT->evm > ENV_MOD_RR)
314 {
315
316 SLOT->evm = ENV_MOD_RR;
317 if( !(SLOT->evc&EG_DST) )
318
319 SLOT->evc = EG_DST;
320 SLOT->eve = EG_DED;
321 SLOT->evs = SLOT->evsr;
322 }
323}
324
325
326
327static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
328{
329
330 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
331 {
332 switch( SLOT->evm ){
333 case ENV_MOD_AR:
334
335 SLOT->evm = ENV_MOD_DR;
336 SLOT->evc = EG_DST;
337 SLOT->eve = SLOT->SL;
338 SLOT->evs = SLOT->evsd;
339 break;
340 case ENV_MOD_DR:
341 SLOT->evc = SLOT->SL;
342 SLOT->eve = EG_DED;
343 if(SLOT->eg_typ)
344 {
345 SLOT->evs = 0;
346 }
347 else
348 {
349 SLOT->evm = ENV_MOD_RR;
350 SLOT->evs = SLOT->evsr;
351 }
352 break;
353 case ENV_MOD_RR:
354 SLOT->evc = EG_OFF;
355 SLOT->eve = EG_OFF+1;
356 SLOT->evs = 0;
357 break;
358 }
359 }
360
361 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
362}
363
364
365static void set_algorithm( OPL_CH *CH)
366{
367 INT32 *carrier = &outd[0];
368 CH->connect1 = CH->CON ? carrier : &feedback2;
369 CH->connect2 = carrier;
370}
371
372
373static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
374{
375 int ksr;
376
377
378 SLOT->Incr = CH->fc * SLOT->mul;
379 ksr = CH->kcode >> SLOT->KSR;
380
381 if( SLOT->ksr != ksr )
382 {
383 SLOT->ksr = ksr;
384
385 SLOT->evsa = SLOT->AR[ksr];
386 SLOT->evsd = SLOT->DR[ksr];
387 SLOT->evsr = SLOT->RR[ksr];
388 }
389 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
390}
391
392
393static inline void set_mul(FM_OPL *OPL,int slot,int v)
394{
395 OPL_CH *CH = &OPL->P_CH[slot/2];
396 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
397
398 SLOT->mul = MUL_TABLE[v&0x0f];
399 SLOT->KSR = (v&0x10) ? 0 : 2;
400 SLOT->eg_typ = (v&0x20)>>5;
401 SLOT->vib = (v&0x40);
402 SLOT->ams = (v&0x80);
403 CALC_FCSLOT(CH,SLOT);
404}
405
406
407static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
408{
409 OPL_CH *CH = &OPL->P_CH[slot/2];
410 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
411 int ksl = v>>6;
412
413 SLOT->ksl = ksl ? 3-ksl : 31;
414 SLOT->TL = (v&0x3f)*(0.75/EG_STEP);
415
416 if( !(OPL->mode&0x80) )
417 {
418 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
419 }
420}
421
422
423static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
424{
425 OPL_CH *CH = &OPL->P_CH[slot/2];
426 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
427 int ar = v>>4;
428 int dr = v&0x0f;
429
430 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
431 SLOT->evsa = SLOT->AR[SLOT->ksr];
432 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
433
434 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
435 SLOT->evsd = SLOT->DR[SLOT->ksr];
436 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
437}
438
439
440static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
441{
442 OPL_CH *CH = &OPL->P_CH[slot/2];
443 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
444 int sl = v>>4;
445 int rr = v & 0x0f;
446
447 SLOT->SL = SL_TABLE[sl];
448 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
449 SLOT->RR = &OPL->DR_TABLE[rr<<2];
450 SLOT->evsr = SLOT->RR[SLOT->ksr];
451 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
452}
453
454
455#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
456
457static inline void OPL_CALC_CH( OPL_CH *CH )
458{
459 UINT32 env_out;
460 OPL_SLOT *SLOT;
461
462 feedback2 = 0;
463
464 SLOT = &CH->SLOT[SLOT1];
465 env_out=OPL_CALC_SLOT(SLOT);
466 if( env_out < EG_ENT-1 )
467 {
468
