qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include <signal.h>
   5#include <string.h>
   6
   7#include "cpu.h"
   8#include "exec/cpu_ldst.h"
   9
  10#undef DEBUG_REMAP
  11#ifdef DEBUG_REMAP
  12#include <stdlib.h>
  13#endif /* DEBUG_REMAP */
  14
  15#include "exec/user/abitypes.h"
  16
  17#include "exec/user/thunk.h"
  18#include "syscall_defs.h"
  19#include "syscall.h"
  20#include "exec/gdbstub.h"
  21#include "qemu/queue.h"
  22
  23#define THREAD __thread
  24
  25/* This struct is used to hold certain information about the image.
  26 * Basically, it replicates in user space what would be certain
  27 * task_struct fields in the kernel
  28 */
  29struct image_info {
  30        abi_ulong       load_bias;
  31        abi_ulong       load_addr;
  32        abi_ulong       start_code;
  33        abi_ulong       end_code;
  34        abi_ulong       start_data;
  35        abi_ulong       end_data;
  36        abi_ulong       start_brk;
  37        abi_ulong       brk;
  38        abi_ulong       start_mmap;
  39        abi_ulong       start_stack;
  40        abi_ulong       stack_limit;
  41        abi_ulong       entry;
  42        abi_ulong       code_offset;
  43        abi_ulong       data_offset;
  44        abi_ulong       saved_auxv;
  45        abi_ulong       auxv_len;
  46        abi_ulong       arg_start;
  47        abi_ulong       arg_end;
  48        uint32_t        elf_flags;
  49        int             personality;
  50#ifdef CONFIG_USE_FDPIC
  51        abi_ulong       loadmap_addr;
  52        uint16_t        nsegs;
  53        void           *loadsegs;
  54        abi_ulong       pt_dynamic_addr;
  55        struct image_info *other_info;
  56#endif
  57};
  58
  59#ifdef TARGET_I386
  60/* Information about the current linux thread */
  61struct vm86_saved_state {
  62    uint32_t eax; /* return code */
  63    uint32_t ebx;
  64    uint32_t ecx;
  65    uint32_t edx;
  66    uint32_t esi;
  67    uint32_t edi;
  68    uint32_t ebp;
  69    uint32_t esp;
  70    uint32_t eflags;
  71    uint32_t eip;
  72    uint16_t cs, ss, ds, es, fs, gs;
  73};
  74#endif
  75
  76#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  77/* FPU emulator */
  78#include "nwfpe/fpa11.h"
  79#endif
  80
  81#define MAX_SIGQUEUE_SIZE 1024
  82
  83struct sigqueue {
  84    struct sigqueue *next;
  85    target_siginfo_t info;
  86};
  87
  88struct emulated_sigtable {
  89    int pending; /* true if signal is pending */
  90    struct sigqueue *first;
  91    struct sigqueue info; /* in order to always have memory for the
  92                             first signal, we put it here */
  93};
  94
  95/* NOTE: we force a big alignment so that the stack stored after is
  96   aligned too */
  97typedef struct TaskState {
  98    pid_t ts_tid;     /* tid (or pid) of this task */
  99#ifdef TARGET_ARM
 100# ifdef TARGET_ABI32
 101    /* FPA state */
 102    FPA11 fpa;
 103# endif
 104    int swi_errno;
 105#endif
 106#ifdef TARGET_UNICORE32
 107    int swi_errno;
 108#endif
 109#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 110    abi_ulong target_v86;
 111    struct vm86_saved_state vm86_saved_regs;
 112    struct target_vm86plus_struct vm86plus;
 113    uint32_t v86flags;
 114    uint32_t v86mask;
 115#endif
 116    abi_ulong child_tidptr;
 117#ifdef TARGET_M68K
 118    int sim_syscalls;
 119    abi_ulong tp_value;
 120#endif
 121#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
 122    /* Extra fields for semihosted binaries.  */
 123    uint32_t heap_base;
 124    uint32_t heap_limit;
 125#endif
 126    uint32_t stack_base;
 127    int used; /* non zero if used */
 128    bool sigsegv_blocked; /* SIGSEGV blocked by guest */
 129    struct image_info *info;
 130    struct linux_binprm *bprm;
 131
 132    struct emulated_sigtable sigtab[TARGET_NSIG];
 133    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
 134    struct sigqueue *first_free; /* first free siginfo queue entry */
 135    int signal_pending; /* non zero if a signal may be pending */
 136} __attribute__((aligned(16))) TaskState;
 137
 138extern char *exec_path;
 139void init_task_state(TaskState *ts);
 140void task_settid(TaskState *);
 141void stop_all_tasks(void);
 142extern const char *qemu_uname_release;
 143extern unsigned long mmap_min_addr;
 144
 145/* ??? See if we can avoid exposing so much of the loader internals.  */
 146
 147/* Read a good amount of data initially, to hopefully get all the
 148   program headers loaded.  */
 149#define BPRM_BUF_SIZE  1024
 150
 151/*
 152 * This structure is used to hold the arguments that are
 153 * used when loading binaries.
