qemu/target-i386/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include <sys/types.h>
  16#include <sys/ioctl.h>
  17#include <sys/mman.h>
  18#include <sys/utsname.h>
  19
  20#include <linux/kvm.h>
  21#include <linux/kvm_para.h>
  22
  23#include "qemu-common.h"
  24#include "sysemu/sysemu.h"
  25#include "sysemu/kvm_int.h"
  26#include "kvm_i386.h"
  27#include "cpu.h"
  28#include "exec/gdbstub.h"
  29#include "qemu/host-utils.h"
  30#include "qemu/config-file.h"
  31#include "qemu/error-report.h"
  32#include "hw/i386/pc.h"
  33#include "hw/i386/apic.h"
  34#include "hw/i386/apic_internal.h"
  35#include "hw/i386/apic-msidef.h"
  36#include "exec/ioport.h"
  37#include "standard-headers/asm-x86/hyperv.h"
  38#include "hw/pci/pci.h"
  39#include "migration/migration.h"
  40#include "exec/memattrs.h"
  41
  42//#define DEBUG_KVM
  43
  44#ifdef DEBUG_KVM
  45#define DPRINTF(fmt, ...) \
  46    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  47#else
  48#define DPRINTF(fmt, ...) \
  49    do { } while (0)
  50#endif
  51
  52#define MSR_KVM_WALL_CLOCK  0x11
  53#define MSR_KVM_SYSTEM_TIME 0x12
  54
  55#ifndef BUS_MCEERR_AR
  56#define BUS_MCEERR_AR 4
  57#endif
  58#ifndef BUS_MCEERR_AO
  59#define BUS_MCEERR_AO 5
  60#endif
  61
  62const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  63    KVM_CAP_INFO(SET_TSS_ADDR),
  64    KVM_CAP_INFO(EXT_CPUID),
  65    KVM_CAP_INFO(MP_STATE),
  66    KVM_CAP_LAST_INFO
  67};
  68
  69static bool has_msr_star;
  70static bool has_msr_hsave_pa;
  71static bool has_msr_tsc_aux;
  72static bool has_msr_tsc_adjust;
  73static bool has_msr_tsc_deadline;
  74static bool has_msr_feature_control;
  75static bool has_msr_async_pf_en;
  76static bool has_msr_pv_eoi_en;
  77static bool has_msr_misc_enable;
  78static bool has_msr_smbase;
  79static bool has_msr_bndcfgs;
  80static bool has_msr_kvm_steal_time;
  81static int lm_capable_kernel;
  82static bool has_msr_hv_hypercall;
  83static bool has_msr_hv_vapic;
  84static bool has_msr_hv_tsc;
  85static bool has_msr_hv_crash;
  86static bool has_msr_hv_reset;
  87static bool has_msr_hv_vpindex;
  88static bool has_msr_hv_runtime;
  89static bool has_msr_mtrr;
  90static bool has_msr_xss;
  91
  92static bool has_msr_architectural_pmu;
  93static uint32_t num_architectural_pmu_counters;
  94
  95static int has_xsave;
  96static int has_xcrs;
  97static int has_pit_state2;
  98
  99int kvm_has_pit_state2(void)
 100{
 101    return has_pit_state2;
 102}
 103
 104bool kvm_has_smm(void)
 105{
 106    return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 107}
 108
 109bool kvm_allows_irq0_override(void)
 110{
 111    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
 112}
 113
 114static int kvm_get_tsc(CPUState *cs)
 115{
 116    X86CPU *cpu = X86_CPU(cs);
 117    CPUX86State *env = &cpu->env;
 118    struct {
 119        struct kvm_msrs info;
 120        struct kvm_msr_entry entries[1];
 121    } msr_data;
 122    int ret;
 123
 124    if (env->tsc_valid) {
 125        return 0;
 126    }
 127
 128    msr_data.info.nmsrs = 1;
 129    msr_data.entries[0].index = MSR_IA32_TSC;
 130    env->tsc_valid = !runstate_is_running();
 131
 132    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
 133    if (ret < 0) {
 134        return ret;
 135    }
 136
 137    env->tsc = msr_data.entries[0].data;
 138    return 0;
 139}
 140
 141static inline void do_kvm_synchronize_tsc(void *arg)
 142{
 143    CPUState *cpu = arg;
 144
 145    kvm_get_tsc(cpu);
 146}
 147
 148void kvm_synchronize_all_tsc(void)
 149{
 150    CPUState *cpu;
 151
 152    if (kvm_enabled()) {
 153        CPU_FOREACH(cpu) {
 154            run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu);
 155        }
 156    }
 157}
 158
 159static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 160{
 161    struct kvm_cpuid2 *cpuid;
 162    int r, size;
 163
 164    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 165    cpuid = g_malloc0(size);
 166    cpuid->nent = max;
 167    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 168    if (r == 0 && cpuid->nent >= max) {
 169        r = -E2BIG;
 170    }
 171    if (r < 0) {
 172        if (r == -E2BIG) {
 173            g_free(cpuid);
 174            return NULL;
 175        } else {
 176            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 177                    strerror(-r));
 178            exit(1);
 179        }
 180    }
 181    return cpuid;
 182}
 183
 184/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 185 * for all entries.
 186 */
 187static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 188{
 189    struct kvm_cpuid2 *cpuid;
 190    int max = 1;
 191    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 192        max *= 2;
 193    }
 194    return cpuid;
 195}
 196
 197static const struct kvm_para_features {
 198    int cap;
 199    int feature;
 200} para_features[] = {
 201    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
 202    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
 203    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
 204    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
 205};
 206
 207static int get_para_features(KVMState *s)
 208{
 209    int i, features = 0;
 210
 211    for (i = 0; i < ARRAY_SIZE(para_features); i++) {
 212        if (kvm_check_extension(s, para_features[i].cap)) {
 213            features |= (1 << para_features[i].feature);
 214        }
 215    }
 216
 217    return features;
 218}
 219
 220
 221/* Returns the value for a specific register on the cpuid entry
 222 */
 223static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 224{
 225    uint32_t ret = 0;
 226    switch (reg) {
 227    case R_EAX:
 228        ret = entry->eax;
 229        break;
 230    case R_EBX:
 231        ret = entry->ebx;
 232        break;
 233    case R_ECX:
 234        ret = entry->ecx;
 235        break;
 236    case R_EDX:
 237        ret = entry->edx;
 238        break;
 239    }
 240    return ret;
 241}
 242
 243/* Find matching entry for function/index on kvm_cpuid2 struct
 244 */
 245static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 246                                                 uint32_t function,
 247                                                 uint32_t index)
 248{
 249    int i;
 250    for (i = 0; i < cpuid->nent; ++i) {
 251        if (cpuid->entries[i].function == function &&
 252            cpuid->entries[i].index == index) {
 253            return &cpuid->entries[i];
 254        }
 255    }
 256    /* not found: */
 257    return NULL;
 258}
 259
 260uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 261                                      uint32_t index, int reg)
 262{
 263    struct kvm_cpuid2 *cpuid;
 264    uint32_t ret = 0;
 265    uint32_t cpuid_1_edx;
 266    bool found = false;
 267
 268    cpuid = get_supported_cpuid(s);
 269
 270    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 271    if (entry) {
 272        found = true;
 273        ret = cpuid_entry_get_reg(entry, reg);
 274    }
 275
 276    /* Fixups for the data returned by KVM, below */
 277
 278    if (function == 1 && reg == R_EDX) {
 279        /* KVM before 2.6.30 misreports the following features */
 280        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 281    } else if (function == 1 && reg == R_ECX) {
 282        /* We can set the hypervisor flag, even if KVM does not return it on
 283         * GET_SUPPORTED_CPUID
 284         */
 285        ret |= CPUID_EXT_HYPERVISOR;
 286        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 287         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 288         * and the irqchip is in the kernel.
 289         */
 290        if (kvm_irqchip_in_kernel() &&
 291                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 292            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 293        }
 294
 295        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 296         * without the in-kernel irqchip
 297         */
 298        if (!kvm_irqchip_in_kernel()) {
 299            ret &= ~CPUID_EXT_X2APIC;
 300        }
 301    } else if (function == 6 && reg == R_EAX) {
 302        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 303    } else if (function == 0x80000001 && reg == R_EDX) {
 304        /* On Intel, kvm returns cpuid according to the Intel spec,
 305         * so add missing bits according to the AMD spec:
 306         */
 307        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 308        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 309    }
 310
 311    g_free(cpuid);
 312
 313    /* fallback for older kernels */
 314    if ((function == KVM_CPUID_FEATURES) && !found) {
 315        ret = get_para_features(s);
 316    }
 317
 318    return ret;
 319}
 320
 321typedef struct HWPoisonPage {
 322    ram_addr_t ram_addr;
 323    QLIST_ENTRY(HWPoisonPage) list;
 324} HWPoisonPage;
 325
 326static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 327    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 328
 329static void kvm_unpoison_all(void *param)
 330{
 331    HWPoisonPage *page, *next_page;
 332
 333    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 334        QLIST_REMOVE(page, list);
 335        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 336        g_free(page);
 337    }
 338}
 339
 340static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 341{
 342    HWPoisonPage *page;
 343
 344    QLIST_FOREACH(page, &hwpoison_page_list, list) {
 345        if (page->ram_addr == ram_addr) {
 346            return;
 347        }
 348    }
 349    page = g_new(HWPoisonPage, 1);
 350    page->ram_addr = ram_addr;
 351    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 352}
 353
 354static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 355                                     int *max_banks)
 356{
 357    int r;
 358
 359    r = kvm_check_extension(s, KVM_CAP_MCE);
 360    if (r > 0) {
 361        *max_banks = r;
 362        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 363    }
 364    return -ENOSYS;
 365}
 366
 367static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 368{
 369    CPUX86State *env = &cpu->env;
 370    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 371                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 372    uint64_t mcg_status = MCG_STATUS_MCIP;
 373
 374    if (code == BUS_MCEERR_AR) {
 375        status |= MCI_STATUS_AR | 0x134;
 376        mcg_status |= MCG_STATUS_EIPV;
 377    } else {
 378        status |= 0xc0;
 379        mcg_status |= MCG_STATUS_RIPV;
 380    }
 381    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 382                       (MCM_ADDR_PHYS << 6) | 0xc,
 383                       cpu_x86_support_mca_broadcast(env) ?