469 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
470 else SLOT->Cnt += SLOT->Incr;
471
472 if(CH->FB)
473 {
474 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
475 CH->op1_out[1] = CH->op1_out[0];
476 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
477 }
478 else
479 {
480 *CH->connect1 += OP_OUT(SLOT,env_out,0);
481 }
482 }else
483 {
484 CH->op1_out[1] = CH->op1_out[0];
485 CH->op1_out[0] = 0;
486 }
487
488 SLOT = &CH->SLOT[SLOT2];
489 env_out=OPL_CALC_SLOT(SLOT);
490 if( env_out < EG_ENT-1 )
491 {
492
493 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
494 else SLOT->Cnt += SLOT->Incr;
495
496 outd[0] += OP_OUT(SLOT,env_out, feedback2);
497 }
498}
499
500
501#define WHITE_NOISE_db 6.0
502static inline void OPL_CALC_RH( OPL_CH *CH )
503{
504 UINT32 env_tam,env_sd,env_top,env_hh;
505 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
506 INT32 tone8;
507
508 OPL_SLOT *SLOT;
509 int env_out;
510
511
512 feedback2 = 0;
513
514 SLOT = &CH[6].SLOT[SLOT1];
515 env_out=OPL_CALC_SLOT(SLOT);
516 if( env_out < EG_ENT-1 )
517 {
518
519 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
520 else SLOT->Cnt += SLOT->Incr;
521
522 if(CH[6].FB)
523 {
524 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
525 CH[6].op1_out[1] = CH[6].op1_out[0];
526 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
527 }
528 else
529 {
530 feedback2 = OP_OUT(SLOT,env_out,0);
531 }
532 }else
533 {
534 feedback2 = 0;
535 CH[6].op1_out[1] = CH[6].op1_out[0];
536 CH[6].op1_out[0] = 0;
537 }
538
539 SLOT = &CH[6].SLOT[SLOT2];
540 env_out=OPL_CALC_SLOT(SLOT);
541 if( env_out < EG_ENT-1 )
542 {
543
544 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
545 else SLOT->Cnt += SLOT->Incr;
546
547 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
548 }
549
550
551
552
553
554 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
555 env_tam=OPL_CALC_SLOT(SLOT8_1);
556 env_top=OPL_CALC_SLOT(SLOT8_2);
557 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
558
559
560 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
561 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
562 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
563 else SLOT7_2->Cnt += (CH[7].fc*8);
564 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
565 else SLOT8_1->Cnt += SLOT8_1->Incr;
566 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
567 else SLOT8_2->Cnt += (CH[8].fc*48);
568
569 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
570
571
572 if( env_sd < EG_ENT-1 )
573 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
574
575 if( env_tam < EG_ENT-1 )
576 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
577
578 if( env_top < EG_ENT-1 )
579 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
580
581 if( env_hh < EG_ENT-1 )
582 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
583}
584
585
586static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
587{
588 int i;
589 double rate;
590
591
592 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
593 for (i = 4;i <= 60;i++){
594 rate = OPL->freqbase;
595 if( i < 60 ) rate *= 1.0+(i&3)*0.25;
596 rate *= 1<<((i>>2)-1);
597 rate *= (double)(EG_ENT<<ENV_BITS);
598 OPL->AR_TABLE[i] = rate / ARRATE;
599 OPL->DR_TABLE[i] = rate / DRRATE;
600 }
601 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
602 {
603 OPL->AR_TABLE[i] = EG_AED-1;
604 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
605 }
606#if 0
607 for (i = 0;i < 64 ;i++){
608 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
