qemu/target-arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ARM_H
  20#define CPU_ARM_H
  21
  22#include "config.h"
  23
  24#include "kvm-consts.h"
  25
  26#if defined(TARGET_AARCH64)
  27  /* AArch64 definitions */
  28#  define TARGET_LONG_BITS 64
  29#else
  30#  define TARGET_LONG_BITS 32
  31#endif
  32
  33#define TARGET_IS_BIENDIAN 1
  34
  35#define CPUArchState struct CPUARMState
  36
  37#include "qemu-common.h"
  38#include "exec/cpu-defs.h"
  39
  40#include "fpu/softfloat.h"
  41
  42#define EXCP_UDEF            1   /* undefined instruction */
  43#define EXCP_SWI             2   /* software interrupt */
  44#define EXCP_PREFETCH_ABORT  3
  45#define EXCP_DATA_ABORT      4
  46#define EXCP_IRQ             5
  47#define EXCP_FIQ             6
  48#define EXCP_BKPT            7
  49#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  50#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  51#define EXCP_STREX          10
  52#define EXCP_HVC            11   /* HyperVisor Call */
  53#define EXCP_HYP_TRAP       12
  54#define EXCP_SMC            13   /* Secure Monitor Call */
  55#define EXCP_VIRQ           14
  56#define EXCP_VFIQ           15
  57#define EXCP_SEMIHOST       16   /* semihosting call (A64 only) */
  58
  59#define ARMV7M_EXCP_RESET   1
  60#define ARMV7M_EXCP_NMI     2
  61#define ARMV7M_EXCP_HARD    3
  62#define ARMV7M_EXCP_MEM     4
  63#define ARMV7M_EXCP_BUS     5
  64#define ARMV7M_EXCP_USAGE   6
  65#define ARMV7M_EXCP_SVC     11
  66#define ARMV7M_EXCP_DEBUG   12
  67#define ARMV7M_EXCP_PENDSV  14
  68#define ARMV7M_EXCP_SYSTICK 15
  69
  70/* ARM-specific interrupt pending bits.  */
  71#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  72#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  73#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  74
  75/* The usual mapping for an AArch64 system register to its AArch32
  76 * counterpart is for the 32 bit world to have access to the lower
  77 * half only (with writes leaving the upper half untouched). It's
  78 * therefore useful to be able to pass TCG the offset of the least
  79 * significant half of a uint64_t struct member.
  80 */
  81#ifdef HOST_WORDS_BIGENDIAN
  82#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  83#define offsetofhigh32(S, M) offsetof(S, M)
  84#else
  85#define offsetoflow32(S, M) offsetof(S, M)
  86#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  87#endif
  88
  89/* Meanings of the ARMCPU object's four inbound GPIO lines */
  90#define ARM_CPU_IRQ 0
  91#define ARM_CPU_FIQ 1
  92#define ARM_CPU_VIRQ 2
  93#define ARM_CPU_VFIQ 3
  94
  95struct arm_boot_info;
  96
  97#define NB_MMU_MODES 7
  98#define TARGET_INSN_START_EXTRA_WORDS 1
  99
 100/* We currently assume float and double are IEEE single and double
 101   precision respectively.
 102   Doing runtime conversions is tricky because VFP registers may contain
 103   integer values (eg. as the result of a FTOSI instruction).
 104   s<2n> maps to the least significant half of d<n>
 105   s<2n+1> maps to the most significant half of d<n>
 106 */
 107
 108/* CPU state for each instance of a generic timer (in cp15 c14) */
 109typedef struct ARMGenericTimer {
 110    uint64_t cval; /* Timer CompareValue register */
 111    uint64_t ctl; /* Timer Control register */
 112} ARMGenericTimer;
 113
 114#define GTIMER_PHYS 0
 115#define GTIMER_VIRT 1
 116#define GTIMER_HYP  2
 117#define GTIMER_SEC  3
 118#define NUM_GTIMERS 4
 119
 120typedef struct {
 121    uint64_t raw_tcr;
 122    uint32_t mask;
 123    uint32_t base_mask;
 124} TCR;
 125
 126typedef struct CPUARMState {
 127    /* Regs for current mode.  */
 128    uint32_t regs[16];
 129
 130    /* 32/64 switch only happens when taking and returning from
 131     * exceptions so the overlap semantics are taken care of then
 132     * instead of having a complicated union.
 133     */
 134    /* Regs for A64 mode.  */
 135    uint64_t xregs[32];
 136    uint64_t pc;
 137    /* PSTATE isn't an architectural register for ARMv8. However, it is
 138     * convenient for us to assemble the underlying state into a 32 bit format
 139     * identical to the architectural format used for the SPSR. (This is also
 140     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 141     * 'pstate' register are.) Of the PSTATE bits:
 142     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 143     *    semantics as for AArch32, as described in the comments on each field)
 144     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 145     *  DAIF (exception masks) are kept in env->daif
 146     *  all other bits are stored in their correct places in env->pstate
 147     */
 148    uint32_t pstate;
 149    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 150
 151    /* Frequently accessed CPSR bits are stored separately for efficiency.
 152       This contains all the other bits.  Use cpsr_{read,write} to access
 153       the whole CPSR.  */
 154    uint32_t uncached_cpsr;
 155    uint32_t spsr;
 156
 157    /* Banked registers.  */
 158    uint64_t banked_spsr[8];
 159    uint32_t banked_r13[8];
 160    uint32_t banked_r14[8];
 161
 162    /* These hold r8-r12.  */
 163    uint32_t usr_regs[5];
 164    uint32_t fiq_regs[5];
 165
 166    /* cpsr flag cache for faster execution */
 167    uint32_t CF; /* 0 or 1 */
 168    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 169    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 170    uint32_t ZF; /* Z set if zero.  */
 171    uint32_t QF; /* 0 or 1 */
 172    uint32_t GE; /* cpsr[19:16] */
 173    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 174    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 175    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 176
 177    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 178    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 179
 180    /* System control coprocessor (cp15) */
 181    struct {
 182        uint32_t c0_cpuid;
 183        union { /* Cache size selection */
 184            struct {
 185                uint64_t _unused_csselr0;
 186                uint64_t csselr_ns;
 187                uint64_t _unused_csselr1;
 188                uint64_t csselr_s;
 189            };
 190            uint64_t csselr_el[4];
 191        };
 192        union { /* System control register. */
 193            struct {
 194                uint64_t _unused_sctlr;
 195                uint64_t sctlr_ns;
 196                uint64_t hsctlr;
 197                uint64_t sctlr_s;
 198            };
 199            uint64_t sctlr_el[4];
 200        };
 201        uint64_t cpacr_el1; /* Architectural feature access control register */
 202        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 203        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 204        uint64_t sder; /* Secure debug enable register. */
 205        uint32_t nsacr; /* Non-secure access control register. */
 206        union { /* MMU translation table base 0. */
 207            struct {
 208                uint64_t _unused_ttbr0_0;
 209                uint64_t ttbr0_ns;
 210                uint64_t _unused_ttbr0_1;
 211                uint64_t ttbr0_s;
 212            };
 213            uint64_t ttbr0_el[4];
 214        };
 215        union { /* MMU translation table base 1. */
 216            struct {
 217                uint64_t _unused_ttbr1_0;
 218                uint64_t ttbr1_ns;
 219                uint64_t _unused_ttbr1_1;
 220                uint64_t ttbr1_s;
 221            };
 222            uint64_t ttbr1_el[4];
 223        };
 224        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 225        /* MMU translation table base control. */
 226        TCR tcr_el[4];
 227        TCR vtcr_el2; /* Virtualization Translation Control.  */
 228        uint32_t c2_data; /* MPU data cacheable bits.  */
 229        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 230        union { /* MMU domain access control register
 231                 * MPU write buffer control.