 384                       MCE_INJECT_BROADCAST : 0);
 385}
 386
 387static void hardware_memory_error(void)
 388{
 389    fprintf(stderr, "Hardware memory error!\n");
 390    exit(1);
 391}
 392
 393int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 394{
 395    X86CPU *cpu = X86_CPU(c);
 396    CPUX86State *env = &cpu->env;
 397    ram_addr_t ram_addr;
 398    hwaddr paddr;
 399
 400    if ((env->mcg_cap & MCG_SER_P) && addr
 401        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
 402        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
 403            !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 404            fprintf(stderr, "Hardware memory error for memory used by "
 405                    "QEMU itself instead of guest system!\n");
 406            /* Hope we are lucky for AO MCE */
 407            if (code == BUS_MCEERR_AO) {
 408                return 0;
 409            } else {
 410                hardware_memory_error();
 411            }
 412        }
 413        kvm_hwpoison_page_add(ram_addr);
 414        kvm_mce_inject(cpu, paddr, code);
 415    } else {
 416        if (code == BUS_MCEERR_AO) {
 417            return 0;
 418        } else if (code == BUS_MCEERR_AR) {
 419            hardware_memory_error();
 420        } else {
 421            return 1;
 422        }
 423    }
 424    return 0;
 425}
 426
 427int kvm_arch_on_sigbus(int code, void *addr)
 428{
 429    X86CPU *cpu = X86_CPU(first_cpu);
 430
 431    if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
 432        ram_addr_t ram_addr;
 433        hwaddr paddr;
 434
 435        /* Hope we are lucky for AO MCE */
 436        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
 437            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
 438                                                addr, &paddr)) {
 439            fprintf(stderr, "Hardware memory error for memory used by "
 440                    "QEMU itself instead of guest system!: %p\n", addr);
 441            return 0;
 442        }
 443        kvm_hwpoison_page_add(ram_addr);
 444        kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
 445    } else {
 446        if (code == BUS_MCEERR_AO) {
 447            return 0;
 448        } else if (code == BUS_MCEERR_AR) {
 449            hardware_memory_error();
 450        } else {
 451            return 1;
 452        }
 453    }
 454    return 0;
 455}
 456
 457static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 458{
 459    CPUX86State *env = &cpu->env;
 460
 461    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
 462        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 463        struct kvm_x86_mce mce;
 464
 465        env->exception_injected = -1;
 466
 467        /*
 468         * There must be at least one bank in use if an MCE is pending.
 469         * Find it and use its values for the event injection.
 470         */
 471        for (bank = 0; bank < bank_num; bank++) {
 472            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 473                break;
 474            }
 475        }
 476        assert(bank < bank_num);
 477
 478        mce.bank = bank;
 479        mce.status = env->mce_banks[bank * 4 + 1];
 480        mce.mcg_status = env->mcg_status;
 481        mce.addr = env->mce_banks[bank * 4 + 2];
 482        mce.misc = env->mce_banks[bank * 4 + 3];
 483
 484        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 485    }
 486    return 0;
 487}
 488
 489static void cpu_update_state(void *opaque, int running, RunState state)
 490{
 491    CPUX86State *env = opaque;
 492
 493    if (running) {
 494        env->tsc_valid = false;
 495    }
 496}
 497
 498unsigned long kvm_arch_vcpu_id(CPUState *cs)
 499{
 500    X86CPU *cpu = X86_CPU(cs);
 501    return cpu->apic_id;
 502}
 503
 504#ifndef KVM_CPUID_SIGNATURE_NEXT
 505#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 506#endif
 507
 508static bool hyperv_hypercall_available(X86CPU *cpu)
 509{
 510    return cpu->hyperv_vapic ||
 511           (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
 512}
 513
 514static bool hyperv_enabled(X86CPU *cpu)
 515{
 516    CPUState *cs = CPU(cpu);
 517    return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
 518           (hyperv_hypercall_available(cpu) ||
 519            cpu->hyperv_time  ||
 520            cpu->hyperv_relaxed_timing ||
 521            cpu->hyperv_crash ||
 522            cpu->hyperv_reset ||
 523            cpu->hyperv_vpindex ||
 524            cpu->hyperv_runtime);
 525}
 526
 527static Error *invtsc_mig_blocker;
 528
 529#define KVM_MAX_CPUID_ENTRIES  100
 530
 531int kvm_arch_init_vcpu(CPUState *cs)
 532{
 533    struct {
 534        struct kvm_cpuid2 cpuid;
 535        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
 536    } QEMU_PACKED cpuid_data;
 537    X86CPU *cpu = X86_CPU(cs);
 538    CPUX86State *env = &cpu->env;
 539    uint32_t limit, i, j, cpuid_i;
 540    uint32_t unused;
 541    struct kvm_cpuid_entry2 *c;
 542    uint32_t signature[3];
 543    int kvm_base = KVM_CPUID_SIGNATURE;
 544    int r;
 545
 546    memset(&cpuid_data, 0, sizeof(cpuid_data));
 547
 548    cpuid_i = 0;
 549
 550    /* Paravirtualization CPUIDs */
 551    if (hyperv_enabled(cpu)) {
 552        c = &cpuid_data.entries[cpuid_i++];
 553        c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
 554        if (!cpu->hyperv_vendor_id) {
 555            memcpy(signature, "Microsoft Hv", 12);
 556        } else {
 557            size_t len = strlen(cpu->hyperv_vendor_id);
 558
 559            if (len > 12) {
 560                error_report("hv-vendor-id truncated to 12 characters");
 561                len = 12;
 562            }
 563            memset(signature, 0, 12);
 564            memcpy(signature, cpu->hyperv_vendor_id, len);
 565        }
 566        c->eax = HYPERV_CPUID_MIN;
 567        c->ebx = signature[0];
 568        c->ecx = signature[1];
 569        c->edx = signature[2];
 570
 571        c = &cpuid_data.entries[cpuid_i++];
 572        c->function = HYPERV_CPUID_INTERFACE;
 573        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
 574        c->eax = signature[0];
 575        c->ebx = 0;
 576        c->ecx = 0;
 577        c->edx = 0;
 578
 579        c = &cpuid_data.entries[cpuid_i++];
 580        c->function = HYPERV_CPUID_VERSION;
 581        c->eax = 0x00001bbc;
 582        c->ebx = 0x00060001;
 583
 584        c = &cpuid_data.entries[cpuid_i++];
 585        c->function = HYPERV_CPUID_FEATURES;
 586        if (cpu->hyperv_relaxed_timing) {
 587            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 588        }
 589        if (cpu->hyperv_vapic) {
 590            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 591            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
 592            has_msr_hv_vapic = true;
 593        }
 594        if (cpu->hyperv_time &&
 595            kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
 596            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 597            c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
 598            c->eax |= 0x200;
 599            has_msr_hv_tsc = true;
 600        }
 601        if (cpu->hyperv_crash && has_msr_hv_crash) {
 602            c->edx |= HV_X64_GUEST_CRASH_MSR_AVAILABLE;
 603        }
 604        c->edx |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
 605        if (cpu->hyperv_reset && has_msr_hv_reset) {
 606            c->eax |= HV_X64_MSR_RESET_AVAILABLE;
 607        }
 608        if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
 609            c->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
 610        }
 611        if (cpu->hyperv_runtime && has_msr_hv_runtime) {
 612            c->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
 613        }
 614        c = &cpuid_data.entries[cpuid_i++];
 615        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
 616        if (cpu->hyperv_relaxed_timing) {
 617            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
 618        }
 619        if (has_msr_hv_vapic) {
 620            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
 621        }
 622        c->ebx = cpu->hyperv_spinlock_attempts;
 623
 624        c = &cpuid_data.entries[cpuid_i++];
 625        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
 626        c->eax = 0x40;
 627        c->ebx = 0x40;
 628
 629        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
 630        has_msr_hv_hypercall = true;
 631    }
 632
 633    if (cpu->expose_kvm) {
 634        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
 635        c = &cpuid_data.entries[cpuid_i++];
 636        c->function = KVM_CPUID_SIGNATURE | kvm_base;
 637        c->eax = KVM_CPUID_FEATURES | kvm_base;
 638        c->ebx = signature[0];
 639        c->ecx = signature[1];
 640        c->edx = signature[2];
 641
 642        c = &cpuid_data.entries[cpuid_i++];
 643        c->function = KVM_CPUID_FEATURES | kvm_base;
 644        c->eax = env->features[FEAT_KVM];
 645
 646        has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
 647
 648        has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
 649
 650        has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
 651    }
 652
 653    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
 654
 655    for (i = 0; i <= limit; i++) {
 656        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 657            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
 658            abort();
 659        }
 660        c = &cpuid_data.entries[cpuid_i++];
 661
 662        switch (i) {
 663        case 2: {
 664            /* Keep reading function 2 till all the input is received */
 665            int times;
 666
 667            c->function = i;
 668            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
 669                       KVM_CPUID_FLAG_STATE_READ_NEXT;
 670            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 671            times = c->eax & 0xff;
 672
 673            for (j = 1; j < times; ++j) {
 674                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 675                    fprintf(stderr, "cpuid_data is full, no space for "
 676                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
 677                    abort();
 678                }
 679                c = &cpuid_data.entries[cpuid_i++];
 680                c->function = i;
 681                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
 682                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 683            }
 684            break;
 685        }
 686        case 4:
 687        case 0xb:
 688        case 0xd:
 689            for (j = 0; ; j++) {
 690                if (i == 0xd && j == 64) {
 691                    break;
 692                }
 693                c->function = i;
 694                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 695                c->index = j;
 696                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
 697
 698                if (i == 4 && c->eax == 0) {
 699                    break;
 700                }
 701                if (i == 0xb && !(c->ecx & 0xff00)) {
 702                    break;
 703                }
 704                if (i == 0xd && c->eax == 0) {
 705                    continue;
 706                }
 707                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 708                    fprintf(stderr, "cpuid_data is full, no space for "
 709                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
 710                    abort();
 711                }
 712                c = &cpuid_data.entries[cpuid_i++];
 713            }
 714            break;
 715        default:
 716            c->function = i;
 717            c->flags = 0;
 718            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 719            break;
 720        }
 721    }
 722
 723    if (limit >= 0x0a) {
 724        uint32_t ver;
 725
 726        cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
 727        if ((ver & 0xff) > 0) {
 728            has_msr_architectural_pmu = true;
 729            num_architectural_pmu_counters = (ver & 0xff00) >> 8;
 730
 731            /* Shouldn't be more than 32, since that's the number of bits
 732             * available in EBX to tell us _which_ counters are available.
 733             * Play it safe.
