qemu/hw/sd/sdhci.c
<<
>>
Prefs
   1/*
   2 * SD Association Host Standard Specification v2.0 controller emulation
   3 *
   4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   5 * Mitsyanko Igor <i.mitsyanko@samsung.com>
   6 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
   7 *
   8 * Based on MMC controller for Samsung S5PC1xx-based board emulation
   9 * by Alexey Merkulov and Vladimir Monakhov.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2 of the License, or (at your
  14 * option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  19 * See the GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License along
  22 * with this program; if not, see <http://www.gnu.org/licenses/>.
  23 */
  24
  25#include <inttypes.h>
  26#include "hw/hw.h"
  27#include "sysemu/block-backend.h"
  28#include "sysemu/blockdev.h"
  29#include "sysemu/dma.h"
  30#include "qemu/timer.h"
  31#include "qemu/bitops.h"
  32#include "sdhci-internal.h"
  33
  34/* host controller debug messages */
  35#ifndef SDHC_DEBUG
  36#define SDHC_DEBUG                        0
  37#endif
  38
  39#define DPRINT_L1(fmt, args...) \
  40    do { \
  41        if (SDHC_DEBUG) { \
  42            fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
  43        } \
  44    } while (0)
  45#define DPRINT_L2(fmt, args...) \
  46    do { \
  47        if (SDHC_DEBUG > 1) { \
  48            fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
  49        } \
  50    } while (0)
  51#define ERRPRINT(fmt, args...) \
  52    do { \
  53        if (SDHC_DEBUG) { \
  54            fprintf(stderr, "QEMU SDHC ERROR: " fmt, ## args); \
  55        } \
  56    } while (0)
  57
  58/* Default SD/MMC host controller features information, which will be
  59 * presented in CAPABILITIES register of generic SD host controller at reset.
  60 * If not stated otherwise:
  61 * 0 - not supported, 1 - supported, other - prohibited.
  62 */
  63#define SDHC_CAPAB_64BITBUS       0ul        /* 64-bit System Bus Support */
  64#define SDHC_CAPAB_18V            1ul        /* Voltage support 1.8v */
  65#define SDHC_CAPAB_30V            0ul        /* Voltage support 3.0v */
  66#define SDHC_CAPAB_33V            1ul        /* Voltage support 3.3v */
  67#define SDHC_CAPAB_SUSPRESUME     0ul        /* Suspend/resume support */
  68#define SDHC_CAPAB_SDMA           1ul        /* SDMA support */
  69#define SDHC_CAPAB_HIGHSPEED      1ul        /* High speed support */
  70#define SDHC_CAPAB_ADMA1          1ul        /* ADMA1 support */
  71#define SDHC_CAPAB_ADMA2          1ul        /* ADMA2 support */
  72/* Maximum host controller R/W buffers size
  73 * Possible values: 512, 1024, 2048 bytes */
  74#define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
  75/* Maximum clock frequency for SDclock in MHz
  76 * value in range 10-63 MHz, 0 - not defined */
  77#define SDHC_CAPAB_BASECLKFREQ    52ul
  78#define SDHC_CAPAB_TOUNIT         1ul  /* Timeout clock unit 0 - kHz, 1 - MHz */
  79/* Timeout clock frequency 1-63, 0 - not defined */
  80#define SDHC_CAPAB_TOCLKFREQ      52ul
  81
  82/* Now check all parameters and calculate CAPABILITIES REGISTER value */
  83#if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 ||     \
  84    SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 ||  \
  85    SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
  86    SDHC_CAPAB_TOUNIT > 1
  87#error Capabilities features can have value 0 or 1 only!
  88#endif
  89
  90#if SDHC_CAPAB_MAXBLOCKLENGTH == 512
  91#define MAX_BLOCK_LENGTH 0ul
  92#elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
  93#define MAX_BLOCK_LENGTH 1ul
  94#elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
  95#define MAX_BLOCK_LENGTH 2ul
  96#else
  97#error Max host controller block size can have value 512, 1024 or 2048 only!
  98#endif
  99
 100#if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
 101    SDHC_CAPAB_BASECLKFREQ > 63
 102#error SDclock frequency can have value in range 0, 10-63 only!
 103#endif
 104
 105#if SDHC_CAPAB_TOCLKFREQ > 63
 106#error Timeout clock frequency can have value in range 0-63 only!