 232                 */
 233            struct {
 234                uint64_t dacr_ns;
 235                uint64_t dacr_s;
 236            };
 237            struct {
 238                uint64_t dacr32_el2;
 239            };
 240        };
 241        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 242        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 243        uint64_t hcr_el2; /* Hypervisor configuration register */
 244        uint64_t scr_el3; /* Secure configuration register.  */
 245        union { /* Fault status registers.  */
 246            struct {
 247                uint64_t ifsr_ns;
 248                uint64_t ifsr_s;
 249            };
 250            struct {
 251                uint64_t ifsr32_el2;
 252            };
 253        };
 254        union {
 255            struct {
 256                uint64_t _unused_dfsr;
 257                uint64_t dfsr_ns;
 258                uint64_t hsr;
 259                uint64_t dfsr_s;
 260            };
 261            uint64_t esr_el[4];
 262        };
 263        uint32_t c6_region[8]; /* MPU base/size registers.  */
 264        union { /* Fault address registers. */
 265            struct {
 266                uint64_t _unused_far0;
 267#ifdef HOST_WORDS_BIGENDIAN
 268                uint32_t ifar_ns;
 269                uint32_t dfar_ns;
 270                uint32_t ifar_s;
 271                uint32_t dfar_s;
 272#else
 273                uint32_t dfar_ns;
 274                uint32_t ifar_ns;
 275                uint32_t dfar_s;
 276                uint32_t ifar_s;
 277#endif
 278                uint64_t _unused_far3;
 279            };
 280            uint64_t far_el[4];
 281        };
 282        uint64_t hpfar_el2;
 283        union { /* Translation result. */
 284            struct {
 285                uint64_t _unused_par_0;
 286                uint64_t par_ns;
 287                uint64_t _unused_par_1;
 288                uint64_t par_s;
 289            };
 290            uint64_t par_el[4];
 291        };
 292
 293        uint32_t c6_rgnr;
 294
 295        uint32_t c9_insn; /* Cache lockdown registers.  */
 296        uint32_t c9_data;
 297        uint64_t c9_pmcr; /* performance monitor control register */
 298        uint64_t c9_pmcnten; /* perf monitor counter enables */
 299        uint32_t c9_pmovsr; /* perf monitor overflow status */
 300        uint32_t c9_pmxevtyper; /* perf monitor event type */
 301        uint32_t c9_pmuserenr; /* perf monitor user enable */
 302        uint32_t c9_pminten; /* perf monitor interrupt enables */
 303        union { /* Memory attribute redirection */
 304            struct {
 305#ifdef HOST_WORDS_BIGENDIAN
 306                uint64_t _unused_mair_0;
 307                uint32_t mair1_ns;
 308                uint32_t mair0_ns;
 309                uint64_t _unused_mair_1;
 310                uint32_t mair1_s;
 311                uint32_t mair0_s;
 312#else
 313                uint64_t _unused_mair_0;
 314                uint32_t mair0_ns;
 315                uint32_t mair1_ns;
 316                uint64_t _unused_mair_1;
 317                uint32_t mair0_s;
 318                uint32_t mair1_s;
 319#endif
 320            };
 321            uint64_t mair_el[4];
 322        };
 323        union { /* vector base address register */
 324            struct {
 325                uint64_t _unused_vbar;
 326                uint64_t vbar_ns;
 327                uint64_t hvbar;
 328                uint64_t vbar_s;
 329            };
 330            uint64_t vbar_el[4];
 331        };
 332        uint32_t mvbar; /* (monitor) vector base address register */
 333        struct { /* FCSE PID. */
 334            uint32_t fcseidr_ns;
 335            uint32_t fcseidr_s;
 336        };
 337        union { /* Context ID. */
 338            struct {
 339                uint64_t _unused_contextidr_0;
 340                uint64_t contextidr_ns;
 341                uint64_t _unused_contextidr_1;
 342                uint64_t contextidr_s;
 343            };
 344            uint64_t contextidr_el[4];
 345        };
 346        union { /* User RW Thread register. */
 347            struct {
 348                uint64_t tpidrurw_ns;
 349                uint64_t tpidrprw_ns;
 350                uint64_t htpidr;
 351                uint64_t _tpidr_el3;
 352            };
 353            uint64_t tpidr_el[4];
 354        };
 355        /* The secure banks of these registers don't map anywhere */
 356        uint64_t tpidrurw_s;
 357        uint64_t tpidrprw_s;
 358        uint64_t tpidruro_s;
 359
 360        union { /* User RO Thread register. */
 361            uint64_t tpidruro_ns;
 362            uint64_t tpidrro_el[1];
 363        };
 364        uint64_t c14_cntfrq; /* Counter Frequency register */
 365        uint64_t c14_cntkctl; /* Timer Control register */
 366        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 367        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 368        ARMGenericTimer c14_timer[NUM_GTIMERS];
 369        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 370        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 371        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 372        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 373        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 374        uint32_t c15_config_base_address; /* SCU base address.  */
 375        uint32_t c15_diagnostic; /* diagnostic register */
 376        uint32_t c15_power_diagnostic;
 377        uint32_t c15_power_control; /* power control */
 378        uint64_t dbgbvr[16]; /* breakpoint value registers */
 379        uint64_t dbgbcr[16]; /* breakpoint control registers */
 380        uint64_t dbgwvr[16]; /* watchpoint value registers */
 381        uint64_t dbgwcr[16]; /* watchpoint control registers */
 382        uint64_t mdscr_el1;
 383        uint64_t oslsr_el1; /* OS Lock Status */
 384        uint64_t mdcr_el2;
 385        /* If the counter is enabled, this stores the last time the counter
 386         * was reset. Otherwise it stores the counter value
 387         */
 388        uint64_t c15_ccnt;
 389        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 390        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 391        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 392    } cp15;
 393
 394    struct {
 395        uint32_t other_sp;
 396        uint32_t vecbase;
 397        uint32_t basepri;
 398        uint32_t control;
 399        int current_sp;
 400        int exception;
 401    } v7m;
 402
 403    /* Information associated with an exception about to be taken:
 404     * code which raises an exception must set cs->exception_index and
 405     * the relevant parts of this structure; the cpu_do_interrupt function
 406     * will then set the guest-visible registers as part of the exception
 407     * entry process.
 408     */
 409    struct {
 410        uint32_t syndrome; /* AArch64 format syndrome register */
 411        uint32_t fsr; /* AArch32 format fault status register info */
 412        uint64_t vaddress; /* virtual addr associated with exception, if any */
 413        uint32_t target_el; /* EL the exception should be targeted for */
 414        /* If we implement EL2 we will also need to store information
 415         * about the intermediate physical address for stage 2 faults.
 416         */
 417    } exception;
 418
 419    /* Thumb-2 EE state.  */
 420    uint32_t teecr;
 421    uint32_t teehbr;
 422
 423    /* VFP coprocessor state.  */
 424    struct {
 425        /* VFP/Neon register state. Note that the mapping between S, D and Q
 426         * views of the register bank differs between AArch64 and AArch32:
 427         * In AArch32:
 428         *  Qn = regs[2n+1]:regs[2n]
 429         *  Dn = regs[n]
 430         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
 431         * (and regs[32] to regs[63] are inaccessible)
 432         * In AArch64:
 433         *  Qn = regs[2n+1]:regs[2n]
 434         *  Dn = regs[2n]
 435         *  Sn = regs[2n] bits 31..0
 436         * This corresponds to the architecturally defined mapping between
 437         * the two execution states, and means we do not need to explicitly
 438         * map these registers when changing states.
 439         */
 440        float64 regs[64];
 441
 442        uint32_t xregs[16];
 443        /* We store these fpcsr fields separately for convenience.  */
 444        int vec_len;
 445        int vec_stride;
 446
 447        /* scratch space when Tn are not sufficient.  */
 448        uint32_t scratch[8];
 449
 450        /* fp_status is the "normal" fp status. standard_fp_status retains
 451         * values corresponding to the ARM "Standard FPSCR Value", ie
 452         * default-NaN, flush-to-zero, round-to-nearest and is used by
 453         * any operations (generally Neon) which the architecture defines
 454         * as controlled by the standard FPSCR value rather than the FPSCR.
 455         *
 456         * To avoid having to transfer exception bits around, we simply
 457         * say that the FPSCR cumulative exception flags are the logical
 458         * OR of the flags in the two fp statuses. This relies on the
 459         * only thing which needs to read the exception flags being
 460         * an explicit FPSCR read.