 734             */
 735            if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
 736                num_architectural_pmu_counters = MAX_GP_COUNTERS;
 737            }
 738        }
 739    }
 740
 741    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
 742
 743    for (i = 0x80000000; i <= limit; i++) {
 744        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 745            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
 746            abort();
 747        }
 748        c = &cpuid_data.entries[cpuid_i++];
 749
 750        c->function = i;
 751        c->flags = 0;
 752        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 753    }
 754
 755    /* Call Centaur's CPUID instructions they are supported. */
 756    if (env->cpuid_xlevel2 > 0) {
 757        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
 758
 759        for (i = 0xC0000000; i <= limit; i++) {
 760            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 761                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
 762                abort();
 763            }
 764            c = &cpuid_data.entries[cpuid_i++];
 765
 766            c->function = i;
 767            c->flags = 0;
 768            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 769        }
 770    }
 771
 772    cpuid_data.cpuid.nent = cpuid_i;
 773
 774    if (((env->cpuid_version >> 8)&0xF) >= 6
 775        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
 776           (CPUID_MCE | CPUID_MCA)
 777        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
 778        uint64_t mcg_cap, unsupported_caps;
 779        int banks;
 780        int ret;
 781
 782        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
 783        if (ret < 0) {
 784            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
 785            return ret;
 786        }
 787
 788        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
 789            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
 790                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
 791            return -ENOTSUP;
 792        }
 793
 794        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
 795        if (unsupported_caps) {
 796            error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64,
 797                         unsupported_caps);
 798        }
 799
 800        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
 801        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
 802        if (ret < 0) {
 803            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
 804            return ret;
 805        }
 806    }
 807
 808    qemu_add_vm_change_state_handler(cpu_update_state, env);
 809
 810    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
 811    if (c) {
 812        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
 813                                  !!(c->ecx & CPUID_EXT_SMX);
 814    }
 815
 816    c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
 817    if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
 818        /* for migration */
 819        error_setg(&invtsc_mig_blocker,
 820                   "State blocked by non-migratable CPU device"
 821                   " (invtsc flag)");
 822        migrate_add_blocker(invtsc_mig_blocker);
 823        /* for savevm */
 824        vmstate_x86_cpu.unmigratable = 1;
 825    }
 826
 827    cpuid_data.cpuid.padding = 0;
 828    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
 829    if (r) {
 830        return r;
 831    }
 832
 833    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
 834    if (r && env->tsc_khz) {
 835        r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
 836        if (r < 0) {
 837            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
 838            return r;
 839        }
 840    }
 841
 842    if (has_xsave) {
 843        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
 844    }
 845
 846    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
 847        has_msr_mtrr = true;
 848    }
 849
 850    return 0;
 851}
 852
 853void kvm_arch_reset_vcpu(X86CPU *cpu)
 854{
 855    CPUX86State *env = &cpu->env;
 856
 857    env->exception_injected = -1;
 858    env->interrupt_injected = -1;
 859    env->xcr0 = 1;
 860    if (kvm_irqchip_in_kernel()) {
 861        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
 862                                          KVM_MP_STATE_UNINITIALIZED;
 863    } else {
 864        env->mp_state = KVM_MP_STATE_RUNNABLE;
 865    }
 866}
 867
 868void kvm_arch_do_init_vcpu(X86CPU *cpu)
 869{
 870    CPUX86State *env = &cpu->env;
 871
 872    /* APs get directly into wait-for-SIPI state.  */
 873    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
 874        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
 875    }
 876}
 877
 878static int kvm_get_supported_msrs(KVMState *s)
 879{
 880    static int kvm_supported_msrs;
 881    int ret = 0;
 882
 883    /* first time */
 884    if (kvm_supported_msrs == 0) {
 885        struct kvm_msr_list msr_list, *kvm_msr_list;
 886
 887        kvm_supported_msrs = -1;
 888
 889        /* Obtain MSR list from KVM.  These are the MSRs that we must
 890         * save/restore */
 891        msr_list.nmsrs = 0;
 892        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
 893        if (ret < 0 && ret != -E2BIG) {
 894            return ret;
 895        }
 896        /* Old kernel modules had a bug and could write beyond the provided
 897           memory. Allocate at least a safe amount of 1K. */
 898        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
 899                                              msr_list.nmsrs *
 900                                              sizeof(msr_list.indices[0])));
 901
 902        kvm_msr_list->nmsrs = msr_list.nmsrs;
 903        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
 904        if (ret >= 0) {
 905            int i;
 906
 907            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
 908                if (kvm_msr_list->indices[i] == MSR_STAR) {
 909                    has_msr_star = true;
 910                    continue;
 911                }
 912                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
 913                    has_msr_hsave_pa = true;
 914                    continue;
 915                }
 916                if (kvm_msr_list->indices[i] == MSR_TSC_AUX) {
 917                    has_msr_tsc_aux = true;
 918                    continue;
 919                }
 920                if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
 921                    has_msr_tsc_adjust = true;
 922                    continue;
 923                }
 924                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
 925                    has_msr_tsc_deadline = true;
 926                    continue;
 927                }
 928                if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
 929                    has_msr_smbase = true;
 930                    continue;
 931                }
 932                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
 933                    has_msr_misc_enable = true;
 934                    continue;
 935                }
 936                if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
 937                    has_msr_bndcfgs = true;
 938                    continue;
 939                }
 940                if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
 941                    has_msr_xss = true;
 942                    continue;
 943                }
 944                if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) {
 945                    has_msr_hv_crash = true;
 946                    continue;
 947                }
 948                if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) {
 949                    has_msr_hv_reset = true;
 950                    continue;
 951                }
 952                if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) {
 953                    has_msr_hv_vpindex = true;
 954                    continue;
 955                }
 956                if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) {
 957                    has_msr_hv_runtime = true;
 958                    continue;
 959                }
 960            }
 961        }
 962
 963        g_free(kvm_msr_list);
 964    }
 965
 966    return ret;
 967}
 968
 969static Notifier smram_machine_done;
 970static KVMMemoryListener smram_listener;
 971static AddressSpace smram_address_space;
 972static MemoryRegion smram_as_root;
 973static MemoryRegion smram_as_mem;
 974
 975static void register_smram_listener(Notifier *n, void *unused)
 976{
 977    MemoryRegion *smram =
 978        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
 979
 980    /* Outer container... */
 981    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
 982    memory_region_set_enabled(&smram_as_root, true);
 983
 984    /* ... with two regions inside: normal system memory with low
 985     * priority, and...
 986     */
 987    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
 988                             get_system_memory(), 0, ~0ull);
 989    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
 990    memory_region_set_enabled(&smram_as_mem, true);
 991
 992    if (smram) {
 993        /* ... SMRAM with higher priority */
 994        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
 995        memory_region_set_enabled(smram, true);
 996    }
 997
 998    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
 999    kvm_memory_listener_register(kvm_state, &smram_listener,
1000                                 &smram_address_space, 1);
1001}
1002
1003int kvm_arch_init(MachineState *ms, KVMState *s)
1004{
1005    uint64_t identity_base = 0xfffbc000;
1006    uint64_t shadow_mem;
1007    int ret;
1008    struct utsname utsname;
1009
1010#ifdef KVM_CAP_XSAVE
1011    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1012#endif
1013
1014#ifdef KVM_CAP_XCRS
1015    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1016#endif
1017
1018#ifdef KVM_CAP_PIT_STATE2
1019    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1020#endif
1021
1022    ret = kvm_get_supported_msrs(s);
1023    if (ret < 0) {
1024        return ret;
1025    }
1026
1027    uname(&utsname);
1028    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1029
1030    /*
1031     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1032     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
1033     * Since these must be part of guest physical memory, we need to allocate
1034     * them, both by setting their start addresses in the kernel and by
1035     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1036     *
1037     * Older KVM versions may not support setting the identity map base. In
1038     * that case we need to stick with the default, i.e. a 256K maximum BIOS
1039     * size.
1040     */
1041    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1042        /* Allows up to 16M BIOSes. */
1043        identity_base = 0xfeffc000;
1044
1045        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1046        if (ret < 0) {
1047            return ret;
1048        }
1049    }
1050
1051    /* Set TSS base one page after EPT identity map. */
1052    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1053    if (ret < 0) {
1054        return ret;
1055    }
1056
1057    /* Tell fw_cfg to notify the BIOS to reserve the range. */
1058    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1059    if (ret < 0) {
1060        fprintf(stderr, "e820_add_entry() table is full\n");
1061        return ret;
1062    }
1063    qemu_register_reset(kvm_unpoison_all, NULL);
1064
1065    shadow_mem = machine_kvm_shadow_mem(ms);
1066    if (shadow_mem != -1) {
1067        shadow_mem /= 4096;
1068        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1069        if (ret < 0) {
1070            return ret;
1071        }
1072    }
1073
1074    if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
1075        smram_machine_done.notify = register_smram_listener;
1076        qemu_add_machine_init_done_notifier(&smram_machine_done);
1077    }
1078    return 0;
1079}
1080
1081static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1082{
1083    lhs->selector = rhs->selector;
1084    lhs->base = rhs->base;
1085    lhs->limit = rhs->limit;
1086    lhs->type = 3;