 154 */
 155struct linux_binprm {
 156        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 157        abi_ulong p;
 158        int fd;
 159        int e_uid, e_gid;
 160        int argc, envc;
 161        char **argv;
 162        char **envp;
 163        char * filename;        /* Name of binary */
 164        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 165};
 166
 167void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 168abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 169                              abi_ulong stringp, int push_ptr);
 170int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 171             struct target_pt_regs * regs, struct image_info *infop,
 172             struct linux_binprm *);
 173
 174int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 175int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 176
 177abi_long memcpy_to_target(abi_ulong dest, const void *src,
 178                          unsigned long len);
 179void target_set_brk(abi_ulong new_brk);
 180abi_long do_brk(abi_ulong new_brk);
 181void syscall_init(void);
 182abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 183                    abi_long arg2, abi_long arg3, abi_long arg4,
 184                    abi_long arg5, abi_long arg6, abi_long arg7,
 185                    abi_long arg8);
 186void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 187extern THREAD CPUState *thread_cpu;
 188void cpu_loop(CPUArchState *env);
 189char *target_strerror(int err);
 190int get_osversion(void);
 191void init_qemu_uname_release(void);
 192void fork_start(void);
 193void fork_end(int child);
 194
 195/* Creates the initial guest address space in the host memory space using
 196 * the given host start address hint and size.  The guest_start parameter
 197 * specifies the start address of the guest space.  guest_base will be the
 198 * difference between the host start address computed by this function and
 199 * guest_start.  If fixed is specified, then the mapped address space must
 200 * start at host_start.  The real start address of the mapped memory space is
 201 * returned or -1 if there was an error.
 202 */
 203unsigned long init_guest_space(unsigned long host_start,
 204                               unsigned long host_size,
 205                               unsigned long guest_start,
 206                               bool fixed);
 207
 208#include "qemu/log.h"
 209
 210/* syscall.c */
 211int host_to_target_waitstatus(int status);
 212
 213/* strace.c */
 214void print_syscall(int num,
 215                   abi_long arg1, abi_long arg2, abi_long arg3,
 216                   abi_long arg4, abi_long arg5, abi_long arg6);
 217void print_syscall_ret(int num, abi_long arg1);
 218extern int do_strace;
 219
 220/* signal.c */
 221void process_pending_signals(CPUArchState *cpu_env);
 222void signal_init(void);
 223int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
 224void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 225void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 226int target_to_host_signal(int sig);
 227int host_to_target_signal(int sig);
 228long do_sigreturn(CPUArchState *env);
 229long do_rt_sigreturn(CPUArchState *env);
 230abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 231int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 232
 233#ifdef TARGET_I386
 234/* vm86.c */
 235void save_v86_state(CPUX86State *env);
 236void handle_vm86_trap(CPUX86State *env, int trapno);
 237void handle_vm86_fault(CPUX86State *env);
 238int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 239#elif defined(TARGET_SPARC64)
 240void sparc64_set_context(CPUSPARCState *env);
 241void sparc64_get_context(CPUSPARCState *env);
 242#endif
 243
 244/* mmap.c */
 245int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 246abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 247                     int flags, int fd, abi_ulong offset);
 248int target_munmap(abi_ulong start, abi_ulong len);
 249abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 250                       abi_ulong new_size, unsigned long flags,
 251                       abi_ulong new_addr);
 252int target_msync(abi_ulong start, abi_ulong len, int flags);
 253extern unsigned long last_brk;
 254extern abi_ulong mmap_next_start;
 255abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
 256void cpu_list_lock(void);
 257void cpu_list_unlock(void);
 258void mmap_fork_start(void);
 259void mmap_fork_end(int child);
 260
 261/* main.c */
 262extern unsigned long guest_stack_size;
 263
 264/* user access */
 265
 266#define VERIFY_READ 0
 267#define VERIFY_WRITE 1 /* implies read access */
 268
 269static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 270{
 271    return page_check_range((target_ulong)addr, size,
 272                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 273}
 274
 275/* NOTE __get_user and __put_user use host pointers and don't check access.
 276   These are usually used to access struct data members once the struct has
 277   been locked - usually with lock_user_struct.  */
 278
 279/* Tricky points:
 280   - Use __builtin_choose_expr to avoid type promotion from ?:,
 281   - Invalid sizes result in a compile time error stemming from
 282     the fact that abort has no parameters.