 461         */
 462        float_status fp_status;
 463        float_status standard_fp_status;
 464    } vfp;
 465    uint64_t exclusive_addr;
 466    uint64_t exclusive_val;
 467    uint64_t exclusive_high;
 468#if defined(CONFIG_USER_ONLY)
 469    uint64_t exclusive_test;
 470    uint32_t exclusive_info;
 471#endif
 472
 473    /* iwMMXt coprocessor state.  */
 474    struct {
 475        uint64_t regs[16];
 476        uint64_t val;
 477
 478        uint32_t cregs[16];
 479    } iwmmxt;
 480
 481    /* For mixed endian mode.  */
 482    bool bswap_code;
 483
 484#if defined(CONFIG_USER_ONLY)
 485    /* For usermode syscall translation.  */
 486    int eabi;
 487#endif
 488
 489    struct CPUBreakpoint *cpu_breakpoint[16];
 490    struct CPUWatchpoint *cpu_watchpoint[16];
 491
 492    CPU_COMMON
 493
 494    /* These fields after the common ones so they are preserved on reset.  */
 495
 496    /* Internal CPU feature flags.  */
 497    uint64_t features;
 498
 499    /* PMSAv7 MPU */
 500    struct {
 501        uint32_t *drbar;
 502        uint32_t *drsr;
 503        uint32_t *dracr;
 504    } pmsav7;
 505
 506    void *nvic;
 507    const struct arm_boot_info *boot_info;
 508} CPUARMState;
 509
 510#include "cpu-qom.h"
 511
 512ARMCPU *cpu_arm_init(const char *cpu_model);
 513int cpu_arm_exec(CPUState *cpu);
 514target_ulong do_arm_semihosting(CPUARMState *env);
 515void aarch64_sync_32_to_64(CPUARMState *env);
 516void aarch64_sync_64_to_32(CPUARMState *env);
 517
 518static inline bool is_a64(CPUARMState *env)
 519{
 520    return env->aarch64;
 521}
 522
 523/* you can call this signal handler from your SIGBUS and SIGSEGV
 524   signal handlers to inform the virtual CPU of exceptions. non zero
 525   is returned if the signal was handled by the virtual CPU.  */
 526int cpu_arm_signal_handler(int host_signum, void *pinfo,
 527                           void *puc);
 528
 529/**
 530 * pmccntr_sync
 531 * @env: CPUARMState
 532 *
 533 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 534 * once before any action that might affect the timer and again afterwards.
 535 * The function is used to swap the state of the register if required.
 536 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 537 */
 538void pmccntr_sync(CPUARMState *env);
 539
 540/* SCTLR bit meanings. Several bits have been reused in newer
 541 * versions of the architecture; in that case we define constants
 542 * for both old and new bit meanings. Code which tests against those
 543 * bits should probably check or otherwise arrange that the CPU
 544 * is the architectural version it expects.
 545 */
 546#define SCTLR_M       (1U << 0)
 547#define SCTLR_A       (1U << 1)
 548#define SCTLR_C       (1U << 2)
 549#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
 550#define SCTLR_SA      (1U << 3)
 551#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
 552#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
 553#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
 554#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
 555#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
 556#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
 557#define SCTLR_ITD     (1U << 7) /* v8 onward */
 558#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
 559#define SCTLR_SED     (1U << 8) /* v8 onward */
 560#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
 561#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
 562#define SCTLR_F       (1U << 10) /* up to v6 */
 563#define SCTLR_SW      (1U << 10) /* v7 onward */
 564#define SCTLR_Z       (1U << 11)
 565#define SCTLR_I       (1U << 12)
 566#define SCTLR_V       (1U << 13)
 567#define SCTLR_RR      (1U << 14) /* up to v7 */
 568#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
 569#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
 570#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
 571#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
 572#define SCTLR_nTWI    (1U << 16) /* v8 onward */
 573#define SCTLR_HA      (1U << 17)
 574#define SCTLR_BR      (1U << 17) /* PMSA only */
 575#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
 576#define SCTLR_nTWE    (1U << 18) /* v8 onward */
 577#define SCTLR_WXN     (1U << 19)
 578#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
 579#define SCTLR_UWXN    (1U << 20) /* v7 onward */
 580#define SCTLR_FI      (1U << 21)
 581#define SCTLR_U       (1U << 22)
 582#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
 583#define SCTLR_VE      (1U << 24) /* up to v7 */
 584#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
 585#define SCTLR_EE      (1U << 25)
 586#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
 587#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
 588#define SCTLR_NMFI    (1U << 27)
 589#define SCTLR_TRE     (1U << 28)
 590#define SCTLR_AFE     (1U << 29)
 591#define SCTLR_TE      (1U << 30)
 592
 593#define CPTR_TCPAC    (1U << 31)
 594#define CPTR_TTA      (1U << 20)
 595#define CPTR_TFP      (1U << 10)
 596
 597#define CPSR_M (0x1fU)
 598#define CPSR_T (1U << 5)
 599#define CPSR_F (1U << 6)
 600#define CPSR_I (1U << 7)
 601#define CPSR_A (1U << 8)
 602#define CPSR_E (1U << 9)
 603#define CPSR_IT_2_7 (0xfc00U)
 604#define CPSR_GE (0xfU << 16)
 605#define CPSR_IL (1U << 20)
 606/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 607 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 608 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 609 * where it is live state but not accessible to the AArch32 code.
 610 */
 611#define CPSR_RESERVED (0x7U << 21)
 612#define CPSR_J (1U << 24)
 613#define CPSR_IT_0_1 (3U << 25)
 614#define CPSR_Q (1U << 27)
 615#define CPSR_V (1U << 28)
 616#define CPSR_C (1U << 29)
 617#define CPSR_Z (1U << 30)
 618#define CPSR_N (1U << 31)
 619#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
 620#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
 621
 622#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
 623#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
 624    | CPSR_NZCV)
 625/* Bits writable in user mode.  */
 626#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
 627/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
 628#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
 629/* Mask of bits which may be set by exception return copying them from SPSR */
 630#define CPSR_ERET_MASK (~CPSR_RESERVED)
 631
 632#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
 633#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
 634#define TTBCR_PD0    (1U << 4)
 635#define TTBCR_PD1    (1U << 5)
 636#define TTBCR_EPD0   (1U << 7)
 637#define TTBCR_IRGN0  (3U << 8)
 638#define TTBCR_ORGN0  (3U << 10)
 639#define TTBCR_SH0    (3U << 12)
 640#define TTBCR_T1SZ   (3U << 16)
 641#define TTBCR_A1     (1U << 22)
 642#define TTBCR_EPD1   (1U << 23)
 643#define TTBCR_IRGN1  (3U << 24)
 644#define TTBCR_ORGN1  (3U << 26)
 645#define TTBCR_SH1    (1U << 28)
 646#define TTBCR_EAE    (1U << 31)
 647
 648/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 649 * Only these are valid when in AArch64 mode; in
 650 * AArch32 mode SPSRs are basically CPSR-format.
 651 */
 652#define PSTATE_SP (1U)
 653#define PSTATE_M (0xFU)
 654#define PSTATE_nRW (1U << 4)
 655#define PSTATE_F (1U << 6)
 656#define PSTATE_I (1U << 7)
 657#define PSTATE_A (1U << 8)
 658#define PSTATE_D (1U << 9)
 659#define PSTATE_IL (1U << 20)
 660#define PSTATE_SS (1U << 21)
 661#define PSTATE_V (1U << 28)
 662#define PSTATE_C (1U << 29)
 663#define PSTATE_Z (1U << 30)
 664#define PSTATE_N (1U << 31)
 665#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
 666#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
 667#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
 668/* Mode values for AArch64 */
 669#define PSTATE_MODE_EL3h 13
 670#define PSTATE_MODE_EL3t 12
 671#define PSTATE_MODE_EL2h 9
 672#define PSTATE_MODE_EL2t 8
 673#define PSTATE_MODE_EL1h 5
 674#define PSTATE_MODE_EL1t 4
 675#define PSTATE_MODE_EL0t 0
 676
 677/* Map EL and handler into a PSTATE_MODE.  */
 678static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
 679{
 680    return (el << 2) | handler;
 681}
 682
 683/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 684 * interprocessing, so we don't attempt to sync with the cpsr state used by
 685 * the 32 bit decoder.