 107#endif
 108
 109#define SDHC_CAPAB_REG_DEFAULT                                 \
 110   ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) |     \
 111    (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) |          \
 112    (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) |  \
 113    (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) |  \
 114    (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) |      \
 115    (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
 116    (SDHC_CAPAB_TOCLKFREQ))
 117
 118#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
 119
 120static uint8_t sdhci_slotint(SDHCIState *s)
 121{
 122    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
 123         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
 124         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
 125}
 126
 127static inline void sdhci_update_irq(SDHCIState *s)
 128{
 129    qemu_set_irq(s->irq, sdhci_slotint(s));
 130}
 131
 132static void sdhci_raise_insertion_irq(void *opaque)
 133{
 134    SDHCIState *s = (SDHCIState *)opaque;
 135
 136    if (s->norintsts & SDHC_NIS_REMOVE) {
 137        timer_mod(s->insert_timer,
 138                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
 139    } else {
 140        s->prnsts = 0x1ff0000;
 141        if (s->norintstsen & SDHC_NISEN_INSERT) {
 142            s->norintsts |= SDHC_NIS_INSERT;
 143        }
 144        sdhci_update_irq(s);
 145    }
 146}
 147
 148static void sdhci_insert_eject_cb(void *opaque, int irq, int level)
 149{
 150    SDHCIState *s = (SDHCIState *)opaque;
 151    DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");
 152
 153    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
 154        /* Give target some time to notice card ejection */
 155        timer_mod(s->insert_timer,
 156                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
 157    } else {
 158        if (level) {
 159            s->prnsts = 0x1ff0000;
 160            if (s->norintstsen & SDHC_NISEN_INSERT) {
 161                s->norintsts |= SDHC_NIS_INSERT;
 162            }
 163        } else {
 164            s->prnsts = 0x1fa0000;
 165            s->pwrcon &= ~SDHC_POWER_ON;
 166            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
 167            if (s->norintstsen & SDHC_NISEN_REMOVE) {
 168                s->norintsts |= SDHC_NIS_REMOVE;
 169            }
 170        }
 171        sdhci_update_irq(s);
 172    }
 173}
 174
 175static void sdhci_card_readonly_cb(void *opaque, int irq, int level)
 176{
 177    SDHCIState *s = (SDHCIState *)opaque;
 178
 179    if (level) {
 180        s->prnsts &= ~SDHC_WRITE_PROTECT;
 181    } else {
 182        /* Write enabled */
 183        s->prnsts |= SDHC_WRITE_PROTECT;
 184    }
 185}
 186
 187static void sdhci_reset(SDHCIState *s)
 188{
 189    timer_del(s->insert_timer);
 190    timer_del(s->transfer_timer);
 191    /* Set all registers to 0. Capabilities registers are not cleared
 192     * and assumed to always preserve their value, given to them during
 193     * initialization */
 194    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
 195
 196    sd_set_cb(s->card, s->ro_cb, s->eject_cb);
 197    s->data_count = 0;
 198    s->stopped_state = sdhc_not_stopped;
 199}
 200
 201static void sdhci_data_transfer(void *opaque);
 202
 203static void sdhci_send_command(SDHCIState *s)
 204{
 205    SDRequest request;
 206    uint8_t response[16];
 207    int rlen;
 208
 209    s->errintsts = 0;
 210    s->acmd12errsts = 0;
 211    request.cmd = s->cmdreg >> 8;
 212    request.arg = s->argument;
 213    DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
 214    rlen = sd_do_command(s->card, &request, response);
 215
 216    if (s->cmdreg & SDHC_CMD_RESPONSE) {
 217        if (rlen == 4) {
 218            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
 219                           (response[2] << 8)  |  response[3];
 220            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
 221            DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
 222        } else if (rlen == 16) {
 223            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
 224                           (response[13] << 8) |  response[14];
 225            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
 226                           (response[9] << 8)  |  response[10];
 227            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
 228                           (response[5] << 8)  |  response[6];
 229            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
 230                            response[2];
 231            DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
 232                  "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
 233                  s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
 234        } else {
 235            ERRPRINT("Timeout waiting for command response\n");
 236            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
 237                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
 238                s->norintsts |= SDHC_NIS_ERR;
 239            }
 240        }
 241
 242        if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
 243            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
 244            s->norintsts |= SDHC_NIS_TRSCMP;
 245        }
 246    } else if (rlen != 0 && (s->errintstsen & SDHC_EISEN_CMDIDX)) {
 247        s->errintsts |= SDHC_EIS_CMDIDX;
 248        s->norintsts |= SDHC_NIS_ERR;
 249    }
 250
 251    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
 252        s->norintsts |= SDHC_NIS_CMDCMP;
 253    }
 254
 255    sdhci_update_irq(s);
 256
 257    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
 258        s->data_count = 0;
 259        sdhci_data_transfer(s);
 260    }
 261}
 262
 263static void sdhci_end_transfer(SDHCIState *s)
 264{
 265    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
 266    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
 267        SDRequest request;
 268        uint8_t response[16];
 269
 270        request.cmd = 0x0C;
 271        request.arg = 0;
 272        DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
 273        sd_do_command(s->card, &request, response);
 274        /* Auto CMD12 response goes to the upper Response register */
 275        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
 276                (response[2] << 8) | response[3];
 277    }
 278
 279    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
 280            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
 281            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
 282
 283    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
 284        s->norintsts |= SDHC_NIS_TRSCMP;
 285    }
 286
 287    sdhci_update_irq(s);
 288}
 289
 290/*
 291 * Programmed i/o data transfer
 292 */
 293
 294/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