1087    lhs->present = 1;
1088    lhs->dpl = 3;
1089    lhs->db = 0;
1090    lhs->s = 1;
1091    lhs->l = 0;
1092    lhs->g = 0;
1093    lhs->avl = 0;
1094    lhs->unusable = 0;
1095}
1096
1097static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1098{
1099    unsigned flags = rhs->flags;
1100    lhs->selector = rhs->selector;
1101    lhs->base = rhs->base;
1102    lhs->limit = rhs->limit;
1103    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1104    lhs->present = (flags & DESC_P_MASK) != 0;
1105    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1106    lhs->db = (flags >> DESC_B_SHIFT) & 1;
1107    lhs->s = (flags & DESC_S_MASK) != 0;
1108    lhs->l = (flags >> DESC_L_SHIFT) & 1;
1109    lhs->g = (flags & DESC_G_MASK) != 0;
1110    lhs->avl = (flags & DESC_AVL_MASK) != 0;
1111    lhs->unusable = 0;
1112    lhs->padding = 0;
1113}
1114
1115static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1116{
1117    lhs->selector = rhs->selector;
1118    lhs->base = rhs->base;
1119    lhs->limit = rhs->limit;
1120    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1121                 (rhs->present * DESC_P_MASK) |
1122                 (rhs->dpl << DESC_DPL_SHIFT) |
1123                 (rhs->db << DESC_B_SHIFT) |
1124                 (rhs->s * DESC_S_MASK) |
1125                 (rhs->l << DESC_L_SHIFT) |
1126                 (rhs->g * DESC_G_MASK) |
1127                 (rhs->avl * DESC_AVL_MASK);
1128}
1129
1130static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1131{
1132    if (set) {
1133        *kvm_reg = *qemu_reg;
1134    } else {
1135        *qemu_reg = *kvm_reg;
1136    }
1137}
1138
1139static int kvm_getput_regs(X86CPU *cpu, int set)
1140{
1141    CPUX86State *env = &cpu->env;
1142    struct kvm_regs regs;
1143    int ret = 0;
1144
1145    if (!set) {
1146        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1147        if (ret < 0) {
1148            return ret;
1149        }
1150    }
1151
1152    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1153    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1154    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1155    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1156    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1157    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1158    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1159    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1160#ifdef TARGET_X86_64
1161    kvm_getput_reg(&regs.r8, &env->regs[8], set);
1162    kvm_getput_reg(&regs.r9, &env->regs[9], set);
1163    kvm_getput_reg(&regs.r10, &env->regs[10], set);
1164    kvm_getput_reg(&regs.r11, &env->regs[11], set);
1165    kvm_getput_reg(&regs.r12, &env->regs[12], set);
1166    kvm_getput_reg(&regs.r13, &env->regs[13], set);
1167    kvm_getput_reg(&regs.r14, &env->regs[14], set);
1168    kvm_getput_reg(&regs.r15, &env->regs[15], set);
1169#endif
1170
1171    kvm_getput_reg(&regs.rflags, &env->eflags, set);
1172    kvm_getput_reg(&regs.rip, &env->eip, set);
1173
1174    if (set) {
1175        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1176    }
1177
1178    return ret;
1179}
1180
1181static int kvm_put_fpu(X86CPU *cpu)
1182{
1183    CPUX86State *env = &cpu->env;
1184    struct kvm_fpu fpu;
1185    int i;
1186
1187    memset(&fpu, 0, sizeof fpu);
1188    fpu.fsw = env->fpus & ~(7 << 11);
1189    fpu.fsw |= (env->fpstt & 7) << 11;
1190    fpu.fcw = env->fpuc;
1191    fpu.last_opcode = env->fpop;
1192    fpu.last_ip = env->fpip;
1193    fpu.last_dp = env->fpdp;
1194    for (i = 0; i < 8; ++i) {
1195        fpu.ftwx |= (!env->fptags[i]) << i;
1196    }
1197    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1198    for (i = 0; i < CPU_NB_REGS; i++) {
1199        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0));
1200        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1));
1201    }
1202    fpu.mxcsr = env->mxcsr;
1203
1204    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1205}
1206
1207#define XSAVE_FCW_FSW     0
1208#define XSAVE_FTW_FOP     1
1209#define XSAVE_CWD_RIP     2
1210#define XSAVE_CWD_RDP     4
1211#define XSAVE_MXCSR       6
1212#define XSAVE_ST_SPACE    8
1213#define XSAVE_XMM_SPACE   40
1214#define XSAVE_XSTATE_BV   128
1215#define XSAVE_YMMH_SPACE  144
1216#define XSAVE_BNDREGS     240
1217#define XSAVE_BNDCSR      256
1218#define XSAVE_OPMASK      272
1219#define XSAVE_ZMM_Hi256   288
1220#define XSAVE_Hi16_ZMM    416
1221
1222static int kvm_put_xsave(X86CPU *cpu)
1223{
1224    CPUX86State *env = &cpu->env;
1225    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1226    uint16_t cwd, swd, twd;
1227    uint8_t *xmm, *ymmh, *zmmh;
1228    int i, r;
1229
1230    if (!has_xsave) {
1231        return kvm_put_fpu(cpu);
1232    }
1233
1234    memset(xsave, 0, sizeof(struct kvm_xsave));
1235    twd = 0;
1236    swd = env->fpus & ~(7 << 11);
1237    swd |= (env->fpstt & 7) << 11;
1238    cwd = env->fpuc;
1239    for (i = 0; i < 8; ++i) {
1240        twd |= (!env->fptags[i]) << i;
1241    }
1242    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1243    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1244    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1245    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1246    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1247            sizeof env->fpregs);
1248    xsave->region[XSAVE_MXCSR] = env->mxcsr;
1249    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1250    memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1251            sizeof env->bnd_regs);
1252    memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1253            sizeof(env->bndcs_regs));
1254    memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
1255            sizeof env->opmask_regs);
1256
1257    xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1258    ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1259    zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1260    for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1261        stq_p(xmm,     env->xmm_regs[i].XMM_Q(0));
1262        stq_p(xmm+8,   env->xmm_regs[i].XMM_Q(1));
1263        stq_p(ymmh,    env->xmm_regs[i].XMM_Q(2));
1264        stq_p(ymmh+8,  env->xmm_regs[i].XMM_Q(3));
1265        stq_p(zmmh,    env->xmm_regs[i].XMM_Q(4));
1266        stq_p(zmmh+8,  env->xmm_regs[i].XMM_Q(5));
1267        stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6));
1268        stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7));
1269    }
1270
1271#ifdef TARGET_X86_64
1272    memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16],
1273            16 * sizeof env->xmm_regs[16]);
1274#endif
1275    r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1276    return r;
1277}
1278
1279static int kvm_put_xcrs(X86CPU *cpu)
1280{
1281    CPUX86State *env = &cpu->env;
1282    struct kvm_xcrs xcrs = {};
1283
1284    if (!has_xcrs) {
1285        return 0;
1286    }
1287
1288    xcrs.nr_xcrs = 1;
1289    xcrs.flags = 0;
1290    xcrs.xcrs[0].xcr = 0;
1291    xcrs.xcrs[0].value = env->xcr0;
1292    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1293}
1294
1295static int kvm_put_sregs(X86CPU *cpu)
1296{
1297    CPUX86State *env = &cpu->env;
1298    struct kvm_sregs sregs;
1299
1300    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1301    if (env->interrupt_injected >= 0) {
1302        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1303                (uint64_t)1 << (env->interrupt_injected % 64);
1304    }
1305
1306    if ((env->eflags & VM_MASK)) {
1307        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1308        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1309        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1310        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1311        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1312        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1313    } else {
1314        set_seg(&sregs.cs, &env->segs[R_CS]);
1315        set_seg(&sregs.ds, &env->segs[R_DS]);
1316        set_seg(&sregs.es, &env->segs[R_ES]);
1317        set_seg(&sregs.fs, &env->segs[R_FS]);
1318        set_seg(&sregs.gs, &env->segs[R_GS]);
1319        set_seg(&sregs.ss, &env->segs[R_SS]);
1320    }
1321
1322    set_seg(&sregs.tr, &env->tr);
1323    set_seg(&sregs.ldt, &env->ldt);
1324
1325    sregs.idt.limit = env->idt.limit;
1326    sregs.idt.base = env->idt.base;
1327    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1328    sregs.gdt.limit = env->gdt.limit;
1329    sregs.gdt.base = env->gdt.base;
1330    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1331
1332    sregs.cr0 = env->cr[0];
1333    sregs.cr2 = env->cr[2];
1334    sregs.cr3 = env->cr[3];
1335    sregs.cr4 = env->cr[4];
1336
1337    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1338    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1339
1340    sregs.efer = env->efer;
1341
1342    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1343}
1344
1345static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1346                              uint32_t index, uint64_t value)
1347{
1348    entry->index = index;
1349    entry->reserved = 0;
1350    entry->data = value;
1351}
1352
1353static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1354{
1355    CPUX86State *env = &cpu->env;
1356    struct {
1357        struct kvm_msrs info;
1358        struct kvm_msr_entry entries[1];
1359    } msr_data;
1360    struct kvm_msr_entry *msrs = msr_data.entries;
1361
1362    if (!has_msr_tsc_deadline) {
1363        return 0;
1364    }
1365
1366    kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1367
1368    msr_data.info = (struct kvm_msrs) {
1369        .nmsrs = 1,
1370    };
1371
1372    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1373}
1374
1375/*
1376 * Provide a separate write service for the feature control MSR in order to
1377 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1378 * before writing any other state because forcibly leaving nested mode
1379 * invalidates the VCPU state.
1380 */
1381static int kvm_put_msr_feature_control(X86CPU *cpu)
1382{
1383    struct {
1384        struct kvm_msrs info;
1385        struct kvm_msr_entry entry;
1386    } msr_data;
1387
1388    kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1389                      cpu->env.msr_ia32_feature_control);
1390
1391    msr_data.info = (struct kvm_msrs) {
1392        .nmsrs = 1,
1393    };
1394
1395    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1396}
1397
1398static int kvm_put_msrs(X86CPU *cpu, int level)
1399{
1400    CPUX86State *env = &cpu->env;
1401    struct {
1402        struct kvm_msrs info;
1403        struct kvm_msr_entry entries[150];
1404    } msr_data;
1405    struct kvm_msr_entry *msrs = msr_data.entries;
1406    int n = 0, i;
1407
1408    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1409    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1410    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1411    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1412    if (has_msr_star) {
1413        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1414    }
1415    if (has_msr_hsave_pa) {
1416        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1417    }
1418    if (has_msr_tsc_aux) {
1419        kvm_msr_entry_set(&msrs[n++], MSR_TSC_AUX, env->tsc_aux);
1420    }
1421    if (has_msr_tsc_adjust) {
1422        kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1423    }
1424    if (has_msr_misc_enable) {
1425        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1426                          env->msr_ia32_misc_enable);
1427    }
1428    if (has_msr_smbase) {
1429        kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase);
1430    }
1431    if (has_msr_bndcfgs) {
1432        kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1433    }
1434    if (has_msr_xss) {
1435        kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
1436    }
1437#ifdef TARGET_X86_64
1438    if (lm_capable_kernel) {
1439        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1440        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1441        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1442        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1443    }
1444#endif
1445    /*
1446     * The following MSRs have side effects on the guest or are too heavy
1447     * for normal writeback. Limit them to reset or full state updates.