 686 */
 687static inline uint32_t pstate_read(CPUARMState *env)
 688{
 689    int ZF;
 690
 691    ZF = (env->ZF == 0);
 692    return (env->NF & 0x80000000) | (ZF << 30)
 693        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
 694        | env->pstate | env->daif;
 695}
 696
 697static inline void pstate_write(CPUARMState *env, uint32_t val)
 698{
 699    env->ZF = (~val) & PSTATE_Z;
 700    env->NF = val;
 701    env->CF = (val >> 29) & 1;
 702    env->VF = (val << 3) & 0x80000000;
 703    env->daif = val & PSTATE_DAIF;
 704    env->pstate = val & ~CACHED_PSTATE_BITS;
 705}
 706
 707/* Return the current CPSR value.  */
 708uint32_t cpsr_read(CPUARMState *env);
 709/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
 710void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
 711
 712/* Return the current xPSR value.  */
 713static inline uint32_t xpsr_read(CPUARMState *env)
 714{
 715    int ZF;
 716    ZF = (env->ZF == 0);
 717    return (env->NF & 0x80000000) | (ZF << 30)
 718        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 719        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
 720        | ((env->condexec_bits & 0xfc) << 8)
 721        | env->v7m.exception;
 722}
 723
 724/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
 725static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 726{
 727    if (mask & CPSR_NZCV) {
 728        env->ZF = (~val) & CPSR_Z;
 729        env->NF = val;
 730        env->CF = (val >> 29) & 1;
 731        env->VF = (val << 3) & 0x80000000;
 732    }
 733    if (mask & CPSR_Q)
 734        env->QF = ((val & CPSR_Q) != 0);
 735    if (mask & (1 << 24))
 736        env->thumb = ((val & (1 << 24)) != 0);
 737    if (mask & CPSR_IT_0_1) {
 738        env->condexec_bits &= ~3;
 739        env->condexec_bits |= (val >> 25) & 3;
 740    }
 741    if (mask & CPSR_IT_2_7) {
 742        env->condexec_bits &= 3;
 743        env->condexec_bits |= (val >> 8) & 0xfc;
 744    }
 745    if (mask & 0x1ff) {
 746        env->v7m.exception = val & 0x1ff;
 747    }
 748}
 749
 750#define HCR_VM        (1ULL << 0)
 751#define HCR_SWIO      (1ULL << 1)
 752#define HCR_PTW       (1ULL << 2)
 753#define HCR_FMO       (1ULL << 3)
 754#define HCR_IMO       (1ULL << 4)
 755#define HCR_AMO       (1ULL << 5)
 756#define HCR_VF        (1ULL << 6)
 757#define HCR_VI        (1ULL << 7)
 758#define HCR_VSE       (1ULL << 8)
 759#define HCR_FB        (1ULL << 9)
 760#define HCR_BSU_MASK  (3ULL << 10)
 761#define HCR_DC        (1ULL << 12)
 762#define HCR_TWI       (1ULL << 13)
 763#define HCR_TWE       (1ULL << 14)
 764#define HCR_TID0      (1ULL << 15)
 765#define HCR_TID1      (1ULL << 16)
 766#define HCR_TID2      (1ULL << 17)
 767#define HCR_TID3      (1ULL << 18)
 768#define HCR_TSC       (1ULL << 19)
 769#define HCR_TIDCP     (1ULL << 20)
 770#define HCR_TACR      (1ULL << 21)
 771#define HCR_TSW       (1ULL << 22)
 772#define HCR_TPC       (1ULL << 23)
 773#define HCR_TPU       (1ULL << 24)
 774#define HCR_TTLB      (1ULL << 25)
 775#define HCR_TVM       (1ULL << 26)
 776#define HCR_TGE       (1ULL << 27)
 777#define HCR_TDZ       (1ULL << 28)
 778#define HCR_HCD       (1ULL << 29)
 779#define HCR_TRVM      (1ULL << 30)
 780#define HCR_RW        (1ULL << 31)
 781#define HCR_CD        (1ULL << 32)
 782#define HCR_ID        (1ULL << 33)
 783#define HCR_MASK      ((1ULL << 34) - 1)
 784
 785#define SCR_NS                (1U << 0)
 786#define SCR_IRQ               (1U << 1)
 787#define SCR_FIQ               (1U << 2)
 788#define SCR_EA                (1U << 3)
 789#define SCR_FW                (1U << 4)
 790#define SCR_AW                (1U << 5)
 791#define SCR_NET               (1U << 6)
 792#define SCR_SMD               (1U << 7)
 793#define SCR_HCE               (1U << 8)
 794#define SCR_SIF               (1U << 9)
 795#define SCR_RW                (1U << 10)
 796#define SCR_ST                (1U << 11)
 797#define SCR_TWI               (1U << 12)
 798#define SCR_TWE               (1U << 13)
 799#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
 800#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
 801
 802/* Return the current FPSCR value.  */
 803uint32_t vfp_get_fpscr(CPUARMState *env);
 804void vfp_set_fpscr(CPUARMState *env, uint32_t val);
 805
 806/* For A64 the FPSCR is split into two logically distinct registers,
 807 * FPCR and FPSR. However since they still use non-overlapping bits
 808 * we store the underlying state in fpscr and just mask on read/write.
 809 */
 810#define FPSR_MASK 0xf800009f
 811#define FPCR_MASK 0x07f79f00
 812static inline uint32_t vfp_get_fpsr(CPUARMState *env)
 813{
 814    return vfp_get_fpscr(env) & FPSR_MASK;
 815}
 816
 817static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
 818{
 819    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
 820    vfp_set_fpscr(env, new_fpscr);
 821}
 822
 823static inline uint32_t vfp_get_fpcr(CPUARMState *env)
 824{
 825    return vfp_get_fpscr(env) & FPCR_MASK;
 826}
 827
 828static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
 829{
 830    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
 831    vfp_set_fpscr(env, new_fpscr);
 832}
 833
 834enum arm_cpu_mode {
 835  ARM_CPU_MODE_USR = 0x10,
 836  ARM_CPU_MODE_FIQ = 0x11,
 837  ARM_CPU_MODE_IRQ = 0x12,
 838  ARM_CPU_MODE_SVC = 0x13,
 839  ARM_CPU_MODE_MON = 0x16,
 840  ARM_CPU_MODE_ABT = 0x17,
 841  ARM_CPU_MODE_HYP = 0x1a,
 842  ARM_CPU_MODE_UND = 0x1b,
 843  ARM_CPU_MODE_SYS = 0x1f
 844};
 845
 846/* VFP system registers.  */
 847#define ARM_VFP_FPSID   0
 848#define ARM_VFP_FPSCR   1
 849#define ARM_VFP_MVFR2   5
 850#define ARM_VFP_MVFR1   6
 851#define ARM_VFP_MVFR0   7
 852#define ARM_VFP_FPEXC   8
 853#define ARM_VFP_FPINST  9
 854#define ARM_VFP_FPINST2 10
 855
 856/* iwMMXt coprocessor control registers.  */
 857#define ARM_IWMMXT_wCID         0
 858#define ARM_IWMMXT_wCon         1
 859#define ARM_IWMMXT_wCSSF        2
 860#define ARM_IWMMXT_wCASF        3
 861#define ARM_IWMMXT_wCGR0        8
 862#define ARM_IWMMXT_wCGR1        9
 863#define ARM_IWMMXT_wCGR2        10
 864#define ARM_IWMMXT_wCGR3        11
 865
 866/* If adding a feature bit which corresponds to a Linux ELF
 867 * HWCAP bit, remember to update the feature-bit-to-hwcap
 868 * mapping in linux-user/elfload.c:get_elf_hwcap().
 869 */
 870enum arm_features {
 871    ARM_FEATURE_VFP,
 872    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
 873    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
 874    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
 875    ARM_FEATURE_V6,
 876    ARM_FEATURE_V6K,
 877    ARM_FEATURE_V7,
 878    ARM_FEATURE_THUMB2,
 879    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
 880    ARM_FEATURE_VFP3,
 881    ARM_FEATURE_VFP_FP16,
 882    ARM_FEATURE_NEON,
 883    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
 884    ARM_FEATURE_M, /* Microcontroller profile.  */
 885    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
 886    ARM_FEATURE_THUMB2EE,
 887    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
 888    ARM_FEATURE_V4T,
 889    ARM_FEATURE_V5,
 890    ARM_FEATURE_STRONGARM,
 891    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
 892    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
 893    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
 894    ARM_FEATURE_GENERIC_TIMER,
 895    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
 896    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
 897    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
 898    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
 899    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
 900    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
 901    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
 902    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
 903    ARM_FEATURE_V8,
 904    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
 905    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
 906    ARM_FEATURE_CBAR, /* has cp15 CBAR */
 907    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
 908    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
 909    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
 910    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
 911    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
 912    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
 913    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
 914    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
 915};
 916
 917static inline int arm_feature(CPUARMState *env, int feature)
 918{
 919    return (env->features & (1ULL << feature)) != 0;
 920}
 921
 922#if !defined(CONFIG_USER_ONLY)
 923/* Return true if exception levels below EL3 are in secure state,
 924 * or would be following an exception return to that level.
 925 * Unlike arm_is_secure() (which is always a question about the
 926 * _current_ state of the CPU) this doesn't care about the current
 927 * EL or mode.
 928 */
 929static inline bool arm_is_secure_below_el3(CPUARMState *env)
 930{
 931    if (arm_feature(env, ARM_FEATURE_EL3)) {
 932        return !(env->cp15.scr_el3 & SCR_NS);
 933    } else {
 934        /* If EL2 is not supported then the secure state is implementation
 935         * defined, in which case QEMU defaults to non-secure.