 283   - It's easier to use the endian-specific unaligned load/store
 284     functions than host-endian unaligned load/store plus tswapN.  */
 285
 286#define __put_user_e(x, hptr, e)                                        \
 287  (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
 288   __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
 289   __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
 290   __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
 291     ((hptr), (x)), (void)0)
 292
 293#define __get_user_e(x, hptr, e)                                        \
 294  ((x) = (typeof(*hptr))(                                               \
 295   __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
 296   __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
 297   __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
 298   __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
 299     (hptr)), (void)0)
 300
 301#ifdef TARGET_WORDS_BIGENDIAN
 302# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 303# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 304#else
 305# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 306# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 307#endif
 308
 309/* put_user()/get_user() take a guest address and check access */
 310/* These are usually used to access an atomic data type, such as an int,
 311 * that has been passed by address.  These internally perform locking
 312 * and unlocking on the data type.
 313 */
 314#define put_user(x, gaddr, target_type)                                 \
 315({                                                                      \
 316    abi_ulong __gaddr = (gaddr);                                        \
 317    target_type *__hptr;                                                \
 318    abi_long __ret = 0;                                                 \
 319    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 320        __put_user((x), __hptr);                                \
 321        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 322    } else                                                              \
 323        __ret = -TARGET_EFAULT;                                         \
 324    __ret;                                                              \
 325})
 326
 327#define get_user(x, gaddr, target_type)                                 \
 328({                                                                      \
 329    abi_ulong __gaddr = (gaddr);                                        \
 330    target_type *__hptr;                                                \
 331    abi_long __ret = 0;                                                 \
 332    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 333        __get_user((x), __hptr);                                \
 334        unlock_user(__hptr, __gaddr, 0);                                \
 335    } else {                                                            \
 336        /* avoid warning */                                             \
 337        (x) = 0;                                                        \
 338        __ret = -TARGET_EFAULT;                                         \
 339    }                                                                   \
 340    __ret;                                                              \
 341})
 342
 343#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 344#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 345#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 346#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 347#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 348#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 349#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 350#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 351#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 352#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 353
 354#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 355#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 356#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 357#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 358#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 359#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 360#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 361#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 362#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 363#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 364
 365/* copy_from_user() and copy_to_user() are usually used to copy data
 366 * buffers between the target and host.  These internally perform
 367 * locking/unlocking of the memory.
 368 */
 369abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 370abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 371
 372/* Functions for accessing guest memory.  The tget and tput functions
 373   read/write single values, byteswapping as necessary.  The lock_user function
 374   gets a pointer to a contiguous area of guest memory, but does not perform
 375   any byteswapping.  lock_user may return either a pointer to the guest
 376   memory, or a temporary buffer.  */
 377
 378/* Lock an area of guest memory into the host.  If copy is true then the
 379   host area will have the same contents as the guest.  */
 380static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 381{
 382    if (!access_ok(type, guest_addr, len))
 383        return NULL;
 384#ifdef DEBUG_REMAP
 385    {
 386        void *addr;
 387        addr = malloc(len);
 388        if (copy)
 389            memcpy(addr, g2h(guest_addr), len);
 390        else
 391            memset(addr, 0, len);
 392        return addr;
 393    }
 394#else
 395    return g2h(guest_addr);
 396#endif
 397}
 398
 399/* Unlock an area of guest memory.  The first LEN bytes must be
 400   flushed back to guest memory. host_ptr = NULL is explicitly
 401   allowed and does nothing. */
 402static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 403                               long len)
 404{
 405
 406#ifdef DEBUG_REMAP
 407    if (!host_ptr)
 408        return;
 409    if (host_ptr == g2h(guest_addr))
 410        return;
 411    if (len > 0)
 412        memcpy(g2h(guest_addr), host_ptr, len);
 413    free(host_ptr);
 414#endif
 415}
 416
 417/* Return the length of a string in target memory or -TARGET_EFAULT if
 418   access error. */
 419abi_long target_strlen(abi_ulong gaddr);
 420
 421/* Like lock_user but for null terminated strings.  */
 422static inline void *lock_user_string(abi_ulong guest_addr)
 423{
 424    abi_long len;
 425    len = target_strlen(guest_addr);
 426    if (len < 0)
 427        return NULL;
 428    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 429}
 430
 431/* Helper macros for locking/unlocking a target struct.  */
 432#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 433    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 434#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 435    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 436
 437#include <pthread.h>
 438
 439/* Include target-specific struct and function definitions;
 440 * they may need access to the target-independent structures
 441 * above, so include them last.
 442 */
 443#include "target_cpu.h"
 444#include "target_signal.h"
 445#include "target_structs.h"
 446
 447#endif /* QEMU_H */
 448