1448     */
1449    if (level >= KVM_PUT_RESET_STATE) {
1450        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1451        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1452                          env->system_time_msr);
1453        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1454        if (has_msr_async_pf_en) {
1455            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1456                              env->async_pf_en_msr);
1457        }
1458        if (has_msr_pv_eoi_en) {
1459            kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1460                              env->pv_eoi_en_msr);
1461        }
1462        if (has_msr_kvm_steal_time) {
1463            kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1464                              env->steal_time_msr);
1465        }
1466        if (has_msr_architectural_pmu) {
1467            /* Stop the counter.  */
1468            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1469            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1470
1471            /* Set the counter values.  */
1472            for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1473                kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1474                                  env->msr_fixed_counters[i]);
1475            }
1476            for (i = 0; i < num_architectural_pmu_counters; i++) {
1477                kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1478                                  env->msr_gp_counters[i]);
1479                kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1480                                  env->msr_gp_evtsel[i]);
1481            }
1482            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1483                              env->msr_global_status);
1484            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1485                              env->msr_global_ovf_ctrl);
1486
1487            /* Now start the PMU.  */
1488            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1489                              env->msr_fixed_ctr_ctrl);
1490            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1491                              env->msr_global_ctrl);
1492        }
1493        if (has_msr_hv_hypercall) {
1494            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1495                              env->msr_hv_guest_os_id);
1496            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1497                              env->msr_hv_hypercall);
1498        }
1499        if (has_msr_hv_vapic) {
1500            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1501                              env->msr_hv_vapic);
1502        }
1503        if (has_msr_hv_tsc) {
1504            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1505                              env->msr_hv_tsc);
1506        }
1507        if (has_msr_hv_crash) {
1508            int j;
1509
1510            for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++)
1511                kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_P0 + j,
1512                                  env->msr_hv_crash_params[j]);
1513
1514            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_CTL,
1515                              HV_X64_MSR_CRASH_CTL_NOTIFY);
1516        }
1517        if (has_msr_hv_runtime) {
1518            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_VP_RUNTIME,
1519                              env->msr_hv_runtime);
1520        }
1521        if (has_msr_mtrr) {
1522            kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
1523            kvm_msr_entry_set(&msrs[n++],
1524                              MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1525            kvm_msr_entry_set(&msrs[n++],
1526                              MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1527            kvm_msr_entry_set(&msrs[n++],
1528                              MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1529            kvm_msr_entry_set(&msrs[n++],
1530                              MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1531            kvm_msr_entry_set(&msrs[n++],
1532                              MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1533            kvm_msr_entry_set(&msrs[n++],
1534                              MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1535            kvm_msr_entry_set(&msrs[n++],
1536                              MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1537            kvm_msr_entry_set(&msrs[n++],
1538                              MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1539            kvm_msr_entry_set(&msrs[n++],
1540                              MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1541            kvm_msr_entry_set(&msrs[n++],
1542                              MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1543            kvm_msr_entry_set(&msrs[n++],
1544                              MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1545            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1546                kvm_msr_entry_set(&msrs[n++],
1547                                  MSR_MTRRphysBase(i), env->mtrr_var[i].base);
1548                kvm_msr_entry_set(&msrs[n++],
1549                                  MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
1550            }
1551        }
1552
1553        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1554         *       kvm_put_msr_feature_control. */
1555    }
1556    if (env->mcg_cap) {
1557        int i;
1558
1559        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1560        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1561        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1562            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1563        }
1564    }
1565
1566    msr_data.info = (struct kvm_msrs) {
1567        .nmsrs = n,
1568    };
1569
1570    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1571
1572}
1573
1574
1575static int kvm_get_fpu(X86CPU *cpu)
1576{
1577    CPUX86State *env = &cpu->env;
1578    struct kvm_fpu fpu;
1579    int i, ret;
1580
1581    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1582    if (ret < 0) {
1583        return ret;
1584    }
1585
1586    env->fpstt = (fpu.fsw >> 11) & 7;
1587    env->fpus = fpu.fsw;
1588    env->fpuc = fpu.fcw;
1589    env->fpop = fpu.last_opcode;
1590    env->fpip = fpu.last_ip;
1591    env->fpdp = fpu.last_dp;
1592    for (i = 0; i < 8; ++i) {
1593        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1594    }
1595    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1596    for (i = 0; i < CPU_NB_REGS; i++) {
1597        env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1598        env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
1599    }
1600    env->mxcsr = fpu.mxcsr;
1601
1602    return 0;
1603}
1604
1605static int kvm_get_xsave(X86CPU *cpu)
1606{
1607    CPUX86State *env = &cpu->env;
1608    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1609    int ret, i;
1610    const uint8_t *xmm, *ymmh, *zmmh;
1611    uint16_t cwd, swd, twd;
1612
1613    if (!has_xsave) {
1614        return kvm_get_fpu(cpu);
1615    }
1616
1617    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1618    if (ret < 0) {
1619        return ret;
1620    }
1621
1622    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1623    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1624    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1625    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1626    env->fpstt = (swd >> 11) & 7;
1627    env->fpus = swd;
1628    env->fpuc = cwd;
1629    for (i = 0; i < 8; ++i) {
1630        env->fptags[i] = !((twd >> i) & 1);
1631    }
1632    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1633    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1634    env->mxcsr = xsave->region[XSAVE_MXCSR];
1635    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1636            sizeof env->fpregs);
1637    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1638    memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1639            sizeof env->bnd_regs);
1640    memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1641            sizeof(env->bndcs_regs));
1642    memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
1643            sizeof env->opmask_regs);
1644
1645    xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1646    ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1647    zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1648    for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1649        env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm);
1650        env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8);
1651        env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh);
1652        env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8);
1653        env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh);
1654        env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8);
1655        env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16);
1656        env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24);
1657    }
1658
1659#ifdef TARGET_X86_64
1660    memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM],
1661           16 * sizeof env->xmm_regs[16]);
1662#endif
1663    return 0;
1664}
1665
1666static int kvm_get_xcrs(X86CPU *cpu)
1667{
1668    CPUX86State *env = &cpu->env;
1669    int i, ret;
1670    struct kvm_xcrs xcrs;
1671
1672    if (!has_xcrs) {
1673        return 0;
1674    }
1675
1676    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1677    if (ret < 0) {
1678        return ret;
1679    }
1680
1681    for (i = 0; i < xcrs.nr_xcrs; i++) {
1682        /* Only support xcr0 now */
1683        if (xcrs.xcrs[i].xcr == 0) {
1684            env->xcr0 = xcrs.xcrs[i].value;
1685            break;
1686        }
1687    }
1688    return 0;
1689}
1690
1691static int kvm_get_sregs(X86CPU *cpu)
1692{
1693    CPUX86State *env = &cpu->env;
1694    struct kvm_sregs sregs;
1695    uint32_t hflags;
1696    int bit, i, ret;
1697
1698    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1699    if (ret < 0) {
1700        return ret;
1701    }
1702
1703    /* There can only be one pending IRQ set in the bitmap at a time, so try
1704       to find it and save its number instead (-1 for none). */
1705    env->interrupt_injected = -1;
1706    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1707        if (sregs.interrupt_bitmap[i]) {
1708            bit = ctz64(sregs.interrupt_bitmap[i]);
1709            env->interrupt_injected = i * 64 + bit;
1710            break;
1711        }
1712    }
1713
1714    get_seg(&env->segs[R_CS], &sregs.cs);
1715    get_seg(&env->segs[R_DS], &sregs.ds);
1716    get_seg(&env->segs[R_ES], &sregs.es);
1717    get_seg(&env->segs[R_FS], &sregs.fs);
1718    get_seg(&env->segs[R_GS], &sregs.gs);
1719    get_seg(&env->segs[R_SS], &sregs.ss);
1720
1721    get_seg(&env->tr, &sregs.tr);
1722    get_seg(&env->ldt, &sregs.ldt);
1723
1724    env->idt.limit = sregs.idt.limit;
1725    env->idt.base = sregs.idt.base;
1726    env->gdt.limit = sregs.gdt.limit;
1727    env->gdt.base = sregs.gdt.base;
1728
1729    env->cr[0] = sregs.cr0;
1730    env->cr[2] = sregs.cr2;
1731    env->cr[3] = sregs.cr3;
1732    env->cr[4] = sregs.cr4;
1733
1734    env->efer = sregs.efer;
1735
1736    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1737
1738#define HFLAG_COPY_MASK \
1739    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1740       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1741       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1742       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1743
1744    hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1745    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1746    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1747                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1748    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1749    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1750                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1751
1752    if (env->efer & MSR_EFER_LMA) {
1753        hflags |= HF_LMA_MASK;
1754    }
1755
1756    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1757        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1758    } else {
1759        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1760                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1761        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1762                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1763        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1764            !(hflags & HF_CS32_MASK)) {
1765            hflags |= HF_ADDSEG_MASK;
1766        } else {
1767            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1768                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1769        }
1770    }
1771    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1772
1773    return 0;
1774}
1775
1776static int kvm_get_msrs(X86CPU *cpu)
1777{
1778    CPUX86State *env = &cpu->env;
1779    struct {
1780        struct kvm_msrs info;
1781        struct kvm_msr_entry entries[150];
1782    } msr_data;
1783    struct kvm_msr_entry *msrs = msr_data.entries;
1784    int ret, i, n;
1785
1786    n = 0;
1787    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1788    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1789    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1790    msrs[n++].index = MSR_PAT;
1791    if (has_msr_star) {
1792        msrs[n++].index = MSR_STAR;
1793    }
1794    if (has_msr_hsave_pa) {
1795        msrs[n++].index = MSR_VM_HSAVE_PA;
1796    }
1797    if (has_msr_tsc_aux) {
1798        msrs[n++].index = MSR_TSC_AUX;
1799    }
1800    if (has_msr_tsc_adjust) {
1801        msrs[n++].index = MSR_TSC_ADJUST;
1802    }
1803    if (has_msr_tsc_deadline) {
1804        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1805    }
1806    if (has_msr_misc_enable) {
1807        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1808    }
1809    if (has_msr_smbase) {
1810        msrs[n++].index = MSR_IA32_SMBASE;
1811    }
1812    if (has_msr_feature_control) {
1813        msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1814    }
1815    if (has_msr_bndcfgs) {
1816        msrs[n++].index = MSR_IA32_BNDCFGS;
1817    }
1818    if (has_msr_xss) {
1819        msrs[n++].index = MSR_IA32_XSS;
1820    }
1821
1822
1823    if (!env->tsc_valid) {
1824        msrs[n++].index = MSR_IA32_TSC;
1825        env->tsc_valid = !runstate_is_running();
1826    }
1827
1828#ifdef TARGET_X86_64
1829    if (lm_capable_kernel) {
1830        msrs[n++].index = MSR_CSTAR;
1831        msrs[n++].index = MSR_KERNELGSBASE;
1832        msrs[n++].index = MSR_FMASK;
1833        msrs[n++].index = MSR_LSTAR;
1834    }
1835#endif
1836    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1837    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1838    if (has_msr_async_pf_en) {
1839        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1840    }
1841    if (has_msr_pv_eoi_en) {
1842        msrs[n++].index = MSR_KVM_PV_EOI_EN;