 936         */
 937        return false;
 938    }
 939}
 940
 941/* Return true if the processor is in secure state */
 942static inline bool arm_is_secure(CPUARMState *env)
 943{
 944    if (arm_feature(env, ARM_FEATURE_EL3)) {
 945        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
 946            /* CPU currently in AArch64 state and EL3 */
 947            return true;
 948        } else if (!is_a64(env) &&
 949                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
 950            /* CPU currently in AArch32 state and monitor mode */
 951            return true;
 952        }
 953    }
 954    return arm_is_secure_below_el3(env);
 955}
 956
 957#else
 958static inline bool arm_is_secure_below_el3(CPUARMState *env)
 959{
 960    return false;
 961}
 962
 963static inline bool arm_is_secure(CPUARMState *env)
 964{
 965    return false;
 966}
 967#endif
 968
 969/* Return true if the specified exception level is running in AArch64 state. */
 970static inline bool arm_el_is_aa64(CPUARMState *env, int el)
 971{
 972    /* We don't currently support EL2, and this isn't valid for EL0
 973     * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
 974     * then the state of EL0 isn't well defined.)
 975     */
 976    assert(el == 1 || el == 3);
 977
 978    /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
 979     * is a QEMU-imposed simplification which we may wish to change later.
 980     * If we in future support EL2 and/or EL3, then the state of lower
 981     * exception levels is controlled by the HCR.RW and SCR.RW bits.
 982     */
 983    return arm_feature(env, ARM_FEATURE_AARCH64);
 984}
 985
 986/* Function for determing whether guest cp register reads and writes should
 987 * access the secure or non-secure bank of a cp register.  When EL3 is
 988 * operating in AArch32 state, the NS-bit determines whether the secure
 989 * instance of a cp register should be used. When EL3 is AArch64 (or if
 990 * it doesn't exist at all) then there is no register banking, and all
 991 * accesses are to the non-secure version.
 992 */
 993static inline bool access_secure_reg(CPUARMState *env)
 994{
 995    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
 996                !arm_el_is_aa64(env, 3) &&
 997                !(env->cp15.scr_el3 & SCR_NS));
 998
 999    return ret;
1000}
1001
1002/* Macros for accessing a specified CP register bank */
1003#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1004    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1005
1006#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1007    do {                                                \
1008        if (_secure) {                                   \
1009            (_env)->cp15._regname##_s = (_val);            \
1010        } else {                                        \
1011            (_env)->cp15._regname##_ns = (_val);           \
1012        }                                               \
1013    } while (0)
1014
1015/* Macros for automatically accessing a specific CP register bank depending on
1016 * the current secure state of the system.  These macros are not intended for
1017 * supporting instruction translation reads/writes as these are dependent
1018 * solely on the SCR.NS bit and not the mode.
1019 */
1020#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1021    A32_BANKED_REG_GET((_env), _regname,                \
1022                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1023
1024#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1025    A32_BANKED_REG_SET((_env), _regname,                                    \
1026                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1027                       (_val))
1028
1029void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1030uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1031                                 uint32_t cur_el, bool secure);
1032
1033/* Interface between CPU and Interrupt controller.  */
1034void armv7m_nvic_set_pending(void *opaque, int irq);
1035int armv7m_nvic_acknowledge_irq(void *opaque);
1036void armv7m_nvic_complete_irq(void *opaque, int irq);
1037
1038/* Interface for defining coprocessor registers.
1039 * Registers are defined in tables of arm_cp_reginfo structs
1040 * which are passed to define_arm_cp_regs().
1041 */
1042
1043/* When looking up a coprocessor register we look for it
1044 * via an integer which encodes all of:
1045 *  coprocessor number
1046 *  Crn, Crm, opc1, opc2 fields
1047 *  32 or 64 bit register (ie is it accessed via MRC/MCR
1048 *    or via MRRC/MCRR?)
1049 *  non-secure/secure bank (AArch32 only)
1050 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1051 * (In this case crn and opc2 should be zero.)
1052 * For AArch64, there is no 32/64 bit size distinction;
1053 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1054 * and 4 bit CRn and CRm. The encoding patterns are chosen
1055 * to be easy to convert to and from the KVM encodings, and also
1056 * so that the hashtable can contain both AArch32 and AArch64
1057 * registers (to allow for interprocessing where we might run
1058 * 32 bit code on a 64 bit core).
1059 */
1060/* This bit is private to our hashtable cpreg; in KVM register
1061 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1062 * in the upper bits of the 64 bit ID.
1063 */
1064#define CP_REG_AA64_SHIFT 28
1065#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1066
1067/* To enable banking of coprocessor registers depending on ns-bit we
1068 * add a bit to distinguish between secure and non-secure cpregs in the
1069 * hashtable.
1070 */
1071#define CP_REG_NS_SHIFT 29
1072#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1073
1074#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1075    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1076     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1077
1078#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1079    (CP_REG_AA64_MASK |                                 \
1080     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1081     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1082     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1083     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1084     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1085     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1086
1087/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1088 * version used as a key for the coprocessor register hashtable
1089 */
1090static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1091{
1092    uint32_t cpregid = kvmid;
1093    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1094        cpregid |= CP_REG_AA64_MASK;
1095    } else {
1096        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1097            cpregid |= (1 << 15);
1098        }
1099
1100        /* KVM is always non-secure so add the NS flag on AArch32 register
1101         * entries.
1102         */
1103         cpregid |= 1 << CP_REG_NS_SHIFT;
1104    }
1105    return cpregid;
1106}
1107
1108/* Convert a truncated 32 bit hashtable key into the full
1109 * 64 bit KVM register ID.
1110 */
1111static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1112{
1113    uint64_t kvmid;
1114
1115    if (cpregid & CP_REG_AA64_MASK) {
1116        kvmid = cpregid & ~CP_REG_AA64_MASK;
1117        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1118    } else {
1119        kvmid = cpregid & ~(1 << 15);
1120        if (cpregid & (1 << 15)) {
1121            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1122        } else {
1123            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1124        }
1125    }
1126    return kvmid;
1127}
1128
1129/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1130 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1131 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1132 * TCG can assume the value to be constant (ie load at translate time)
1133 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1134 * indicates that the TB should not be ended after a write to this register
1135 * (the default is that the TB ends after cp writes). OVERRIDE permits
1136 * a register definition to override a previous definition for the
1137 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1138 * old must have the OVERRIDE bit set.
1139 * ALIAS indicates that this register is an alias view of some underlying
1140 * state which is also visible via another register, and that the other
1141 * register is handling migration and reset; registers marked ALIAS will not be
1142 * migrated but may have their state set by syncing of register state from KVM.
1143 * NO_RAW indicates that this register has no underlying state and does not
1144 * support raw access for state saving/loading; it will not be used for either
1145 * migration or KVM state synchronization. (Typically this is for "registers"
1146 * which are actually used as instructions for cache maintenance and so on.)
1147 * IO indicates that this register does I/O and therefore its accesses
1148 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1149 * registers which implement clocks or timers require this.
1150 */
1151#define ARM_CP_SPECIAL 1
1152#define ARM_CP_CONST 2
1153#define ARM_CP_64BIT 4
1154#define ARM_CP_SUPPRESS_TB_END 8
1155#define ARM_CP_OVERRIDE 16
1156#define ARM_CP_ALIAS 32
1157#define ARM_CP_IO 64
1158#define ARM_CP_NO_RAW 128
1159#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1160#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1161#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1162#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1163#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1164#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1165/* Used only as a terminator for ARMCPRegInfo lists */
1166#define ARM_CP_SENTINEL 0xffff
1167/* Mask of only the flag bits in a type field */
1168#define ARM_CP_FLAG_MASK 0xff
1169
1170/* Valid values for ARMCPRegInfo state field, indicating which of
1171 * the AArch32 and AArch64 execution states this register is visible in.
1172 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1173 * If the reginfo is declared to be visible in both states then a second
1174 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1175 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1176 * Note that we rely on the values of these enums as we iterate through
1177 * the various states in some places.
1178 */
1179enum {
1180    ARM_CP_STATE_AA32 = 0,
1181    ARM_CP_STATE_AA64 = 1,
1182    ARM_CP_STATE_BOTH = 2,
1183};
1184
1185/* ARM CP register secure state flags.  These flags identify security state
1186 * attributes for a given CP register entry.
1187 * The existence of both or neither secure and non-secure flags indicates that
1188 * the register has both a secure and non-secure hash entry.  A single one of
1189 * these flags causes the register to only be hashed for the specified
1190 * security state.
1191 * Although definitions may have any combination of the S/NS bits, each
1192 * registered entry will only have one to identify whether the entry is secure
1193 * or non-secure.
1194 */
1195enum {
1196    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1197    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1198};
1199
1200/* Return true if cptype is a valid type field. This is used to try to
1201 * catch errors where the sentinel has been accidentally left off the end
1202 * of a list of registers.
1203 */
1204static inline bool cptype_valid(int cptype)
1205{
1206    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1207        || ((cptype & ARM_CP_SPECIAL) &&
1208            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1209}
1210
1211/* Access rights:
1212 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1213 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1214 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1215 * (ie any of the privileged modes in Secure state, or Monitor mode).