 295static void sdhci_read_block_from_card(SDHCIState *s)
 296{
 297    int index = 0;
 298
 299    if ((s->trnmod & SDHC_TRNS_MULTI) &&
 300            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
 301        return;
 302    }
 303
 304    for (index = 0; index < (s->blksize & 0x0fff); index++) {
 305        s->fifo_buffer[index] = sd_read_data(s->card);
 306    }
 307
 308    /* New data now available for READ through Buffer Port Register */
 309    s->prnsts |= SDHC_DATA_AVAILABLE;
 310    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
 311        s->norintsts |= SDHC_NIS_RBUFRDY;
 312    }
 313
 314    /* Clear DAT line active status if that was the last block */
 315    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
 316            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
 317        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
 318    }
 319
 320    /* If stop at block gap request was set and it's not the last block of
 321     * data - generate Block Event interrupt */
 322    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
 323            s->blkcnt != 1)    {
 324        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
 325        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
 326            s->norintsts |= SDHC_EIS_BLKGAP;
 327        }
 328    }
 329
 330    sdhci_update_irq(s);
 331}
 332
 333/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
 334static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
 335{
 336    uint32_t value = 0;
 337    int i;
 338
 339    /* first check that a valid data exists in host controller input buffer */
 340    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
 341        ERRPRINT("Trying to read from empty buffer\n");
 342        return 0;
 343    }
 344
 345    for (i = 0; i < size; i++) {
 346        value |= s->fifo_buffer[s->data_count] << i * 8;
 347        s->data_count++;
 348        /* check if we've read all valid data (blksize bytes) from buffer */
 349        if ((s->data_count) >= (s->blksize & 0x0fff)) {
 350            DPRINT_L2("All %u bytes of data have been read from input buffer\n",
 351                    s->data_count);
 352            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
 353            s->data_count = 0;  /* next buff read must start at position [0] */
 354
 355            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 356                s->blkcnt--;
 357            }
 358
 359            /* if that was the last block of data */
 360            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
 361                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
 362                 /* stop at gap request */
 363                (s->stopped_state == sdhc_gap_read &&
 364                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
 365                sdhci_end_transfer(s);
 366            } else { /* if there are more data, read next block from card */
 367                sdhci_read_block_from_card(s);
 368            }
 369            break;
 370        }
 371    }
 372
 373    return value;
 374}
 375
 376/* Write data from host controller FIFO to card */
 377static void sdhci_write_block_to_card(SDHCIState *s)
 378{
 379    int index = 0;
 380
 381    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
 382        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
 383            s->norintsts |= SDHC_NIS_WBUFRDY;
 384        }
 385        sdhci_update_irq(s);
 386        return;
 387    }
 388
 389    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 390        if (s->blkcnt == 0) {
 391            return;
 392        } else {
 393            s->blkcnt--;
 394        }
 395    }
 396
 397    for (index = 0; index < (s->blksize & 0x0fff); index++) {
 398        sd_write_data(s->card, s->fifo_buffer[index]);
 399    }
 400
 401    /* Next data can be written through BUFFER DATORT register */
 402    s->prnsts |= SDHC_SPACE_AVAILABLE;
 403
 404    /* Finish transfer if that was the last block of data */
 405    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
 406            ((s->trnmod & SDHC_TRNS_MULTI) &&
 407            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
 408        sdhci_end_transfer(s);
 409    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
 410        s->norintsts |= SDHC_NIS_WBUFRDY;
 411    }
 412
 413    /* Generate Block Gap Event if requested and if not the last block */
 414    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
 415            s->blkcnt > 0) {
 416        s->prnsts &= ~SDHC_DOING_WRITE;
 417        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
 418            s->norintsts |= SDHC_EIS_BLKGAP;
 419        }
 420        sdhci_end_transfer(s);
 421    }
 422
 423    sdhci_update_irq(s);
 424}
 425
 426/* Write @size bytes of @value data to host controller @s Buffer Data Port
 427 * register */
 428static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
 429{
 430    unsigned i;
 431
 432    /* Check that there is free space left in a buffer */
 433    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
 434        ERRPRINT("Can't write to data buffer: buffer full\n");
 435        return;
 436    }
 437
 438    for (i = 0; i < size; i++) {
 439        s->fifo_buffer[s->data_count] = value & 0xFF;
 440        s->data_count++;
 441        value >>= 8;
 442        if (s->data_count >= (s->blksize & 0x0fff)) {
 443            DPRINT_L2("write buffer filled with %u bytes of data\n",
 444                    s->data_count);
 445            s->data_count = 0;
 446            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
 447            if (s->prnsts & SDHC_DOING_WRITE) {
 448                sdhci_write_block_to_card(s);
 449            }
 450        }
 451    }
 452}
 453
 454/*
 455 * Single DMA data transfer
 456 */
 457
 458/* Multi block SDMA transfer */
 459static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
 460{
 461    bool page_aligned = false;
 462    unsigned int n, begin;
 463    const uint16_t block_size = s->blksize & 0x0fff;
 464    uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
 465    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
 466
 467    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
 468     * possible stop at page boundary if initial address is not page aligned,
 469     * allow them to work properly */
 470    if ((s->sdmasysad % boundary_chk) == 0) {
 471        page_aligned = true;
 472    }
 473
 474    if (s->trnmod & SDHC_TRNS_READ) {
 475        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
 476                SDHC_DAT_LINE_ACTIVE;
 477        while (s->blkcnt) {
 478            if (s->data_count == 0) {
 479                for (n = 0; n < block_size; n++) {
 480                    s->fifo_buffer[n] = sd_read_data(s->card);
 481                }
 482            }
 483            begin = s->data_count;
 484            if (((boundary_count + begin) < block_size) && page_aligned) {