1843    }
1844    if (has_msr_kvm_steal_time) {
1845        msrs[n++].index = MSR_KVM_STEAL_TIME;
1846    }
1847    if (has_msr_architectural_pmu) {
1848        msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1849        msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1850        msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1851        msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1852        for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1853            msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1854        }
1855        for (i = 0; i < num_architectural_pmu_counters; i++) {
1856            msrs[n++].index = MSR_P6_PERFCTR0 + i;
1857            msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1858        }
1859    }
1860
1861    if (env->mcg_cap) {
1862        msrs[n++].index = MSR_MCG_STATUS;
1863        msrs[n++].index = MSR_MCG_CTL;
1864        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1865            msrs[n++].index = MSR_MC0_CTL + i;
1866        }
1867    }
1868
1869    if (has_msr_hv_hypercall) {
1870        msrs[n++].index = HV_X64_MSR_HYPERCALL;
1871        msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1872    }
1873    if (has_msr_hv_vapic) {
1874        msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1875    }
1876    if (has_msr_hv_tsc) {
1877        msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1878    }
1879    if (has_msr_hv_crash) {
1880        int j;
1881
1882        for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) {
1883            msrs[n++].index = HV_X64_MSR_CRASH_P0 + j;
1884        }
1885    }
1886    if (has_msr_hv_runtime) {
1887        msrs[n++].index = HV_X64_MSR_VP_RUNTIME;
1888    }
1889    if (has_msr_mtrr) {
1890        msrs[n++].index = MSR_MTRRdefType;
1891        msrs[n++].index = MSR_MTRRfix64K_00000;
1892        msrs[n++].index = MSR_MTRRfix16K_80000;
1893        msrs[n++].index = MSR_MTRRfix16K_A0000;
1894        msrs[n++].index = MSR_MTRRfix4K_C0000;
1895        msrs[n++].index = MSR_MTRRfix4K_C8000;
1896        msrs[n++].index = MSR_MTRRfix4K_D0000;
1897        msrs[n++].index = MSR_MTRRfix4K_D8000;
1898        msrs[n++].index = MSR_MTRRfix4K_E0000;
1899        msrs[n++].index = MSR_MTRRfix4K_E8000;
1900        msrs[n++].index = MSR_MTRRfix4K_F0000;
1901        msrs[n++].index = MSR_MTRRfix4K_F8000;
1902        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1903            msrs[n++].index = MSR_MTRRphysBase(i);
1904            msrs[n++].index = MSR_MTRRphysMask(i);
1905        }
1906    }
1907
1908    msr_data.info = (struct kvm_msrs) {
1909        .nmsrs = n,
1910    };
1911
1912    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1913    if (ret < 0) {
1914        return ret;
1915    }
1916
1917    for (i = 0; i < ret; i++) {
1918        uint32_t index = msrs[i].index;
1919        switch (index) {
1920        case MSR_IA32_SYSENTER_CS:
1921            env->sysenter_cs = msrs[i].data;
1922            break;
1923        case MSR_IA32_SYSENTER_ESP:
1924            env->sysenter_esp = msrs[i].data;
1925            break;
1926        case MSR_IA32_SYSENTER_EIP:
1927            env->sysenter_eip = msrs[i].data;
1928            break;
1929        case MSR_PAT:
1930            env->pat = msrs[i].data;
1931            break;
1932        case MSR_STAR:
1933            env->star = msrs[i].data;
1934            break;
1935#ifdef TARGET_X86_64
1936        case MSR_CSTAR:
1937            env->cstar = msrs[i].data;
1938            break;
1939        case MSR_KERNELGSBASE:
1940            env->kernelgsbase = msrs[i].data;
1941            break;
1942        case MSR_FMASK:
1943            env->fmask = msrs[i].data;
1944            break;
1945        case MSR_LSTAR:
1946            env->lstar = msrs[i].data;
1947            break;
1948#endif
1949        case MSR_IA32_TSC:
1950            env->tsc = msrs[i].data;
1951            break;
1952        case MSR_TSC_AUX:
1953            env->tsc_aux = msrs[i].data;
1954            break;
1955        case MSR_TSC_ADJUST:
1956            env->tsc_adjust = msrs[i].data;
1957            break;
1958        case MSR_IA32_TSCDEADLINE:
1959            env->tsc_deadline = msrs[i].data;
1960            break;
1961        case MSR_VM_HSAVE_PA:
1962            env->vm_hsave = msrs[i].data;
1963            break;
1964        case MSR_KVM_SYSTEM_TIME:
1965            env->system_time_msr = msrs[i].data;
1966            break;
1967        case MSR_KVM_WALL_CLOCK:
1968            env->wall_clock_msr = msrs[i].data;
1969            break;
1970        case MSR_MCG_STATUS:
1971            env->mcg_status = msrs[i].data;
1972            break;
1973        case MSR_MCG_CTL:
1974            env->mcg_ctl = msrs[i].data;
1975            break;
1976        case MSR_IA32_MISC_ENABLE:
1977            env->msr_ia32_misc_enable = msrs[i].data;
1978            break;
1979        case MSR_IA32_SMBASE:
1980            env->smbase = msrs[i].data;
1981            break;
1982        case MSR_IA32_FEATURE_CONTROL:
1983            env->msr_ia32_feature_control = msrs[i].data;
1984            break;
1985        case MSR_IA32_BNDCFGS:
1986            env->msr_bndcfgs = msrs[i].data;
1987            break;
1988        case MSR_IA32_XSS:
1989            env->xss = msrs[i].data;
1990            break;
1991        default:
1992            if (msrs[i].index >= MSR_MC0_CTL &&
1993                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1994                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1995            }
1996            break;
1997        case MSR_KVM_ASYNC_PF_EN:
1998            env->async_pf_en_msr = msrs[i].data;
1999            break;
2000        case MSR_KVM_PV_EOI_EN:
2001            env->pv_eoi_en_msr = msrs[i].data;
2002            break;
2003        case MSR_KVM_STEAL_TIME:
2004            env->steal_time_msr = msrs[i].data;
2005            break;
2006        case MSR_CORE_PERF_FIXED_CTR_CTRL:
2007            env->msr_fixed_ctr_ctrl = msrs[i].data;
2008            break;
2009        case MSR_CORE_PERF_GLOBAL_CTRL:
2010            env->msr_global_ctrl = msrs[i].data;
2011            break;
2012        case MSR_CORE_PERF_GLOBAL_STATUS:
2013            env->msr_global_status = msrs[i].data;
2014            break;
2015        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2016            env->msr_global_ovf_ctrl = msrs[i].data;
2017            break;
2018        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2019            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2020            break;
2021        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2022            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2023            break;
2024        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2025            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2026            break;
2027        case HV_X64_MSR_HYPERCALL:
2028            env->msr_hv_hypercall = msrs[i].data;
2029            break;
2030        case HV_X64_MSR_GUEST_OS_ID:
2031            env->msr_hv_guest_os_id = msrs[i].data;
2032            break;
2033        case HV_X64_MSR_APIC_ASSIST_PAGE:
2034            env->msr_hv_vapic = msrs[i].data;
2035            break;
2036        case HV_X64_MSR_REFERENCE_TSC:
2037            env->msr_hv_tsc = msrs[i].data;
2038            break;
2039        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2040            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2041            break;
2042        case HV_X64_MSR_VP_RUNTIME:
2043            env->msr_hv_runtime = msrs[i].data;
2044            break;
2045        case MSR_MTRRdefType:
2046            env->mtrr_deftype = msrs[i].data;
2047            break;
2048        case MSR_MTRRfix64K_00000:
2049            env->mtrr_fixed[0] = msrs[i].data;
2050            break;
2051        case MSR_MTRRfix16K_80000:
2052            env->mtrr_fixed[1] = msrs[i].data;
2053            break;
2054        case MSR_MTRRfix16K_A0000:
2055            env->mtrr_fixed[2] = msrs[i].data;
2056            break;
2057        case MSR_MTRRfix4K_C0000:
2058            env->mtrr_fixed[3] = msrs[i].data;
2059            break;
2060        case MSR_MTRRfix4K_C8000:
2061            env->mtrr_fixed[4] = msrs[i].data;
2062            break;
2063        case MSR_MTRRfix4K_D0000:
2064            env->mtrr_fixed[5] = msrs[i].data;
2065            break;
2066        case MSR_MTRRfix4K_D8000:
2067            env->mtrr_fixed[6] = msrs[i].data;
2068            break;
2069        case MSR_MTRRfix4K_E0000:
2070            env->mtrr_fixed[7] = msrs[i].data;
2071            break;
2072        case MSR_MTRRfix4K_E8000:
2073            env->mtrr_fixed[8] = msrs[i].data;
2074            break;
2075        case MSR_MTRRfix4K_F0000:
2076            env->mtrr_fixed[9] = msrs[i].data;
2077            break;
2078        case MSR_MTRRfix4K_F8000:
2079            env->mtrr_fixed[10] = msrs[i].data;
2080            break;
2081        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2082            if (index & 1) {
2083                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
2084            } else {
2085                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2086            }
2087            break;
2088        }
2089    }
2090
2091    return 0;
2092}
2093
2094static int kvm_put_mp_state(X86CPU *cpu)
2095{
2096    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2097
2098    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2099}
2100
2101static int kvm_get_mp_state(X86CPU *cpu)
2102{
2103    CPUState *cs = CPU(cpu);
2104    CPUX86State *env = &cpu->env;
2105    struct kvm_mp_state mp_state;
2106    int ret;
2107
2108    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2109    if (ret < 0) {
2110        return ret;
2111    }
2112    env->mp_state = mp_state.mp_state;
2113    if (kvm_irqchip_in_kernel()) {
2114        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2115    }
2116    return 0;
2117}
2118
2119static int kvm_get_apic(X86CPU *cpu)
2120{
2121    DeviceState *apic = cpu->apic_state;
2122    struct kvm_lapic_state kapic;
2123    int ret;
2124
2125    if (apic && kvm_irqchip_in_kernel()) {
2126        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2127        if (ret < 0) {
2128            return ret;
2129        }
2130
2131        kvm_get_apic_state(apic, &kapic);
2132    }
2133    return 0;
2134}
2135
2136static int kvm_put_apic(X86CPU *cpu)
2137{
2138    DeviceState *apic = cpu->apic_state;
2139    struct kvm_lapic_state kapic;
2140
2141    if (apic && kvm_irqchip_in_kernel()) {
2142        kvm_put_apic_state(apic, &kapic);
2143
2144        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
2145    }
2146    return 0;
2147}
2148
2149static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2150{
2151    CPUState *cs = CPU(cpu);
2152    CPUX86State *env = &cpu->env;
2153    struct kvm_vcpu_events events = {};
2154
2155    if (!kvm_has_vcpu_events()) {
2156        return 0;
2157    }
2158
2159    events.exception.injected = (env->exception_injected >= 0);
2160    events.exception.nr = env->exception_injected;
2161    events.exception.has_error_code = env->has_error_code;
2162    events.exception.error_code = env->error_code;
2163    events.exception.pad = 0;
2164
2165    events.interrupt.injected = (env->interrupt_injected >= 0);
2166    events.interrupt.nr = env->interrupt_injected;
2167    events.interrupt.soft = env->soft_interrupt;
2168
2169    events.nmi.injected = env->nmi_injected;
2170    events.nmi.pending = env->nmi_pending;
2171    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2172    events.nmi.pad = 0;
2173
2174    events.sipi_vector = env->sipi_vector;
2175
2176    if (has_msr_smbase) {
2177        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2178        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2179        if (kvm_irqchip_in_kernel()) {
2180            /* As soon as these are moved to the kernel, remove them
2181             * from cs->interrupt_request.
2182             */
2183            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2184            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2185            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2186        } else {
2187            /* Keep these in cs->interrupt_request.  */
2188            events.smi.pending = 0;
2189            events.smi.latched_init = 0;
2190        }
2191        events.flags |= KVM_VCPUEVENT_VALID_SMM;
2192    }
2193
2194    events.flags = 0;
2195    if (level >= KVM_PUT_RESET_STATE) {
2196        events.flags |=
2197            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2198    }
2199
2200    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2201}
2202
2203static int kvm_get_vcpu_events(X86CPU *cpu)
2204{
2205    CPUX86State *env = &cpu->env;
2206    struct kvm_vcpu_events events;
2207    int ret;
2208
2209    if (!kvm_has_vcpu_events()) {
2210        return 0;
2211    }
2212
2213    memset(&events, 0, sizeof(events));
2214    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2215    if (ret < 0) {
2216       return ret;
2217    }
2218    env->exception_injected =
2219       events.exception.injected ? events.exception.nr : -1;
2220    env->has_error_code = events.exception.has_error_code;
2221    env->error_code = events.exception.error_code;
2222
2223    env->interrupt_injected =
2224        events.interrupt.injected ? events.interrupt.nr : -1;
2225    env->soft_interrupt = events.interrupt.soft;
2226
2227    env->nmi_injected = events.nmi.injected;
2228    env->nmi_pending = events.nmi.pending;
2229    if (events.nmi.masked) {
2230        env->hflags2 |= HF2_NMI_MASK;
2231    } else {
2232        env->hflags2 &= ~HF2_NMI_MASK;
2233    }
2234
2235    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2236        if (events.smi.smm) {
2237            env->hflags |= HF_SMM_MASK;
2238        } else {
2239            env->hflags &= ~HF_SMM_MASK;
2240        }
2241        if (events.smi.pending) {
2242            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2243        } else {
2244            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2245        }
2246        if (events.smi.smm_inside_nmi) {
2247            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2248        } else {
2249            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2250        }
2251        if (events.smi.latched_init) {
2252            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2253        } else {
2254            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2255        }
2256    }
2257
2258    env->sipi_vector = events.sipi_vector;
2259
2260    return 0;
2261}
2262
2263static int kvm_guest_debug_workarounds(X86CPU *cpu)
2264{
2265    CPUState *cs = CPU(cpu);
2266    CPUX86State *env = &cpu->env;
2267    int ret = 0;
2268    unsigned long reinject_trap = 0;
2269
2270    if (!kvm_has_vcpu_events()) {
2271        if (env->exception_injected == 1) {
2272            reinject_trap = KVM_GUESTDBG_INJECT_DB;
2273        } else if (env->exception_injected == 3) {
2274            reinject_trap = KVM_GUESTDBG_INJECT_BP;
2275        }
2276        env->exception_injected = -1;
2277    }
2278
2279    /*
2280     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2281     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2282     * by updating the debug state once again if single-stepping is on.