1216 * If a register is accessible in one privilege level it's always accessible
1217 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1218 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1219 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1220 * terminology a little and call this PL3.
1221 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1222 * with the ELx exception levels.
1223 *
1224 * If access permissions for a register are more complex than can be
1225 * described with these bits, then use a laxer set of restrictions, and
1226 * do the more restrictive/complex check inside a helper function.
1227 */
1228#define PL3_R 0x80
1229#define PL3_W 0x40
1230#define PL2_R (0x20 | PL3_R)
1231#define PL2_W (0x10 | PL3_W)
1232#define PL1_R (0x08 | PL2_R)
1233#define PL1_W (0x04 | PL2_W)
1234#define PL0_R (0x02 | PL1_R)
1235#define PL0_W (0x01 | PL1_W)
1236
1237#define PL3_RW (PL3_R | PL3_W)
1238#define PL2_RW (PL2_R | PL2_W)
1239#define PL1_RW (PL1_R | PL1_W)
1240#define PL0_RW (PL0_R | PL0_W)
1241
1242/* Return the current Exception Level (as per ARMv8; note that this differs
1243 * from the ARMv7 Privilege Level).
1244 */
1245static inline int arm_current_el(CPUARMState *env)
1246{
1247    if (arm_feature(env, ARM_FEATURE_M)) {
1248        return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1249    }
1250
1251    if (is_a64(env)) {
1252        return extract32(env->pstate, 2, 2);
1253    }
1254
1255    switch (env->uncached_cpsr & 0x1f) {
1256    case ARM_CPU_MODE_USR:
1257        return 0;
1258    case ARM_CPU_MODE_HYP:
1259        return 2;
1260    case ARM_CPU_MODE_MON:
1261        return 3;
1262    default:
1263        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1264            /* If EL3 is 32-bit then all secure privileged modes run in
1265             * EL3
1266             */
1267            return 3;
1268        }
1269
1270        return 1;
1271    }
1272}
1273
1274typedef struct ARMCPRegInfo ARMCPRegInfo;
1275
1276typedef enum CPAccessResult {
1277    /* Access is permitted */
1278    CP_ACCESS_OK = 0,
1279    /* Access fails due to a configurable trap or enable which would
1280     * result in a categorized exception syndrome giving information about
1281     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1282     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1283     * PL1 if in EL0, otherwise to the current EL).
1284     */
1285    CP_ACCESS_TRAP = 1,
1286    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1287     * Note that this is not a catch-all case -- the set of cases which may
1288     * result in this failure is specifically defined by the architecture.
1289     */
1290    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1291    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1292    CP_ACCESS_TRAP_EL2 = 3,
1293    CP_ACCESS_TRAP_EL3 = 4,
1294    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1295    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1296    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1297} CPAccessResult;
1298
1299/* Access functions for coprocessor registers. These cannot fail and
1300 * may not raise exceptions.
1301 */
1302typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1303typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1304                       uint64_t value);
1305/* Access permission check functions for coprocessor registers. */
1306typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1307/* Hook function for register reset */
1308typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1309
1310#define CP_ANY 0xff
1311
1312/* Definition of an ARM coprocessor register */
1313struct ARMCPRegInfo {
1314    /* Name of register (useful mainly for debugging, need not be unique) */
1315    const char *name;
1316    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1317     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1318     * 'wildcard' field -- any value of that field in the MRC/MCR insn
1319     * will be decoded to this register. The register read and write
1320     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1321     * used by the program, so it is possible to register a wildcard and
1322     * then behave differently on read/write if necessary.
1323     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1324     * must both be zero.
1325     * For AArch64-visible registers, opc0 is also used.
1326     * Since there are no "coprocessors" in AArch64, cp is purely used as a
1327     * way to distinguish (for KVM's benefit) guest-visible system registers
1328     * from demuxed ones provided to preserve the "no side effects on
1329     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1330     * visible (to match KVM's encoding); cp==0 will be converted to
1331     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1332     */
1333    uint8_t cp;
1334    uint8_t crn;
1335    uint8_t crm;
1336    uint8_t opc0;
1337    uint8_t opc1;
1338    uint8_t opc2;
1339    /* Execution state in which this register is visible: ARM_CP_STATE_* */
1340    int state;
1341    /* Register type: ARM_CP_* bits/values */
1342    int type;
1343    /* Access rights: PL*_[RW] */
1344    int access;
1345    /* Security state: ARM_CP_SECSTATE_* bits/values */
1346    int secure;
1347    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1348     * this register was defined: can be used to hand data through to the
1349     * register read/write functions, since they are passed the ARMCPRegInfo*.
1350     */
1351    void *opaque;
1352    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1353     * fieldoffset is non-zero, the reset value of the register.
1354     */
1355    uint64_t resetvalue;
1356    /* Offset of the field in CPUARMState for this register.
1357     *
1358     * This is not needed if either:
1359     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1360     *  2. both readfn and writefn are specified
1361     */
1362    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1363
1364    /* Offsets of the secure and non-secure fields in CPUARMState for the
1365     * register if it is banked.  These fields are only used during the static
1366     * registration of a register.  During hashing the bank associated
1367     * with a given security state is copied to fieldoffset which is used from
1368     * there on out.
1369     *
1370     * It is expected that register definitions use either fieldoffset or
1371     * bank_fieldoffsets in the definition but not both.  It is also expected
1372     * that both bank offsets are set when defining a banked register.  This
1373     * use indicates that a register is banked.
1374     */
1375    ptrdiff_t bank_fieldoffsets[2];
1376
1377    /* Function for making any access checks for this register in addition to
1378     * those specified by the 'access' permissions bits. If NULL, no extra
1379     * checks required. The access check is performed at runtime, not at
1380     * translate time.
1381     */
1382    CPAccessFn *accessfn;
1383    /* Function for handling reads of this register. If NULL, then reads
1384     * will be done by loading from the offset into CPUARMState specified
1385     * by fieldoffset.
1386     */
1387    CPReadFn *readfn;
1388    /* Function for handling writes of this register. If NULL, then writes
1389     * will be done by writing to the offset into CPUARMState specified
1390     * by fieldoffset.
1391     */
1392    CPWriteFn *writefn;
1393    /* Function for doing a "raw" read; used when we need to copy
1394     * coprocessor state to the kernel for KVM or out for
1395     * migration. This only needs to be provided if there is also a
1396     * readfn and it has side effects (for instance clear-on-read bits).
1397     */
1398    CPReadFn *raw_readfn;
1399    /* Function for doing a "raw" write; used when we need to copy KVM
1400     * kernel coprocessor state into userspace, or for inbound
1401     * migration. This only needs to be provided if there is also a
1402     * writefn and it masks out "unwritable" bits or has write-one-to-clear
1403     * or similar behaviour.
1404     */
1405    CPWriteFn *raw_writefn;
1406    /* Function for resetting the register. If NULL, then reset will be done
1407     * by writing resetvalue to the field specified in fieldoffset. If
1408     * fieldoffset is 0 then no reset will be done.
1409     */
1410    CPResetFn *resetfn;
1411};
1412
1413/* Macros which are lvalues for the field in CPUARMState for the
1414 * ARMCPRegInfo *ri.
1415 */
1416#define CPREG_FIELD32(env, ri) \
1417    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1418#define CPREG_FIELD64(env, ri) \
1419    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1420
1421#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1422
1423void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1424                                    const ARMCPRegInfo *regs, void *opaque);
1425void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1426                                       const ARMCPRegInfo *regs, void *opaque);
1427static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1428{
1429    define_arm_cp_regs_with_opaque(cpu, regs, 0);
1430}
1431static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1432{
1433    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1434}
1435const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1436
1437/* CPWriteFn that can be used to implement writes-ignored behaviour */
1438void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1439                         uint64_t value);
1440/* CPReadFn that can be used for read-as-zero behaviour */
1441uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1442
1443/* CPResetFn that does nothing, for use if no reset is required even
1444 * if fieldoffset is non zero.
1445 */
1446void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1447
1448/* Return true if this reginfo struct's field in the cpu state struct
1449 * is 64 bits wide.
1450 */
1451static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1452{
1453    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1454}
1455
1456static inline bool cp_access_ok(int current_el,
1457                                const ARMCPRegInfo *ri, int isread)
1458{
1459    return (ri->access >> ((current_el * 2) + isread)) & 1;
1460}
1461
1462/* Raw read of a coprocessor register (as needed for migration, etc) */
1463uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1464
1465/**
1466 * write_list_to_cpustate
1467 * @cpu: ARMCPU
1468 *
1469 * For each register listed in the ARMCPU cpreg_indexes list, write
1470 * its value from the cpreg_values list into the ARMCPUState structure.