609 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
610 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
611 }
612#endif
613}
614
615
616static int OPLOpenTable( void )
617{
618 int s,t;
619 double rate;
620 int i,j;
621 double pom;
622
623
624 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
625 return 0;
626 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
627 {
628 free(TL_TABLE);
629 return 0;
630 }
631 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
632 {
633 free(TL_TABLE);
634 free(SIN_TABLE);
635 return 0;
636 }
637 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
638 {
639 free(TL_TABLE);
640 free(SIN_TABLE);
641 free(AMS_TABLE);
642 return 0;
643 }
644
645 for (t = 0;t < EG_ENT-1 ;t++){
646 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);
647 TL_TABLE[ t] = (int)rate;
648 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
649
650 }
651
652 for ( t = EG_ENT-1; t < TL_MAX ;t++){
653 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
654 }
655
656
657
658 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
659 for (s = 1;s <= SIN_ENT/4;s++){
660 pom = sin(2*PI*s/SIN_ENT);
661 pom = 20*log10(1/pom);
662 j = pom / EG_STEP;
663
664
665 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
666
667 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
668
669 }
670 for (s = 0;s < SIN_ENT;s++)
671 {
672 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
673 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
674 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
675 }
676
677
678 for (i=0; i<EG_ENT; i++)
679 {
680
681 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
682
683 ENV_CURVE[i] = (int)pom;
684
685 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
686 }
687
688 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
689
690 for (i=0; i<AMS_ENT; i++)
691 {
692 pom = (1.0+sin(2*PI*i/AMS_ENT))/2;
693 AMS_TABLE[i] = (1.0/EG_STEP)*pom;
694 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom;
695 }
696
697 for (i=0; i<VIB_ENT; i++)
698 {
699
700 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT);
701 VIB_TABLE[i] = VIB_RATE + (pom*0.07);
702 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14);
703
704 }
705 return 1;
706}
707
708
709static void OPLCloseTable( void )
710{
711 free(TL_TABLE);
712 free(SIN_TABLE);
713 free(AMS_TABLE);
714 free(VIB_TABLE);
715}
716
717
718static inline void CSMKeyControll(OPL_CH *CH)
719{
720 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
721 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
722
723 OPL_KEYOFF(slot1);
724 OPL_KEYOFF(slot2);
725
726 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
727 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
728
729 CH->op1_out[0] = CH->op1_out[1] = 0;
730 OPL_KEYON(slot1);
731 OPL_KEYON(slot2);
732}
733
734
735static void OPL_initialize(FM_OPL *OPL)
736{
737 int fn;
738
739
740 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
741
742 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
743
744 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
745
746 for( fn=0 ; fn < 1024 ; fn++ )
747 {
748 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
749 }
750
751 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
752 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
753}
754
755
756static void OPLWriteReg(FM_OPL *OPL, int r, int v)
757{
758 OPL_CH *CH;
759 int slot;
760 int block_fnum;
761
762 switch(r&0xe0)