 485                s->data_count = boundary_count + begin;
 486                boundary_count = 0;
 487             } else {
 488                s->data_count = block_size;
 489                boundary_count -= block_size - begin;
 490                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 491                    s->blkcnt--;
 492                }
 493            }
 494            dma_memory_write(&address_space_memory, s->sdmasysad,
 495                             &s->fifo_buffer[begin], s->data_count - begin);
 496            s->sdmasysad += s->data_count - begin;
 497            if (s->data_count == block_size) {
 498                s->data_count = 0;
 499            }
 500            if (page_aligned && boundary_count == 0) {
 501                break;
 502            }
 503        }
 504    } else {
 505        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
 506                SDHC_DAT_LINE_ACTIVE;
 507        while (s->blkcnt) {
 508            begin = s->data_count;
 509            if (((boundary_count + begin) < block_size) && page_aligned) {
 510                s->data_count = boundary_count + begin;
 511                boundary_count = 0;
 512             } else {
 513                s->data_count = block_size;
 514                boundary_count -= block_size - begin;
 515            }
 516            dma_memory_read(&address_space_memory, s->sdmasysad,
 517                            &s->fifo_buffer[begin], s->data_count);
 518            s->sdmasysad += s->data_count - begin;
 519            if (s->data_count == block_size) {
 520                for (n = 0; n < block_size; n++) {
 521                    sd_write_data(s->card, s->fifo_buffer[n]);
 522                }
 523                s->data_count = 0;
 524                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 525                    s->blkcnt--;
 526                }
 527            }
 528            if (page_aligned && boundary_count == 0) {
 529                break;
 530            }
 531        }
 532    }
 533
 534    if (s->blkcnt == 0) {
 535        sdhci_end_transfer(s);
 536    } else {
 537        if (s->norintstsen & SDHC_NISEN_DMA) {
 538            s->norintsts |= SDHC_NIS_DMA;
 539        }
 540        sdhci_update_irq(s);
 541    }
 542}
 543
 544/* single block SDMA transfer */
 545
 546static void sdhci_sdma_transfer_single_block(SDHCIState *s)
 547{
 548    int n;
 549    uint32_t datacnt = s->blksize & 0x0fff;
 550
 551    if (s->trnmod & SDHC_TRNS_READ) {
 552        for (n = 0; n < datacnt; n++) {
 553            s->fifo_buffer[n] = sd_read_data(s->card);
 554        }
 555        dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
 556                         datacnt);
 557    } else {
 558        dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
 559                        datacnt);
 560        for (n = 0; n < datacnt; n++) {
 561            sd_write_data(s->card, s->fifo_buffer[n]);
 562        }
 563    }
 564
 565    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 566        s->blkcnt--;
 567    }
 568
 569    sdhci_end_transfer(s);
 570}
 571
 572typedef struct ADMADescr {
 573    hwaddr addr;
 574    uint16_t length;
 575    uint8_t attr;
 576    uint8_t incr;
 577} ADMADescr;
 578
 579static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
 580{
 581    uint32_t adma1 = 0;
 582    uint64_t adma2 = 0;
 583    hwaddr entry_addr = (hwaddr)s->admasysaddr;
 584    switch (SDHC_DMA_TYPE(s->hostctl)) {
 585    case SDHC_CTRL_ADMA2_32:
 586        dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
 587                        sizeof(adma2));
 588        adma2 = le64_to_cpu(adma2);
 589        /* The spec does not specify endianness of descriptor table.
 590         * We currently assume that it is LE.
 591         */
 592        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
 593        dscr->length = (uint16_t)extract64(adma2, 16, 16);
 594        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
 595        dscr->incr = 8;
 596        break;
 597    case SDHC_CTRL_ADMA1_32:
 598        dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
 599                        sizeof(adma1));
 600        adma1 = le32_to_cpu(adma1);
 601        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
 602        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
 603        dscr->incr = 4;
 604        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
 605            dscr->length = (uint16_t)extract32(adma1, 12, 16);
 606        } else {
 607            dscr->length = 4096;
 608        }
 609        break;
 610    case SDHC_CTRL_ADMA2_64:
 611        dma_memory_read(&address_space_memory, entry_addr,
 612                        (uint8_t *)(&dscr->attr), 1);
 613        dma_memory_read(&address_space_memory, entry_addr + 2,
 614                        (uint8_t *)(&dscr->length), 2);
 615        dscr->length = le16_to_cpu(dscr->length);
 616        dma_memory_read(&address_space_memory, entry_addr + 4,
 617                        (uint8_t *)(&dscr->addr), 8);
 618        dscr->attr = le64_to_cpu(dscr->attr);
 619        dscr->attr &= 0xfffffff8;
 620        dscr->incr = 12;
 621        break;
 622    }
 623}
 624
 625/* Advanced DMA data transfer */
 626
 627static void sdhci_do_adma(SDHCIState *s)
 628{
 629    unsigned int n, begin, length;
 630    const uint16_t block_size = s->blksize & 0x0fff;
 631    ADMADescr dscr;
 632    int i;
 633
 634    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
 635        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
 636
 637        get_adma_description(s, &dscr);
 638        DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
 639                dscr.addr, dscr.length, dscr.attr);
 640
 641        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
 642            /* Indicate that error occurred in ST_FDS state */
 643            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
 644            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
 645
 646            /* Generate ADMA error interrupt */
 647            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
 648                s->errintsts |= SDHC_EIS_ADMAERR;
 649                s->norintsts |= SDHC_NIS_ERR;
 650            }
 651
 652            sdhci_update_irq(s);
 653            return;
 654        }
 655
 656        length = dscr.length ? dscr.length : 65536;
 657
 658        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
 659        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
 660
 661            if (s->trnmod & SDHC_TRNS_READ) {
 662                while (length) {
 663                    if (s->data_count == 0) {
 664                        for (n = 0; n < block_size; n++) {
 665                            s->fifo_buffer[n] = sd_read_data(s->card);
 666                        }
 667                    }
 668                    begin = s->data_count;
 669                    if ((length + begin) < block_size) {