1471 * This updates TCG's working data structures from KVM data or
1472 * from incoming migration state.
1473 *
1474 * Returns: true if all register values were updated correctly,
1475 * false if some register was unknown or could not be written.
1476 * Note that we do not stop early on failure -- we will attempt
1477 * writing all registers in the list.
1478 */
1479bool write_list_to_cpustate(ARMCPU *cpu);
1480
1481/**
1482 * write_cpustate_to_list:
1483 * @cpu: ARMCPU
1484 *
1485 * For each register listed in the ARMCPU cpreg_indexes list, write
1486 * its value from the ARMCPUState structure into the cpreg_values list.
1487 * This is used to copy info from TCG's working data structures into
1488 * KVM or for outbound migration.
1489 *
1490 * Returns: true if all register values were read correctly,
1491 * false if some register was unknown or could not be read.
1492 * Note that we do not stop early on failure -- we will attempt
1493 * reading all registers in the list.
1494 */
1495bool write_cpustate_to_list(ARMCPU *cpu);
1496
1497/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
1498   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1499   conventional cores (ie. Application or Realtime profile).  */
1500
1501#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1502
1503#define ARM_CPUID_TI915T      0x54029152
1504#define ARM_CPUID_TI925T      0x54029252
1505
1506#if defined(CONFIG_USER_ONLY)
1507#define TARGET_PAGE_BITS 12
1508#else
1509/* The ARM MMU allows 1k pages.  */
1510/* ??? Linux doesn't actually use these, and they're deprecated in recent
1511   architecture revisions.  Maybe a configure option to disable them.  */
1512#define TARGET_PAGE_BITS 10
1513#endif
1514
1515#if defined(TARGET_AARCH64)
1516#  define TARGET_PHYS_ADDR_SPACE_BITS 48
1517#  define TARGET_VIRT_ADDR_SPACE_BITS 64
1518#else
1519#  define TARGET_PHYS_ADDR_SPACE_BITS 40
1520#  define TARGET_VIRT_ADDR_SPACE_BITS 32
1521#endif
1522
1523static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1524                                     unsigned int target_el)
1525{
1526    CPUARMState *env = cs->env_ptr;
1527    unsigned int cur_el = arm_current_el(env);
1528    bool secure = arm_is_secure(env);
1529    bool pstate_unmasked;
1530    int8_t unmasked = 0;
1531
1532    /* Don't take exceptions if they target a lower EL.
1533     * This check should catch any exceptions that would not be taken but left
1534     * pending.
1535     */
1536    if (cur_el > target_el) {
1537        return false;
1538    }
1539
1540    switch (excp_idx) {
1541    case EXCP_FIQ:
1542        pstate_unmasked = !(env->daif & PSTATE_F);
1543        break;
1544
1545    case EXCP_IRQ:
1546        pstate_unmasked = !(env->daif & PSTATE_I);
1547        break;
1548
1549    case EXCP_VFIQ:
1550        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1551            /* VFIQs are only taken when hypervized and non-secure.  */
1552            return false;
1553        }
1554        return !(env->daif & PSTATE_F);
1555    case EXCP_VIRQ:
1556        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1557            /* VIRQs are only taken when hypervized and non-secure.  */
1558            return false;
1559        }
1560        return !(env->daif & PSTATE_I);
1561    default:
1562        g_assert_not_reached();
1563    }
1564
1565    /* Use the target EL, current execution state and SCR/HCR settings to
1566     * determine whether the corresponding CPSR bit is used to mask the
1567     * interrupt.
1568     */
1569    if ((target_el > cur_el) && (target_el != 1)) {
1570        /* Exceptions targeting a higher EL may not be maskable */
1571        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1572            /* 64-bit masking rules are simple: exceptions to EL3
1573             * can't be masked, and exceptions to EL2 can only be
1574             * masked from Secure state. The HCR and SCR settings
1575             * don't affect the masking logic, only the interrupt routing.
1576             */
1577            if (target_el == 3 || !secure) {
1578                unmasked = 1;
1579            }
1580        } else {
1581            /* The old 32-bit-only environment has a more complicated
1582             * masking setup. HCR and SCR bits not only affect interrupt
1583             * routing but also change the behaviour of masking.
1584             */
1585            bool hcr, scr;
1586
1587            switch (excp_idx) {
1588            case EXCP_FIQ:
1589                /* If FIQs are routed to EL3 or EL2 then there are cases where
1590                 * we override the CPSR.F in determining if the exception is
1591                 * masked or not. If neither of these are set then we fall back
1592                 * to the CPSR.F setting otherwise we further assess the state
1593                 * below.
1594                 */
1595                hcr = (env->cp15.hcr_el2 & HCR_FMO);
1596                scr = (env->cp15.scr_el3 & SCR_FIQ);
1597
1598                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1599                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1600                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1601                 * when non-secure but only when FIQs are only routed to EL3.
1602                 */
1603                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1604                break;
1605            case EXCP_IRQ:
1606                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1607                 * we may override the CPSR.I masking when in non-secure state.
1608                 * The SCR.IRQ setting has already been taken into consideration
1609                 * when setting the target EL, so it does not have a further
1610                 * affect here.
1611                 */
1612                hcr = (env->cp15.hcr_el2 & HCR_IMO);
1613                scr = false;
1614                break;
1615            default:
1616                g_assert_not_reached();
1617            }
1618
1619            if ((scr || hcr) && !secure) {
1620                unmasked = 1;
1621            }
1622        }
1623    }
1624
1625    /* The PSTATE bits only mask the interrupt if we have not overriden the
1626     * ability above.
1627     */
1628    return unmasked || pstate_unmasked;
1629}
1630
1631#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1632
1633#define cpu_exec cpu_arm_exec
1634#define cpu_signal_handler cpu_arm_signal_handler
1635#define cpu_list arm_cpu_list
1636
1637/* ARM has the following "translation regimes" (as the ARM ARM calls them):
1638 *
1639 * If EL3 is 64-bit:
1640 *  + NonSecure EL1 & 0 stage 1
1641 *  + NonSecure EL1 & 0 stage 2
1642 *  + NonSecure EL2
1643 *  + Secure EL1 & EL0
1644 *  + Secure EL3
1645 * If EL3 is 32-bit:
1646 *  + NonSecure PL1 & 0 stage 1
1647 *  + NonSecure PL1 & 0 stage 2
1648 *  + NonSecure PL2
1649 *  + Secure PL0 & PL1
1650 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1651 *
1652 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1653 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1654 *     may differ in access permissions even if the VA->PA map is the same
1655 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1656 *     translation, which means that we have one mmu_idx that deals with two
1657 *     concatenated translation regimes [this sort of combined s1+2 TLB is
1658 *     architecturally permitted]
1659 *  3. we don't need to allocate an mmu_idx to translations that we won't be
1660 *     handling via the TLB. The only way to do a stage 1 translation without
1661 *     the immediate stage 2 translation is via the ATS or AT system insns,
1662 *     which can be slow-pathed and always do a page table walk.
1663 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1664 *     translation regimes, because they map reasonably well to each other
1665 *     and they can't both be active at the same time.
1666 * This gives us the following list of mmu_idx values:
1667 *
1668 * NS EL0 (aka NS PL0) stage 1+2
1669 * NS EL1 (aka NS PL1) stage 1+2
1670 * NS EL2 (aka NS PL2)
1671 * S EL3 (aka S PL1)
1672 * S EL0 (aka S PL0)
1673 * S EL1 (not used if EL3 is 32 bit)
1674 * NS EL0+1 stage 2
1675 *
1676 * (The last of these is an mmu_idx because we want to be able to use the TLB
1677 * for the accesses done as part of a stage 1 page table walk, rather than
1678 * having to walk the stage 2 page table over and over.)
1679 *
1680 * Our enumeration includes at the end some entries which are not "true"
1681 * mmu_idx values in that they don't have corresponding TLBs and are only
1682 * valid for doing slow path page table walks.
1683 *
1684 * The constant names here are patterned after the general style of the names
1685 * of the AT/ATS operations.
1686 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1687 */
1688typedef enum ARMMMUIdx {
1689    ARMMMUIdx_S12NSE0 = 0,
1690    ARMMMUIdx_S12NSE1 = 1,
1691    ARMMMUIdx_S1E2 = 2,
1692    ARMMMUIdx_S1E3 = 3,
1693    ARMMMUIdx_S1SE0 = 4,
1694    ARMMMUIdx_S1SE1 = 5,
1695    ARMMMUIdx_S2NS = 6,
1696    /* Indexes below here don't have TLBs and are used only for AT system
1697     * instructions or for the first stage of an S12 page table walk.