763 {
764 case 0x00:
765 switch(r&0x1f)
766 {
767 case 0x01:
768
769 if(OPL->type&OPL_TYPE_WAVESEL)
770 {
771 OPL->wavesel = v&0x20;
772 if(!OPL->wavesel)
773 {
774
775 int c;
776 for(c=0;c<OPL->max_ch;c++)
777 {
778 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
779 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
780 }
781 }
782 }
783 return;
784 case 0x02:
785 OPL->T[0] = (256-v)*4;
786 break;
787 case 0x03:
788 OPL->T[1] = (256-v)*16;
789 return;
790 case 0x04:
791 if(v&0x80)
792 {
793 OPL_STATUS_RESET(OPL,0x7f);
794 }
795 else
796 {
797 UINT8 st1 = v&1;
798 UINT8 st2 = (v>>1)&1;
799
800 OPL_STATUS_RESET(OPL,v&0x78);
801 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
802
803 if(OPL->st[1] != st2)
804 {
805 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
806 OPL->st[1] = st2;
807 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
808 }
809
810 if(OPL->st[0] != st1)
811 {
812 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
813 OPL->st[0] = st1;
814 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
815 }
816 }
817 return;
818#if BUILD_Y8950
819 case 0x06:
820 if(OPL->type&OPL_TYPE_KEYBOARD)
821 {
822 if(OPL->keyboardhandler_w)
823 OPL->keyboardhandler_w(OPL->keyboard_param,v);
824 else
825 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
826 }
827 return;
828 case 0x07:
829 if(OPL->type&OPL_TYPE_ADPCM)
830 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
831 return;
832 case 0x08:
833 OPL->mode = v;
834 v&=0x1f;
835 case 0x09:
836 case 0x0a:
837 case 0x0b:
838 case 0x0c:
839 case 0x0d:
840 case 0x0e:
841 case 0x0f:
842 case 0x10:
843 case 0x11:
844 case 0x12:
845 if(OPL->type&OPL_TYPE_ADPCM)
846 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
847 return;
848#if 0
849 case 0x15:
850 case 0x16:
851 case 0x17:
852 return;
853 case 0x18:
854 if(OPL->type&OPL_TYPE_IO)
855 OPL->portDirection = v&0x0f;
856 return;
857 case 0x19:
858 if(OPL->type&OPL_TYPE_IO)
859 {
860 OPL->portLatch = v;
861 if(OPL->porthandler_w)
862 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
863 }
864 return;
865 case 0x1a:
866 return;
867#endif
868#endif
869 }
870 break;
871 case 0x20:
872 slot = slot_array[r&0x1f];
873 if(slot == -1) return;
874 set_mul(OPL,slot,v);
875 return;
876 case 0x40:
877 slot = slot_array[r&0x1f];
878 if(slot == -1) return;
879 set_ksl_tl(OPL,slot,v);
880 return;
881 case 0x60:
882 slot = slot_array[r&0x1f];
883 if(slot == -1) return;
884 set_ar_dr(OPL,slot,v);
885 return;
886 case 0x80:
887 slot = slot_array[r&0x1f];
888 if(slot == -1) return;
889 set_sl_rr(OPL,slot,v);
890 return;
891 case 0xa0:
892 switch(r)
893 {
894 case 0xbd:
895
896 {
897 UINT8 rkey = OPL->rhythm^v;
898 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
899 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
900 OPL->rhythm = v&0x3f;
901 if(OPL->rhythm&0x20)
902 {
903#if 0
904 usrintf_showmessage("OPL Rhythm mode select");
905#endif
906
907 if(rkey&0x10)
908 {
909 if(v&0x10)
910 {
911 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
912 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
913 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
914 }
915 else
916 {
917 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
918 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
919 }
920 }
921
922 if(rkey&0x08)
923 {
924 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
925 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
926 }
927 if(rkey&0x04)
928 {