 670                        s->data_count = length + begin;
 671                        length = 0;
 672                     } else {
 673                        s->data_count = block_size;
 674                        length -= block_size - begin;
 675                    }
 676                    dma_memory_write(&address_space_memory, dscr.addr,
 677                                     &s->fifo_buffer[begin],
 678                                     s->data_count - begin);
 679                    dscr.addr += s->data_count - begin;
 680                    if (s->data_count == block_size) {
 681                        s->data_count = 0;
 682                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 683                            s->blkcnt--;
 684                            if (s->blkcnt == 0) {
 685                                break;
 686                            }
 687                        }
 688                    }
 689                }
 690            } else {
 691                while (length) {
 692                    begin = s->data_count;
 693                    if ((length + begin) < block_size) {
 694                        s->data_count = length + begin;
 695                        length = 0;
 696                     } else {
 697                        s->data_count = block_size;
 698                        length -= block_size - begin;
 699                    }
 700                    dma_memory_read(&address_space_memory, dscr.addr,
 701                                    &s->fifo_buffer[begin],
 702                                    s->data_count - begin);
 703                    dscr.addr += s->data_count - begin;
 704                    if (s->data_count == block_size) {
 705                        for (n = 0; n < block_size; n++) {
 706                            sd_write_data(s->card, s->fifo_buffer[n]);
 707                        }
 708                        s->data_count = 0;
 709                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 710                            s->blkcnt--;
 711                            if (s->blkcnt == 0) {
 712                                break;
 713                            }
 714                        }
 715                    }
 716                }
 717            }
 718            s->admasysaddr += dscr.incr;
 719            break;
 720        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
 721            s->admasysaddr = dscr.addr;
 722            DPRINT_L1("ADMA link: admasysaddr=0x%" PRIx64 "\n",
 723                      s->admasysaddr);
 724            break;
 725        default:
 726            s->admasysaddr += dscr.incr;
 727            break;
 728        }
 729
 730        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
 731            DPRINT_L1("ADMA interrupt: admasysaddr=0x%" PRIx64 "\n",
 732                      s->admasysaddr);
 733            if (s->norintstsen & SDHC_NISEN_DMA) {
 734                s->norintsts |= SDHC_NIS_DMA;
 735            }
 736
 737            sdhci_update_irq(s);
 738        }
 739
 740        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
 741        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
 742                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
 743            DPRINT_L2("ADMA transfer completed\n");
 744            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
 745                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
 746                s->blkcnt != 0)) {
 747                ERRPRINT("SD/MMC host ADMA length mismatch\n");
 748                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
 749                        SDHC_ADMAERR_STATE_ST_TFR;
 750                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
 751                    ERRPRINT("Set ADMA error flag\n");
 752                    s->errintsts |= SDHC_EIS_ADMAERR;
 753                    s->norintsts |= SDHC_NIS_ERR;
 754                }
 755
 756                sdhci_update_irq(s);
 757            }
 758            sdhci_end_transfer(s);
 759            return;
 760        }
 761
 762    }
 763
 764    /* we have unfinished business - reschedule to continue ADMA */
 765    timer_mod(s->transfer_timer,
 766                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
 767}
 768
 769/* Perform data transfer according to controller configuration */
 770
 771static void sdhci_data_transfer(void *opaque)
 772{
 773    SDHCIState *s = (SDHCIState *)opaque;
 774
 775    if (s->trnmod & SDHC_TRNS_DMA) {
 776        switch (SDHC_DMA_TYPE(s->hostctl)) {
 777        case SDHC_CTRL_SDMA:
 778            if ((s->trnmod & SDHC_TRNS_MULTI) &&
 779                    (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
 780                break;
 781            }
 782
 783            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
 784                sdhci_sdma_transfer_single_block(s);
 785            } else {
 786                sdhci_sdma_transfer_multi_blocks(s);
 787            }
 788
 789            break;
 790        case SDHC_CTRL_ADMA1_32:
 791            if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
 792                ERRPRINT("ADMA1 not supported\n");
 793                break;
 794            }
 795
 796            sdhci_do_adma(s);
 797            break;
 798        case SDHC_CTRL_ADMA2_32:
 799            if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
 800                ERRPRINT("ADMA2 not supported\n");
 801                break;
 802            }
 803
 804            sdhci_do_adma(s);
 805            break;
 806        case SDHC_CTRL_ADMA2_64:
 807            if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
 808                    !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
 809                ERRPRINT("64 bit ADMA not supported\n");
 810                break;
 811            }
 812
 813            sdhci_do_adma(s);
 814            break;
 815        default:
 816            ERRPRINT("Unsupported DMA type\n");
 817            break;
 818        }
 819    } else {
 820        if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) {
 821            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
 822                    SDHC_DAT_LINE_ACTIVE;
 823            sdhci_read_block_from_card(s);
 824        } else {
 825            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
 826                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
 827            sdhci_write_block_to_card(s);
 828        }
 829    }
 830}
 831
 832static bool sdhci_can_issue_command(SDHCIState *s)
 833{
 834    if (!SDHC_CLOCK_IS_ON(s->clkcon) || !(s->pwrcon & SDHC_POWER_ON) ||
 835        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
 836        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
 837        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
 838        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
 839        return false;
 840    }
 841
 842    return true;
 843}