1698     */
1699    ARMMMUIdx_S1NSE0 = 7,
1700    ARMMMUIdx_S1NSE1 = 8,
1701} ARMMMUIdx;
1702
1703#define MMU_USER_IDX 0
1704
1705/* Return the exception level we're running at if this is our mmu_idx */
1706static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1707{
1708    assert(mmu_idx < ARMMMUIdx_S2NS);
1709    return mmu_idx & 3;
1710}
1711
1712/* Determine the current mmu_idx to use for normal loads/stores */
1713static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
1714{
1715    int el = arm_current_el(env);
1716
1717    if (el < 2 && arm_is_secure_below_el3(env)) {
1718        return ARMMMUIdx_S1SE0 + el;
1719    }
1720    return el;
1721}
1722
1723/* Return the Exception Level targeted by debug exceptions;
1724 * currently always EL1 since we don't implement EL2 or EL3.
1725 */
1726static inline int arm_debug_target_el(CPUARMState *env)
1727{
1728    bool secure = arm_is_secure(env);
1729    bool route_to_el2 = false;
1730
1731    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
1732        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
1733                       env->cp15.mdcr_el2 & (1 << 8);
1734    }
1735
1736    if (route_to_el2) {
1737        return 2;
1738    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
1739               !arm_el_is_aa64(env, 3) && secure) {
1740        return 3;
1741    } else {
1742        return 1;
1743    }
1744}
1745
1746static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1747{
1748    if (arm_current_el(env) == arm_debug_target_el(env)) {
1749        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1750            || (env->daif & PSTATE_D)) {
1751            return false;
1752        }
1753    }
1754    return true;
1755}
1756
1757static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1758{
1759    if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1760        return aa64_generate_debug_exceptions(env);
1761    }
1762    return arm_current_el(env) != 2;
1763}
1764
1765/* Return true if debugging exceptions are currently enabled.
1766 * This corresponds to what in ARM ARM pseudocode would be
1767 *    if UsingAArch32() then
1768 *        return AArch32.GenerateDebugExceptions()
1769 *    else
1770 *        return AArch64.GenerateDebugExceptions()
1771 * We choose to push the if() down into this function for clarity,
1772 * since the pseudocode has it at all callsites except for the one in
1773 * CheckSoftwareStep(), where it is elided because both branches would
1774 * always return the same value.
1775 *
1776 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1777 * don't yet implement those exception levels or their associated trap bits.
1778 */
1779static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1780{
1781    if (env->aarch64) {
1782        return aa64_generate_debug_exceptions(env);
1783    } else {
1784        return aa32_generate_debug_exceptions(env);
1785    }
1786}
1787
1788/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1789 * implicitly means this always returns false in pre-v8 CPUs.)
1790 */
1791static inline bool arm_singlestep_active(CPUARMState *env)
1792{
1793    return extract32(env->cp15.mdscr_el1, 0, 1)
1794        && arm_el_is_aa64(env, arm_debug_target_el(env))
1795        && arm_generate_debug_exceptions(env);
1796}
1797
1798#include "exec/cpu-all.h"
1799
1800/* Bit usage in the TB flags field: bit 31 indicates whether we are
1801 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1802 * We put flags which are shared between 32 and 64 bit mode at the top
1803 * of the word, and flags which apply to only one mode at the bottom.
1804 */
1805#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1806#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1807#define ARM_TBFLAG_MMUIDX_SHIFT 28
1808#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1809#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1810#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1811#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1812#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1813/* Target EL if we take a floating-point-disabled exception */
1814#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1815#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
1816
1817/* Bit usage when in AArch32 state: */
1818#define ARM_TBFLAG_THUMB_SHIFT      0
1819#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
1820#define ARM_TBFLAG_VECLEN_SHIFT     1
1821#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1822#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
1823#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1824#define ARM_TBFLAG_VFPEN_SHIFT      7
1825#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
1826#define ARM_TBFLAG_CONDEXEC_SHIFT   8
1827#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1828#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1829#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1830/* We store the bottom two bits of the CPAR as TB flags and handle
1831 * checks on the other bits at runtime
1832 */
1833#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
1834#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1835/* Indicates whether cp register reads and writes by guest code should access
1836 * the secure or nonsecure bank of banked registers; note that this is not
1837 * the same thing as the current security state of the processor!
1838 */
1839#define ARM_TBFLAG_NS_SHIFT         19
1840#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
1841
1842/* Bit usage when in AArch64 state: currently we have no A64 specific bits */
1843
1844/* some convenience accessor macros */
1845#define ARM_TBFLAG_AARCH64_STATE(F) \
1846    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1847#define ARM_TBFLAG_MMUIDX(F) \
1848    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1849#define ARM_TBFLAG_SS_ACTIVE(F) \
1850    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1851#define ARM_TBFLAG_PSTATE_SS(F) \
1852    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1853#define ARM_TBFLAG_FPEXC_EL(F) \
1854    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
1855#define ARM_TBFLAG_THUMB(F) \
1856    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1857#define ARM_TBFLAG_VECLEN(F) \
1858    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1859#define ARM_TBFLAG_VECSTRIDE(F) \
1860    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1861#define ARM_TBFLAG_VFPEN(F) \
1862    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1863#define ARM_TBFLAG_CONDEXEC(F) \
1864    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1865#define ARM_TBFLAG_BSWAP_CODE(F) \
1866    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1867#define ARM_TBFLAG_XSCALE_CPAR(F) \
1868    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1869#define ARM_TBFLAG_NS(F) \
1870    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1871
1872/* Return the exception level to which FP-disabled exceptions should
1873 * be taken, or 0 if FP is enabled.
1874 */
1875static inline int fp_exception_el(CPUARMState *env)
1876{
1877    int fpen;
1878    int cur_el = arm_current_el(env);
1879
1880    /* CPACR and the CPTR registers don't exist before v6, so FP is
1881     * always accessible
1882     */
1883    if (!arm_feature(env, ARM_FEATURE_V6)) {
1884        return 0;
1885    }
1886
1887    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1888     * 0, 2 : trap EL0 and EL1/PL1 accesses
1889     * 1    : trap only EL0 accesses
1890     * 3    : trap no accesses
1891     */
1892    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1893    switch (fpen) {
1894    case 0:
1895    case 2:
1896        if (cur_el == 0 || cur_el == 1) {
1897            /* Trap to PL1, which might be EL1 or EL3 */
1898            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1899                return 3;
1900            }
1901            return 1;
1902        }
1903        if (cur_el == 3 && !is_a64(env)) {
1904            /* Secure PL1 running at EL3 */
1905            return 3;
1906        }
1907        break;
1908    case 1:
1909        if (cur_el == 0) {
1910            return 1;
1911        }
1912        break;
1913    case 3:
1914        break;
1915    }
1916
1917    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1918     * check because zero bits in the registers mean "don't trap".
1919     */
1920
1921    /* CPTR_EL2 : present in v7VE or v8 */
1922    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1923        && !arm_is_secure_below_el3(env)) {
1924        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1925        return 2;
1926    }
1927
1928    /* CPTR_EL3 : present in v8 */
1929    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1930        /* Trap all FP ops to EL3 */
1931        return 3;
1932    }
1933
1934    return 0;
1935}
1936
1937static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1938                                        target_ulong *cs_base, int *flags)
1939{
1940    if (is_a64(env)) {
1941        *pc = env->pc;
1942        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1943    } else {
1944        *pc = env->regs[15];
1945        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1946            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1947            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1948            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1949            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1950        if (!(access_secure_reg(env))) {
1951            *flags |= ARM_TBFLAG_NS_MASK;
1952        }
1953        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1954            || arm_el_is_aa64(env, 1)) {
1955            *flags |= ARM_TBFLAG_VFPEN_MASK;
1956        }
1957        *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1958                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1959    }
1960
1961    *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT);
1962    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1963     * states defined in the ARM ARM for software singlestep:
1964     *  SS_ACTIVE   PSTATE.SS   State
1965     *     0            x       Inactive (the TB flag for SS is always 0)
1966     *     1            0       Active-pending
1967     *     1            1       Active-not-pending
1968     */
1969    if (arm_singlestep_active(env)) {
1970        *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1971        if (is_a64(env)) {
1972            if (env->pstate & PSTATE_SS) {
1973                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1974            }
1975        } else {
1976            if (env->uncached_cpsr & PSTATE_SS) {
1977                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1978            }
1979        }
1980    }
1981    *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
1982
1983    *cs_base = 0;
1984}
1985
1986#include "exec/exec-all.h"
1987
1988enum {
1989    QEMU_PSCI_CONDUIT_DISABLED = 0,
1990    QEMU_PSCI_CONDUIT_SMC = 1,
1991    QEMU_PSCI_CONDUIT_HVC = 2,
1992};
1993
1994#endif
1995