929 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
930 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
931 }
932
933 if(rkey&0x02)
934 {
935 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
936 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
937 }
938
939 if(rkey&0x01)
940 {
941 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
942 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
943 }
944 }
945 }
946 return;
947 }
948
949 if( (r&0x0f) > 8) return;
950 CH = &OPL->P_CH[r&0x0f];
951 if(!(r&0x10))
952 {
953 block_fnum = (CH->block_fnum&0x1f00) | v;
954 }
955 else
956 {
957 int keyon = (v>>5)&1;
958 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
959 if(CH->keyon != keyon)
960 {
961 if( (CH->keyon=keyon) )
962 {
963 CH->op1_out[0] = CH->op1_out[1] = 0;
964 OPL_KEYON(&CH->SLOT[SLOT1]);
965 OPL_KEYON(&CH->SLOT[SLOT2]);
966 }
967 else
968 {
969 OPL_KEYOFF(&CH->SLOT[SLOT1]);
970 OPL_KEYOFF(&CH->SLOT[SLOT2]);
971 }
972 }
973 }
974
975 if(CH->block_fnum != block_fnum)
976 {
977 int blockRv = 7-(block_fnum>>10);
978 int fnum = block_fnum&0x3ff;
979 CH->block_fnum = block_fnum;
980
981 CH->ksl_base = KSL_TABLE[block_fnum>>6];
982 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
983 CH->kcode = CH->block_fnum>>9;
984 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
985 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
986 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
987 }
988 return;
989 case 0xc0:
990
991 if( (r&0x0f) > 8) return;
992 CH = &OPL->P_CH[r&0x0f];
993 {
994 int feedback = (v>>1)&7;
995 CH->FB = feedback ? (8+1) - feedback : 0;
996 CH->CON = v&1;
997 set_algorithm(CH);
998 }
999 return;
1000 case 0xe0:
1001 slot = slot_array[r&0x1f];
1002 if(slot == -1) return;
1003 CH = &OPL->P_CH[slot/2];
1004 if(OPL->wavesel)
1005 {
1006
1007 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1008 }
1009 return;
1010 }
1011}
1012
1013
1014static int OPL_LockTable(void)
1015{
1016 num_lock++;
1017 if(num_lock>1) return 0;
1018
1019 cur_chip = NULL;
1020
1021 if( !OPLOpenTable() )
1022 {
1023 num_lock--;
1024 return -1;
1025 }
1026 return 0;
1027}
1028
1029static void OPL_UnLockTable(void)
1030{
1031 if(num_lock) num_lock--;
1032 if(num_lock) return;
1033
1034 cur_chip = NULL;
1035 OPLCloseTable();
1036}
1037
1038#if (BUILD_YM3812 || BUILD_YM3526)
1039
1040
1041
1042
1043
1044void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1045{
1046 int i;
1047 int data;
1048 OPLSAMPLE *buf = buffer;
1049 UINT32 amsCnt = OPL->amsCnt;
1050 UINT32 vibCnt = OPL->vibCnt;
1051 UINT8 rhythm = OPL->rhythm&0x20;
1052 OPL_CH *CH,*R_CH;
1053
1054 if( (void *)OPL != cur_chip ){
1055 cur_chip = (void *)OPL;
1056
1057 S_CH = OPL->P_CH;
1058 E_CH = &S_CH[9];
1059
1060 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1061 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1062 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1063 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1064
1065 amsIncr = OPL->amsIncr;
1066 vibIncr = OPL->vibIncr;
1067 ams_table = OPL->ams_table;
1068 vib_table = OPL->vib_table;
1069 }
1070 R_CH = rhythm ? &S_CH[6] : E_CH;
1071 for( i=0; i < length ; i++ )
1072 {
1073
1074
1075 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1076 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1077 outd[0] = 0;
1078
1079 for(CH=S_CH ; CH < R_CH ; CH++)
1080 OPL_CALC_CH(CH);
1081
1082 if(rhythm)
1083 OPL_CALC_RH(S_CH);
1084
1085 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1086