 844
 845/* The Buffer Data Port register must be accessed in sequential and
 846 * continuous manner */
 847static inline bool
 848sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
 849{
 850    if ((s->data_count & 0x3) != byte_num) {
 851        ERRPRINT("Non-sequential access to Buffer Data Port register"
 852                "is prohibited\n");
 853        return false;
 854    }
 855    return true;
 856}
 857
 858static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
 859{
 860    SDHCIState *s = (SDHCIState *)opaque;
 861    uint32_t ret = 0;
 862
 863    switch (offset & ~0x3) {
 864    case SDHC_SYSAD:
 865        ret = s->sdmasysad;
 866        break;
 867    case SDHC_BLKSIZE:
 868        ret = s->blksize | (s->blkcnt << 16);
 869        break;
 870    case SDHC_ARGUMENT:
 871        ret = s->argument;
 872        break;
 873    case SDHC_TRNMOD:
 874        ret = s->trnmod | (s->cmdreg << 16);
 875        break;
 876    case SDHC_RSPREG0 ... SDHC_RSPREG3:
 877        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
 878        break;
 879    case  SDHC_BDATA:
 880        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
 881            ret = sdhci_read_dataport(s, size);
 882            DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset,
 883                      ret, ret);
 884            return ret;
 885        }
 886        break;
 887    case SDHC_PRNSTS:
 888        ret = s->prnsts;
 889        break;
 890    case SDHC_HOSTCTL:
 891        ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
 892              (s->wakcon << 24);
 893        break;
 894    case SDHC_CLKCON:
 895        ret = s->clkcon | (s->timeoutcon << 16);
 896        break;
 897    case SDHC_NORINTSTS:
 898        ret = s->norintsts | (s->errintsts << 16);
 899        break;
 900    case SDHC_NORINTSTSEN:
 901        ret = s->norintstsen | (s->errintstsen << 16);
 902        break;
 903    case SDHC_NORINTSIGEN:
 904        ret = s->norintsigen | (s->errintsigen << 16);
 905        break;
 906    case SDHC_ACMD12ERRSTS:
 907        ret = s->acmd12errsts;
 908        break;
 909    case SDHC_CAPAREG:
 910        ret = s->capareg;
 911        break;
 912    case SDHC_MAXCURR:
 913        ret = s->maxcurr;
 914        break;
 915    case SDHC_ADMAERR:
 916        ret =  s->admaerr;
 917        break;
 918    case SDHC_ADMASYSADDR:
 919        ret = (uint32_t)s->admasysaddr;
 920        break;
 921    case SDHC_ADMASYSADDR + 4:
 922        ret = (uint32_t)(s->admasysaddr >> 32);
 923        break;
 924    case SDHC_SLOT_INT_STATUS:
 925        ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
 926        break;
 927    default:
 928        ERRPRINT("bad %ub read: addr[0x%04x]\n", size, (int)offset);
 929        break;
 930    }
 931
 932    ret >>= (offset & 0x3) * 8;
 933    ret &= (1ULL << (size * 8)) - 1;
 934    DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset, ret, ret);
 935    return ret;
 936}
 937
 938static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
 939{
 940    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
 941        return;
 942    }
 943    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
 944
 945    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
 946            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
 947        if (s->stopped_state == sdhc_gap_read) {
 948            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
 949            sdhci_read_block_from_card(s);
 950        } else {
 951            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
 952            sdhci_write_block_to_card(s);
 953        }
 954        s->stopped_state = sdhc_not_stopped;
 955    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
 956        if (s->prnsts & SDHC_DOING_READ) {
 957            s->stopped_state = sdhc_gap_read;
 958        } else if (s->prnsts & SDHC_DOING_WRITE) {
 959            s->stopped_state = sdhc_gap_write;
 960        }
 961    }
 962}
 963
 964static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
 965{
 966    switch (value) {
 967    case SDHC_RESET_ALL:
 968        sdhci_reset(s);
 969        break;
 970    case SDHC_RESET_CMD:
 971        s->prnsts &= ~SDHC_CMD_INHIBIT;
 972        s->norintsts &= ~SDHC_NIS_CMDCMP;
 973        break;
 974    case SDHC_RESET_DATA:
 975        s->data_count = 0;
 976        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
 977                SDHC_DOING_READ | SDHC_DOING_WRITE |
 978                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
 979        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
 980        s->stopped_state = sdhc_not_stopped;
 981        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
 982                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
 983        break;
 984    }
 985}
 986
 987static void
 988sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
 989{
 990    SDHCIState *s = (SDHCIState *)opaque;
 991    unsigned shift =  8 * (offset & 0x3);
 992    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
 993    uint32_t value = val;
 994    value <<= shift;
 995
 996    switch (offset & ~0x3) {
 997    case SDHC_SYSAD:
 998        s->sdmasysad = (s->sdmasysad & mask) | value;
 999        MASKED_WRITE(s->sdmasysad, mask, value);
1000        /* Writing to last byte of sdmasysad might trigger transfer */
1001        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1002                s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1003            sdhci_sdma_transfer_multi_blocks(s);
1004        }
1005        break;
1006    case SDHC_BLKSIZE:
1007        if (!TRANSFERRING_DATA(s->prnsts)) {
1008            MASKED_WRITE(s->blksize, mask, value);
1009            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1010        }
1011
1012        /* Limit block size to the maximum buffer size */
1013        if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1014            qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1015                          "the maximum buffer 0x%x", __func__, s->blksize,
1016                          s->buf_maxsz);
1017
1018            s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1019        }
1020
1021        break;
1022    case SDHC_ARGUMENT:
1023        MASKED_WRITE(s->argument, mask, value);
1024        break;
1025    case SDHC_TRNMOD:
1026        /* DMA can be enabled only if it is supported as indicated by
1027         * capabilities register */
1028        if (!(s->capareg & SDHC_CAN_DO_DMA)) {
1029            value &= ~SDHC_TRNS_DMA;
1030        }
1031        MASKED_WRITE(s->trnmod, mask, value);
1032        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1033
1034        /* Writing to the upper byte of CMDREG triggers SD command generation */
1035        if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1036            break;
1037        }
1038
1039        sdhci_send_command(s);
1040        break;
1041    case  SDHC_BDATA:
1042        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1043            sdhci_write_dataport(s, value >> shift, size);
1044        }
1045        break;
1046    case SDHC_HOSTCTL:
1047        if (!(mask & 0xFF0000)) {
1048            sdhci_blkgap_write(s, value >> 16);
1049        }
1050        MASKED_WRITE(s->hostctl, mask, value);
1051        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1052        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1053        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1054                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1055            s->pwrcon &= ~SDHC_POWER_ON;
1056        }
1057        break;
1058    case SDHC_CLKCON:
1059        if (!(mask & 0xFF000000)) {
1060            sdhci_reset_write(s, value >> 24);
1061        }
1062        MASKED_WRITE(s->clkcon, mask, value);
1063        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1064        if (s->clkcon & SDHC_CLOCK_INT_EN) {
1065            s->clkcon |= SDHC_CLOCK_INT_STABLE;
1066        } else {
1067            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1068        }
1069        break;
1070    case SDHC_NORINTSTS:
1071        if (s->norintstsen & SDHC_NISEN_CARDINT) {
1072            value &= ~SDHC_NIS_CARDINT;
1073        }
1074        s->norintsts &= mask | ~value;
1075        s->errintsts &= (mask >> 16) | ~(value >> 16);
1076        if (s->errintsts) {
1077            s->norintsts |= SDHC_NIS_ERR;
1078        } else {
1079            s->norintsts &= ~SDHC_NIS_ERR;
1080        }
1081        sdhci_update_irq(s);
1082        break;
1083    case SDHC_NORINTSTSEN:
1084        MASKED_WRITE(s->norintstsen, mask, value);
1085        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1086        s->norintsts &= s->norintstsen;
1087        s->errintsts &= s->errintstsen;
1088        if (s->errintsts) {
1089            s->norintsts |= SDHC_NIS_ERR;
1090        } else {
1091            s->norintsts &= ~SDHC_NIS_ERR;
1092        }
1093        sdhci_update_irq(s);
1094        break;
1095    case SDHC_NORINTSIGEN:
1096        MASKED_WRITE(s->norintsigen, mask, value);
1097        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1098        sdhci_update_irq(s);
1099        break;
1100    case SDHC_ADMAERR:
1101        MASKED_WRITE(s->admaerr, mask, value);
1102        break;
1103    case SDHC_ADMASYSADDR:
1104        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1105                (uint64_t)mask)) | (uint64_t)value;
1106        break;
1107    case SDHC_ADMASYSADDR + 4:
1108        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1109                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1110        break;
1111    case SDHC_FEAER:
1112        s->acmd12errsts |= value;
1113        s->errintsts |= (value >> 16) & s->errintstsen;
1114        if (s->acmd12errsts) {
1115            s->errintsts |= SDHC_EIS_CMD12ERR;
1116        }
1117        if (s->errintsts) {
1118            s->norintsts |= SDHC_NIS_ERR;
1119        }
1120        sdhci_update_irq(s);
1121        break;
1122    default:
1123        ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
1124                 size, (int)offset, value >> shift, value >> shift);
1125        break;
1126    }
1127    DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
1128              size, (int)offset, value >> shift, value >> shift);
1129}
1130
1131static const MemoryRegionOps sdhci_mmio_ops = {
1132    .read = sdhci_read,
1133    .write = sdhci_write,
1134    .valid = {
1135        .min_access_size = 1,
1136        .max_access_size = 4,
1137        .unaligned = false
1138    },
1139    .endianness = DEVICE_LITTLE_ENDIAN,
1140};
1141
1142static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
1143{
1144    switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
1145    case 0:
1146        return 512;
1147    case 1:
1148        return 1024;
1149    case 2:
1150        return 2048;
1151    default:
1152        hw_error("SDHC: unsupported value for maximum block size\n");
1153        return 0;
1154    }
1155}
1156
1157static void sdhci_initfn(SDHCIState *s, BlockBackend *blk)
1158{
1159    s->card = sd_init(blk, false);
1160    if (s->card == NULL) {
1161        exit(1);
1162    }
1163    s->eject_cb = qemu_allocate_irq(sdhci_insert_eject_cb, s, 0);
1164    s->ro_cb = qemu_allocate_irq(sdhci_card_readonly_cb, s, 0);
1165    sd_set_cb(s->card, s->ro_cb, s->eject_cb);
1166
1167    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1168    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1169}
1170
1171static void sdhci_uninitfn(SDHCIState *s)
1172{
1173    timer_del(s->insert_timer);
1174    timer_free(s->insert_timer);
1175    timer_del(s->transfer_timer);
1176    timer_free(s->transfer_timer);
1177    qemu_free_irq(s->eject_cb);
1178    qemu_free_irq(s->ro_cb);
1179
1180    g_free(s->fifo_buffer);
1181    s->fifo_buffer = NULL;
1182}
1183
1184const VMStateDescription sdhci_vmstate = {
1185    .name = "sdhci",
1186    .version_id = 1,
1187    .minimum_version_id = 1,
1188    .fields = (VMStateField[]) {
1189        VMSTATE_UINT32(sdmasysad, SDHCIState),
1190        VMSTATE_UINT16(blksize, SDHCIState),
1191        VMSTATE_UINT16(blkcnt, SDHCIState),
1192        VMSTATE_UINT32(argument, SDHCIState),
1193        VMSTATE_UINT16(trnmod, SDHCIState),
1194        VMSTATE_UINT16(cmdreg, SDHCIState),
1195        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1196        VMSTATE_UINT32(prnsts, SDHCIState),
1197        VMSTATE_UINT8(hostctl, SDHCIState),
1198        VMSTATE_UINT8(pwrcon, SDHCIState),
1199        VMSTATE_UINT8(blkgap, SDHCIState),
1200        VMSTATE_UINT8(wakcon, SDHCIState),
1201        VMSTATE_UINT16(clkcon, SDHCIState),
1202        VMSTATE_UINT8(timeoutcon, SDHCIState),
1203        VMSTATE_UINT8(admaerr, SDHCIState),
1204        VMSTATE_UINT16(norintsts, SDHCIState),
1205        VMSTATE_UINT16(errintsts, SDHCIState),
1206        VMSTATE_UINT16(norintstsen, SDHCIState),
1207        VMSTATE_UINT16(errintstsen, SDHCIState),
1208        VMSTATE_UINT16(norintsigen, SDHCIState),
1209        VMSTATE_UINT16(errintsigen, SDHCIState),
1210        VMSTATE_UINT16(acmd12errsts, SDHCIState),
1211        VMSTATE_UINT16(data_count, SDHCIState),
1212        VMSTATE_UINT64(admasysaddr, SDHCIState),
1213        VMSTATE_UINT8(stopped_state, SDHCIState),
1214        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz),
1215        VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1216        VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1217        VMSTATE_END_OF_LIST()
1218    }
1219};
1220
1221/* Capabilities registers provide information on supported features of this
1222 * specific host controller implementation */
1223static Property sdhci_pci_properties[] = {
1224    /*
1225     * We currently fuse controller and card into a single device
1226     * model, but we intend to separate them.  For that purpose, the
1227     * properties that belong to the card are marked as experimental.