2283     * Another reason to call kvm_update_guest_debug here is a pending debug
2284     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2285     * reinject them via SET_GUEST_DEBUG.
2286     */
2287    if (reinject_trap ||
2288        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2289        ret = kvm_update_guest_debug(cs, reinject_trap);
2290    }
2291    return ret;
2292}
2293
2294static int kvm_put_debugregs(X86CPU *cpu)
2295{
2296    CPUX86State *env = &cpu->env;
2297    struct kvm_debugregs dbgregs;
2298    int i;
2299
2300    if (!kvm_has_debugregs()) {
2301        return 0;
2302    }
2303
2304    for (i = 0; i < 4; i++) {
2305        dbgregs.db[i] = env->dr[i];
2306    }
2307    dbgregs.dr6 = env->dr[6];
2308    dbgregs.dr7 = env->dr[7];
2309    dbgregs.flags = 0;
2310
2311    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2312}
2313
2314static int kvm_get_debugregs(X86CPU *cpu)
2315{
2316    CPUX86State *env = &cpu->env;
2317    struct kvm_debugregs dbgregs;
2318    int i, ret;
2319
2320    if (!kvm_has_debugregs()) {
2321        return 0;
2322    }
2323
2324    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2325    if (ret < 0) {
2326        return ret;
2327    }
2328    for (i = 0; i < 4; i++) {
2329        env->dr[i] = dbgregs.db[i];
2330    }
2331    env->dr[4] = env->dr[6] = dbgregs.dr6;
2332    env->dr[5] = env->dr[7] = dbgregs.dr7;
2333
2334    return 0;
2335}
2336
2337int kvm_arch_put_registers(CPUState *cpu, int level)
2338{
2339    X86CPU *x86_cpu = X86_CPU(cpu);
2340    int ret;
2341
2342    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2343
2344    if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
2345        ret = kvm_put_msr_feature_control(x86_cpu);
2346        if (ret < 0) {
2347            return ret;
2348        }
2349    }
2350
2351    ret = kvm_getput_regs(x86_cpu, 1);
2352    if (ret < 0) {
2353        return ret;
2354    }
2355    ret = kvm_put_xsave(x86_cpu);
2356    if (ret < 0) {
2357        return ret;
2358    }
2359    ret = kvm_put_xcrs(x86_cpu);
2360    if (ret < 0) {
2361        return ret;
2362    }
2363    ret = kvm_put_sregs(x86_cpu);
2364    if (ret < 0) {
2365        return ret;
2366    }
2367    /* must be before kvm_put_msrs */
2368    ret = kvm_inject_mce_oldstyle(x86_cpu);
2369    if (ret < 0) {
2370        return ret;
2371    }
2372    ret = kvm_put_msrs(x86_cpu, level);
2373    if (ret < 0) {
2374        return ret;
2375    }
2376    if (level >= KVM_PUT_RESET_STATE) {
2377        ret = kvm_put_mp_state(x86_cpu);
2378        if (ret < 0) {
2379            return ret;
2380        }
2381        ret = kvm_put_apic(x86_cpu);
2382        if (ret < 0) {
2383            return ret;
2384        }
2385    }
2386
2387    ret = kvm_put_tscdeadline_msr(x86_cpu);
2388    if (ret < 0) {
2389        return ret;
2390    }
2391
2392    ret = kvm_put_vcpu_events(x86_cpu, level);
2393    if (ret < 0) {
2394        return ret;
2395    }
2396    ret = kvm_put_debugregs(x86_cpu);
2397    if (ret < 0) {
2398        return ret;
2399    }
2400    /* must be last */
2401    ret = kvm_guest_debug_workarounds(x86_cpu);
2402    if (ret < 0) {
2403        return ret;
2404    }
2405    return 0;
2406}
2407
2408int kvm_arch_get_registers(CPUState *cs)
2409{
2410    X86CPU *cpu = X86_CPU(cs);
2411    int ret;
2412
2413    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2414
2415    ret = kvm_getput_regs(cpu, 0);
2416    if (ret < 0) {
2417        return ret;
2418    }
2419    ret = kvm_get_xsave(cpu);
2420    if (ret < 0) {
2421        return ret;
2422    }
2423    ret = kvm_get_xcrs(cpu);
2424    if (ret < 0) {
2425        return ret;
2426    }
2427    ret = kvm_get_sregs(cpu);
2428    if (ret < 0) {
2429        return ret;
2430    }
2431    ret = kvm_get_msrs(cpu);
2432    if (ret < 0) {
2433        return ret;
2434    }
2435    ret = kvm_get_mp_state(cpu);
2436    if (ret < 0) {
2437        return ret;
2438    }
2439    ret = kvm_get_apic(cpu);
2440    if (ret < 0) {
2441        return ret;
2442    }
2443    ret = kvm_get_vcpu_events(cpu);
2444    if (ret < 0) {
2445        return ret;
2446    }
2447    ret = kvm_get_debugregs(cpu);
2448    if (ret < 0) {
2449        return ret;
2450    }
2451    return 0;
2452}
2453
2454void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
2455{
2456    X86CPU *x86_cpu = X86_CPU(cpu);
2457    CPUX86State *env = &x86_cpu->env;
2458    int ret;
2459
2460    /* Inject NMI */
2461    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2462        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2463            qemu_mutex_lock_iothread();
2464            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2465            qemu_mutex_unlock_iothread();
2466            DPRINTF("injected NMI\n");
2467            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2468            if (ret < 0) {
2469                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2470                        strerror(-ret));
2471            }
2472        }
2473        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2474            qemu_mutex_lock_iothread();
2475            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2476            qemu_mutex_unlock_iothread();
2477            DPRINTF("injected SMI\n");
2478            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2479            if (ret < 0) {
2480                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2481                        strerror(-ret));
2482            }
2483        }
2484    }
2485
2486    if (!kvm_irqchip_in_kernel()) {
2487        qemu_mutex_lock_iothread();
2488    }
2489
2490    /* Force the VCPU out of its inner loop to process any INIT requests
2491     * or (for userspace APIC, but it is cheap to combine the checks here)
2492     * pending TPR access reports.
2493     */
2494    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2495        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2496            !(env->hflags & HF_SMM_MASK)) {
2497            cpu->exit_request = 1;
2498        }
2499        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2500            cpu->exit_request = 1;
2501        }
2502    }
2503
2504    if (!kvm_irqchip_in_kernel()) {
2505        /* Try to inject an interrupt if the guest can accept it */
2506        if (run->ready_for_interrupt_injection &&
2507            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2508            (env->eflags & IF_MASK)) {
2509            int irq;
2510
2511            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2512            irq = cpu_get_pic_interrupt(env);
2513            if (irq >= 0) {
2514                struct kvm_interrupt intr;
2515
2516                intr.irq = irq;
2517                DPRINTF("injected interrupt %d\n", irq);
2518                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2519                if (ret < 0) {
2520                    fprintf(stderr,
2521                            "KVM: injection failed, interrupt lost (%s)\n",
2522                            strerror(-ret));
2523                }
2524            }
2525        }
2526
2527        /* If we have an interrupt but the guest is not ready to receive an
2528         * interrupt, request an interrupt window exit.  This will
2529         * cause a return to userspace as soon as the guest is ready to
2530         * receive interrupts. */
2531        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2532            run->request_interrupt_window = 1;
2533        } else {
2534            run->request_interrupt_window = 0;
2535        }
2536
2537        DPRINTF("setting tpr\n");
2538        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2539
2540        qemu_mutex_unlock_iothread();
2541    }
2542}
2543
2544MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2545{
2546    X86CPU *x86_cpu = X86_CPU(cpu);
2547    CPUX86State *env = &x86_cpu->env;
2548
2549    if (run->flags & KVM_RUN_X86_SMM) {
2550        env->hflags |= HF_SMM_MASK;
2551    } else {
2552        env->hflags &= HF_SMM_MASK;
2553    }
2554    if (run->if_flag) {
2555        env->eflags |= IF_MASK;
2556    } else {
2557        env->eflags &= ~IF_MASK;
2558    }
2559
2560    /* We need to protect the apic state against concurrent accesses from
2561     * different threads in case the userspace irqchip is used. */
2562    if (!kvm_irqchip_in_kernel()) {
2563        qemu_mutex_lock_iothread();
2564    }
2565    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2566    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2567    if (!kvm_irqchip_in_kernel()) {
2568        qemu_mutex_unlock_iothread();
2569    }
2570    return cpu_get_mem_attrs(env);
2571}
2572
2573int kvm_arch_process_async_events(CPUState *cs)
2574{
2575    X86CPU *cpu = X86_CPU(cs);
2576    CPUX86State *env = &cpu->env;
2577
2578    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2579        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2580        assert(env->mcg_cap);
2581
2582        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2583
2584        kvm_cpu_synchronize_state(cs);
2585
2586        if (env->exception_injected == EXCP08_DBLE) {
2587            /* this means triple fault */
2588            qemu_system_reset_request();
2589            cs->exit_request = 1;
2590            return 0;
2591        }
2592        env->exception_injected = EXCP12_MCHK;
2593        env->has_error_code = 0;
2594
2595        cs->halted = 0;
2596        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2597            env->mp_state = KVM_MP_STATE_RUNNABLE;
2598        }
2599    }
2600
2601    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2602        !(env->hflags & HF_SMM_MASK)) {
2603        kvm_cpu_synchronize_state(cs);
2604        do_cpu_init(cpu);
2605    }
2606
2607    if (kvm_irqchip_in_kernel()) {
2608        return 0;
2609    }
2610
2611    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2612        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2613        apic_poll_irq(cpu->apic_state);
2614    }
2615    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2616         (env->eflags & IF_MASK)) ||
2617        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2618        cs->halted = 0;
2619    }
2620    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2621        kvm_cpu_synchronize_state(cs);
2622        do_cpu_sipi(cpu);
2623    }
2624    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2625        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2626        kvm_cpu_synchronize_state(cs);
2627        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
2628                                      env->tpr_access_type);
2629    }
2630
2631    return cs->halted;
2632}
2633
2634static int kvm_handle_halt(X86CPU *cpu)
2635{
2636    CPUState *cs = CPU(cpu);
2637    CPUX86State *env = &cpu->env;
2638
2639    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2640          (env->eflags & IF_MASK)) &&
2641        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2642        cs->halted = 1;
2643        return EXCP_HLT;
2644    }
2645
2646    return 0;
2647}
2648
2649static int kvm_handle_tpr_access(X86CPU *cpu)
2650{
2651    CPUState *cs = CPU(cpu);
2652    struct kvm_run *run = cs->kvm_run;
2653
2654    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
2655                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
2656                                                           : TPR_ACCESS_READ);
2657    return 1;
2658}
2659
2660int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2661{
2662    static const uint8_t int3 = 0xcc;
2663
2664    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2665        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2666        return -EINVAL;
2667    }
2668    return 0;
2669}
2670
2671int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2672{
2673    uint8_t int3;
2674
2675    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2676        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2677        return -EINVAL;
2678    }
2679    return 0;
2680}
2681
2682static struct {
2683    target_ulong addr;
2684    int len;
2685    int type;
2686} hw_breakpoint[4];
2687
2688static int nb_hw_breakpoint;
2689
2690static int find_hw_breakpoint(target_ulong addr, int len, int type)
2691{
2692    int n;
2693
2694    for (n = 0; n < nb_hw_breakpoint; n++) {
2695        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2696            (hw_breakpoint[n].len == len || len == -1)) {