1087 buf[i] = data >> OPL_OUTSB;
1088 }
1089
1090 OPL->amsCnt = amsCnt;
1091 OPL->vibCnt = vibCnt;
1092#ifdef OPL_OUTPUT_LOG
1093 if(opl_dbg_fp)
1094 {
1095 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1096 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1097 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1098 }
1099#endif
1100}
1101#endif
1102
1103#if BUILD_Y8950
1104
1105void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1106{
1107 int i;
1108 int data;
1109 OPLSAMPLE *buf = buffer;
1110 UINT32 amsCnt = OPL->amsCnt;
1111 UINT32 vibCnt = OPL->vibCnt;
1112 UINT8 rhythm = OPL->rhythm&0x20;
1113 OPL_CH *CH,*R_CH;
1114 YM_DELTAT *DELTAT = OPL->deltat;
1115
1116
1117 YM_DELTAT_DECODE_PRESET(DELTAT);
1118
1119 if( (void *)OPL != cur_chip ){
1120 cur_chip = (void *)OPL;
1121
1122 S_CH = OPL->P_CH;
1123 E_CH = &S_CH[9];
1124
1125 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1126 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1127 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1128 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1129
1130 amsIncr = OPL->amsIncr;
1131 vibIncr = OPL->vibIncr;
1132 ams_table = OPL->ams_table;
1133 vib_table = OPL->vib_table;
1134 }
1135 R_CH = rhythm ? &S_CH[6] : E_CH;
1136 for( i=0; i < length ; i++ )
1137 {
1138
1139
1140 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1141 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1142 outd[0] = 0;
1143
1144 if( DELTAT->portstate )
1145 YM_DELTAT_ADPCM_CALC(DELTAT);
1146
1147 for(CH=S_CH ; CH < R_CH ; CH++)
1148 OPL_CALC_CH(CH);
1149
1150 if(rhythm)
1151 OPL_CALC_RH(S_CH);
1152
1153 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1154
1155 buf[i] = data >> OPL_OUTSB;
1156 }
1157 OPL->amsCnt = amsCnt;
1158 OPL->vibCnt = vibCnt;
1159
1160 if( !DELTAT->portstate )
1161 OPL->status &= 0xfe;
1162}
1163#endif
1164
1165
1166void OPLResetChip(FM_OPL *OPL)
1167{
1168 int c,s;
1169 int i;
1170
1171
1172 OPL->mode = 0;
1173 OPL_STATUS_RESET(OPL,0x7f);
1174
1175 OPLWriteReg(OPL,0x01,0);
1176 OPLWriteReg(OPL,0x02,0);
1177 OPLWriteReg(OPL,0x03,0);
1178 OPLWriteReg(OPL,0x04,0);
1179 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1180
1181 for( c = 0 ; c < OPL->max_ch ; c++ )
1182 {
1183 OPL_CH *CH = &OPL->P_CH[c];
1184
1185 for(s = 0 ; s < 2 ; s++ )
1186 {
1187
1188 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1189
1190 CH->SLOT[s].evc = EG_OFF;
1191 CH->SLOT[s].eve = EG_OFF+1;
1192 CH->SLOT[s].evs = 0;
1193 }
1194 }
1195#if BUILD_Y8950
1196 if(OPL->type&OPL_TYPE_ADPCM)
1197 {
1198 YM_DELTAT *DELTAT = OPL->deltat;
1199
1200 DELTAT->freqbase = OPL->freqbase;
1201 DELTAT->output_pointer = outd;
1202 DELTAT->portshift = 5;
1203 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1204 YM_DELTAT_ADPCM_Reset(DELTAT,0);
1205 }
1206#endif
1207}
1208
1209
1210
1211FM_OPL *OPLCreate(int type, int clock, int rate)
1212{
1213 char *ptr;
1214 FM_OPL *OPL;
1215 int state_size;
1216 int max_ch = 9;
1217
1218 if( OPL_LockTable() ==-1) return NULL;
1219
1220 state_size = sizeof(FM_OPL);
1221 state_size += sizeof(OPL_CH)*max_ch;
1222#if BUILD_Y8950
1223 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1224#endif
1225
1226 ptr = malloc(state_size);
1227 if(ptr==NULL) return NULL;
1228
1229 memset(ptr,0,state_size);
1230 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1231 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1232#if BUILD_Y8950