1228     */
1229    DEFINE_PROP_DRIVE("x-drive", SDHCIState, blk),
1230    DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1231            SDHC_CAPAB_REG_DEFAULT),
1232    DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1233    DEFINE_PROP_END_OF_LIST(),
1234};
1235
1236static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1237{
1238    SDHCIState *s = PCI_SDHCI(dev);
1239    dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1240    dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1241    sdhci_initfn(s, s->blk);
1242    s->buf_maxsz = sdhci_get_fifolen(s);
1243    s->fifo_buffer = g_malloc0(s->buf_maxsz);
1244    s->irq = pci_allocate_irq(dev);
1245    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1246            SDHC_REGISTERS_MAP_SIZE);
1247    pci_register_bar(dev, 0, 0, &s->iomem);
1248}
1249
1250static void sdhci_pci_exit(PCIDevice *dev)
1251{
1252    SDHCIState *s = PCI_SDHCI(dev);
1253    sdhci_uninitfn(s);
1254}
1255
1256static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1257{
1258    DeviceClass *dc = DEVICE_CLASS(klass);
1259    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1260
1261    k->realize = sdhci_pci_realize;
1262    k->exit = sdhci_pci_exit;
1263    k->vendor_id = PCI_VENDOR_ID_REDHAT;
1264    k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1265    k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1266    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1267    dc->vmsd = &sdhci_vmstate;
1268    dc->props = sdhci_pci_properties;
1269}
1270
1271static const TypeInfo sdhci_pci_info = {
1272    .name = TYPE_PCI_SDHCI,
1273    .parent = TYPE_PCI_DEVICE,
1274    .instance_size = sizeof(SDHCIState),
1275    .class_init = sdhci_pci_class_init,
1276};
1277
1278static Property sdhci_sysbus_properties[] = {
1279    DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1280            SDHC_CAPAB_REG_DEFAULT),
1281    DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1282    DEFINE_PROP_END_OF_LIST(),
1283};
1284
1285static void sdhci_sysbus_init(Object *obj)
1286{
1287    SDHCIState *s = SYSBUS_SDHCI(obj);
1288    DriveInfo *di;
1289
1290    /* FIXME use a qdev drive property instead of drive_get_next() */
1291    di = drive_get_next(IF_SD);
1292    sdhci_initfn(s, di ? blk_by_legacy_dinfo(di) : NULL);
1293}
1294
1295static void sdhci_sysbus_finalize(Object *obj)
1296{
1297    SDHCIState *s = SYSBUS_SDHCI(obj);
1298    sdhci_uninitfn(s);
1299}
1300
1301static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1302{
1303    SDHCIState *s = SYSBUS_SDHCI(dev);
1304    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1305
1306    s->buf_maxsz = sdhci_get_fifolen(s);
1307    s->fifo_buffer = g_malloc0(s->buf_maxsz);
1308    sysbus_init_irq(sbd, &s->irq);
1309    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1310            SDHC_REGISTERS_MAP_SIZE);
1311    sysbus_init_mmio(sbd, &s->iomem);
1312}
1313
1314static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1315{
1316    DeviceClass *dc = DEVICE_CLASS(klass);
1317
1318    dc->vmsd = &sdhci_vmstate;
1319    dc->props = sdhci_sysbus_properties;
1320    dc->realize = sdhci_sysbus_realize;
1321    /* Reason: instance_init() method uses drive_get_next() */
1322    dc->cannot_instantiate_with_device_add_yet = true;
1323}
1324
1325static const TypeInfo sdhci_sysbus_info = {
1326    .name = TYPE_SYSBUS_SDHCI,
1327    .parent = TYPE_SYS_BUS_DEVICE,
1328    .instance_size = sizeof(SDHCIState),
1329    .instance_init = sdhci_sysbus_init,
1330    .instance_finalize = sdhci_sysbus_finalize,
1331    .class_init = sdhci_sysbus_class_init,
1332};
1333
1334static void sdhci_register_types(void)
1335{
1336    type_register_static(&sdhci_pci_info);
1337    type_register_static(&sdhci_sysbus_info);
1338}
1339
1340type_init(sdhci_register_types)
1341