2697            return n;
2698        }
2699    }
2700    return -1;
2701}
2702
2703int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2704                                  target_ulong len, int type)
2705{
2706    switch (type) {
2707    case GDB_BREAKPOINT_HW:
2708        len = 1;
2709        break;
2710    case GDB_WATCHPOINT_WRITE:
2711    case GDB_WATCHPOINT_ACCESS:
2712        switch (len) {
2713        case 1:
2714            break;
2715        case 2:
2716        case 4:
2717        case 8:
2718            if (addr & (len - 1)) {
2719                return -EINVAL;
2720            }
2721            break;
2722        default:
2723            return -EINVAL;
2724        }
2725        break;
2726    default:
2727        return -ENOSYS;
2728    }
2729
2730    if (nb_hw_breakpoint == 4) {
2731        return -ENOBUFS;
2732    }
2733    if (find_hw_breakpoint(addr, len, type) >= 0) {
2734        return -EEXIST;
2735    }
2736    hw_breakpoint[nb_hw_breakpoint].addr = addr;
2737    hw_breakpoint[nb_hw_breakpoint].len = len;
2738    hw_breakpoint[nb_hw_breakpoint].type = type;
2739    nb_hw_breakpoint++;
2740
2741    return 0;
2742}
2743
2744int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2745                                  target_ulong len, int type)
2746{
2747    int n;
2748
2749    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2750    if (n < 0) {
2751        return -ENOENT;
2752    }
2753    nb_hw_breakpoint--;
2754    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2755
2756    return 0;
2757}
2758
2759void kvm_arch_remove_all_hw_breakpoints(void)
2760{
2761    nb_hw_breakpoint = 0;
2762}
2763
2764static CPUWatchpoint hw_watchpoint;
2765
2766static int kvm_handle_debug(X86CPU *cpu,
2767                            struct kvm_debug_exit_arch *arch_info)
2768{
2769    CPUState *cs = CPU(cpu);
2770    CPUX86State *env = &cpu->env;
2771    int ret = 0;
2772    int n;
2773
2774    if (arch_info->exception == 1) {
2775        if (arch_info->dr6 & (1 << 14)) {
2776            if (cs->singlestep_enabled) {
2777                ret = EXCP_DEBUG;
2778            }
2779        } else {
2780            for (n = 0; n < 4; n++) {
2781                if (arch_info->dr6 & (1 << n)) {
2782                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2783                    case 0x0:
2784                        ret = EXCP_DEBUG;
2785                        break;
2786                    case 0x1:
2787                        ret = EXCP_DEBUG;
2788                        cs->watchpoint_hit = &hw_watchpoint;
2789                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2790                        hw_watchpoint.flags = BP_MEM_WRITE;
2791                        break;
2792                    case 0x3:
2793                        ret = EXCP_DEBUG;
2794                        cs->watchpoint_hit = &hw_watchpoint;
2795                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2796                        hw_watchpoint.flags = BP_MEM_ACCESS;
2797                        break;
2798                    }
2799                }
2800            }
2801        }
2802    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
2803        ret = EXCP_DEBUG;
2804    }
2805    if (ret == 0) {
2806        cpu_synchronize_state(cs);
2807        assert(env->exception_injected == -1);
2808
2809        /* pass to guest */
2810        env->exception_injected = arch_info->exception;
2811        env->has_error_code = 0;
2812    }
2813
2814    return ret;
2815}
2816
2817void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2818{
2819    const uint8_t type_code[] = {
2820        [GDB_BREAKPOINT_HW] = 0x0,
2821        [GDB_WATCHPOINT_WRITE] = 0x1,
2822        [GDB_WATCHPOINT_ACCESS] = 0x3
2823    };
2824    const uint8_t len_code[] = {
2825        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2826    };
2827    int n;
2828
2829    if (kvm_sw_breakpoints_active(cpu)) {
2830        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2831    }
2832    if (nb_hw_breakpoint > 0) {
2833        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2834        dbg->arch.debugreg[7] = 0x0600;
2835        for (n = 0; n < nb_hw_breakpoint; n++) {
2836            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2837            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2838                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2839                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2840        }
2841    }
2842}
2843
2844static bool host_supports_vmx(void)
2845{
2846    uint32_t ecx, unused;
2847
2848    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2849    return ecx & CPUID_EXT_VMX;
2850}
2851
2852#define VMX_INVALID_GUEST_STATE 0x80000021
2853
2854int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2855{
2856    X86CPU *cpu = X86_CPU(cs);
2857    uint64_t code;
2858    int ret;
2859
2860    switch (run->exit_reason) {
2861    case KVM_EXIT_HLT:
2862        DPRINTF("handle_hlt\n");
2863        qemu_mutex_lock_iothread();
2864        ret = kvm_handle_halt(cpu);
2865        qemu_mutex_unlock_iothread();
2866        break;
2867    case KVM_EXIT_SET_TPR:
2868        ret = 0;
2869        break;
2870    case KVM_EXIT_TPR_ACCESS:
2871        qemu_mutex_lock_iothread();
2872        ret = kvm_handle_tpr_access(cpu);
2873        qemu_mutex_unlock_iothread();
2874        break;
2875    case KVM_EXIT_FAIL_ENTRY:
2876        code = run->fail_entry.hardware_entry_failure_reason;
2877        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2878                code);
2879        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2880            fprintf(stderr,
2881                    "\nIf you're running a guest on an Intel machine without "
2882                        "unrestricted mode\n"
2883                    "support, the failure can be most likely due to the guest "
2884                        "entering an invalid\n"
2885                    "state for Intel VT. For example, the guest maybe running "
2886                        "in big real mode\n"
2887                    "which is not supported on less recent Intel processors."
2888                        "\n\n");
2889        }
2890        ret = -1;
2891        break;
2892    case KVM_EXIT_EXCEPTION:
2893        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2894                run->ex.exception, run->ex.error_code);
2895        ret = -1;
2896        break;
2897    case KVM_EXIT_DEBUG:
2898        DPRINTF("kvm_exit_debug\n");
2899        qemu_mutex_lock_iothread();
2900        ret = kvm_handle_debug(cpu, &run->debug.arch);
2901        qemu_mutex_unlock_iothread();
2902        break;
2903    default:
2904        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2905        ret = -1;
2906        break;
2907    }
2908
2909    return ret;
2910}
2911
2912bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2913{
2914    X86CPU *cpu = X86_CPU(cs);
2915    CPUX86State *env = &cpu->env;
2916
2917    kvm_cpu_synchronize_state(cs);
2918    return !(env->cr[0] & CR0_PE_MASK) ||
2919           ((env->segs[R_CS].selector  & 3) != 3);
2920}
2921
2922void kvm_arch_init_irq_routing(KVMState *s)
2923{
2924    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2925        /* If kernel can't do irq routing, interrupt source
2926         * override 0->2 cannot be set up as required by HPET.
2927         * So we have to disable it.
2928         */
2929        no_hpet = 1;
2930    }
2931    /* We know at this point that we're using the in-kernel
2932     * irqchip, so we can use irqfds, and on x86 we know
2933     * we can use msi via irqfd and GSI routing.
2934     */
2935    kvm_msi_via_irqfd_allowed = true;
2936    kvm_gsi_routing_allowed = true;
2937}
2938
2939/* Classic KVM device assignment interface. Will remain x86 only. */
2940int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2941                          uint32_t flags, uint32_t *dev_id)
2942{
2943    struct kvm_assigned_pci_dev dev_data = {
2944        .segnr = dev_addr->domain,
2945        .busnr = dev_addr->bus,
2946        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2947        .flags = flags,
2948    };
2949    int ret;
2950
2951    dev_data.assigned_dev_id =
2952        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2953
2954    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2955    if (ret < 0) {
2956        return ret;
2957    }
2958
2959    *dev_id = dev_data.assigned_dev_id;
2960
2961    return 0;
2962}
2963
2964int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2965{
2966    struct kvm_assigned_pci_dev dev_data = {
2967        .assigned_dev_id = dev_id,
2968    };
2969
2970    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2971}
2972
2973static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2974                                   uint32_t irq_type, uint32_t guest_irq)
2975{
2976    struct kvm_assigned_irq assigned_irq = {
2977        .assigned_dev_id = dev_id,
2978        .guest_irq = guest_irq,
2979        .flags = irq_type,
2980    };
2981
2982    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2983        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2984    } else {
2985        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2986    }
2987}
2988
2989int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2990                           uint32_t guest_irq)
2991{
2992    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2993        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2994
2995    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2996}
2997
2998int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2999{
3000    struct kvm_assigned_pci_dev dev_data = {
3001        .assigned_dev_id = dev_id,
3002        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3003    };
3004
3005    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3006}
3007
3008static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3009                                     uint32_t type)
3010{
3011    struct kvm_assigned_irq assigned_irq = {
3012        .assigned_dev_id = dev_id,
3013        .flags = type,
3014    };
3015
3016    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3017}
3018
3019int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3020{
3021    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3022        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3023}
3024
3025int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3026{
3027    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3028                                              KVM_DEV_IRQ_GUEST_MSI, virq);
3029}
3030
3031int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3032{
3033    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3034                                                KVM_DEV_IRQ_HOST_MSI);
3035}
3036
3037bool kvm_device_msix_supported(KVMState *s)
3038{
3039    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3040     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3041    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3042}
3043
3044int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3045                                 uint32_t nr_vectors)
3046{
3047    struct kvm_assigned_msix_nr msix_nr = {
3048        .assigned_dev_id = dev_id,
3049        .entry_nr = nr_vectors,
3050    };
3051
3052    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3053}
3054
3055int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3056                               int virq)
3057{
3058    struct kvm_assigned_msix_entry msix_entry = {
3059        .assigned_dev_id = dev_id,
3060        .gsi = virq,
3061        .entry = vector,
3062    };
3063
3064    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3065}
3066
3067int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3068{
3069    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3070                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
3071}
3072
3073int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3074{
3075    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3076                                                KVM_DEV_IRQ_HOST_MSIX);
3077}
3078
3079int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3080                             uint64_t address, uint32_t data, PCIDevice *dev)
3081{
3082    return 0;
3083}
3084
3085int kvm_arch_msi_data_to_gsi(uint32_t data)
3086{
3087    abort();
3088}
3089