1233 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1234#endif
1235
1236 OPL->type = type;
1237 OPL->clock = clock;
1238 OPL->rate = rate;
1239 OPL->max_ch = max_ch;
1240
1241 OPL_initialize(OPL);
1242
1243 OPLResetChip(OPL);
1244#ifdef OPL_OUTPUT_LOG
1245 if(!opl_dbg_fp)
1246 {
1247 opl_dbg_fp = fopen("opllog.opl","wb");
1248 opl_dbg_maxchip = 0;
1249 }
1250 if(opl_dbg_fp)
1251 {
1252 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1253 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1254 type,
1255 clock&0xff,
1256 (clock/0x100)&0xff,
1257 (clock/0x10000)&0xff,
1258 (clock/0x1000000)&0xff);
1259 opl_dbg_maxchip++;
1260 }
1261#endif
1262 return OPL;
1263}
1264
1265
1266void OPLDestroy(FM_OPL *OPL)
1267{
1268#ifdef OPL_OUTPUT_LOG
1269 if(opl_dbg_fp)
1270 {
1271 fclose(opl_dbg_fp);
1272 opl_dbg_fp = NULL;
1273 }
1274#endif
1275 OPL_UnLockTable();
1276 free(OPL);
1277}
1278
1279
1280
1281void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1282{
1283 OPL->TimerHandler = TimerHandler;
1284 OPL->TimerParam = channelOffset;
1285}
1286void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1287{
1288 OPL->IRQHandler = IRQHandler;
1289 OPL->IRQParam = param;
1290}
1291void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1292{
1293 OPL->UpdateHandler = UpdateHandler;
1294 OPL->UpdateParam = param;
1295}
1296#if BUILD_Y8950
1297void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1298{
1299 OPL->porthandler_w = PortHandler_w;
1300 OPL->porthandler_r = PortHandler_r;
1301 OPL->port_param = param;
1302}
1303
1304void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1305{
1306 OPL->keyboardhandler_w = KeyboardHandler_w;
1307 OPL->keyboardhandler_r = KeyboardHandler_r;
1308 OPL->keyboard_param = param;
1309}
1310#endif
1311
1312int OPLWrite(FM_OPL *OPL,int a,int v)
1313{
1314 if( !(a&1) )
1315 {
1316 OPL->address = v & 0xff;
1317 }
1318 else
1319 {
1320 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1321#ifdef OPL_OUTPUT_LOG
1322 if(opl_dbg_fp)
1323 {
1324 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1325 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1326 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1327 }
1328#endif
1329 OPLWriteReg(OPL,OPL->address,v);
1330 }
1331 return OPL->status>>7;
1332}
1333
1334unsigned char OPLRead(FM_OPL *OPL,int a)
1335{
1336 if( !(a&1) )
1337 {
1338 return OPL->status & (OPL->statusmask|0x80);
1339 }
1340
1341 switch(OPL->address)
1342 {
1343 case 0x05:
1344 if(OPL->type&OPL_TYPE_KEYBOARD)
1345 {
1346 if(OPL->keyboardhandler_r)
1347 return OPL->keyboardhandler_r(OPL->keyboard_param);
1348 else {
1349 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1350 }
1351 }
1352 return 0;
1353#if 0
1354 case 0x0f:
1355 return 0;
1356#endif
1357 case 0x19:
1358 if(OPL->type&OPL_TYPE_IO)
1359 {
1360 if(OPL->porthandler_r)
1361 return OPL->porthandler_r(OPL->port_param);
1362 else {
1363 LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1364 }
1365 }
1366 return 0;
1367 case 0x1a:
1368 return 0;
1369 }
1370 return 0;
1371}
1372
1373int OPLTimerOver(FM_OPL *OPL,int c)
1374{
1375 if( c )
1376 {
1377 OPL_STATUS_SET(OPL,0x20);
1378 }
1379 else
1380 {
1381 OPL_STATUS_SET(OPL,0x40);
1382
1383 if( OPL->mode & 0x80 )
1384 {
1385 int ch;
1386 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1387 for(ch=0;ch<9;ch++)
1388 CSMKeyControll( &OPL->P_CH[ch] );
1389 }
1390 }
1391
1392 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1393 return OPL->status>>7;
1394}
1395