qemu/block/io.c
<<
>>
Prefs
   1/*
   2 * Block layer I/O functions
   3 *
   4 * Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "trace.h"
  26#include "sysemu/block-backend.h"
  27#include "block/blockjob.h"
  28#include "block/block_int.h"
  29#include "block/throttle-groups.h"
  30#include "qemu/error-report.h"
  31
  32#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
  33
  34static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
  35        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
  36        BlockCompletionFunc *cb, void *opaque);
  37static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
  38        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
  39        BlockCompletionFunc *cb, void *opaque);
  40static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
  41                                         int64_t sector_num, int nb_sectors,
  42                                         QEMUIOVector *iov);
  43static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
  44                                         int64_t sector_num, int nb_sectors,
  45                                         QEMUIOVector *iov);
  46static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
  47    int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
  48    BdrvRequestFlags flags);
  49static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
  50    int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
  51    BdrvRequestFlags flags);
  52static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
  53                                         int64_t sector_num,
  54                                         QEMUIOVector *qiov,
  55                                         int nb_sectors,
  56                                         BdrvRequestFlags flags,
  57                                         BlockCompletionFunc *cb,
  58                                         void *opaque,
  59                                         bool is_write);
  60static void coroutine_fn bdrv_co_do_rw(void *opaque);
  61static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
  62    int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
  63
  64/* throttling disk I/O limits */
  65void bdrv_set_io_limits(BlockDriverState *bs,
  66                        ThrottleConfig *cfg)
  67{
  68    int i;
  69
  70    throttle_group_config(bs, cfg);
  71
  72    for (i = 0; i < 2; i++) {
  73        qemu_co_enter_next(&bs->throttled_reqs[i]);
  74    }
  75}
  76
  77/* this function drain all the throttled IOs */
  78static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
  79{
  80    bool drained = false;
  81    bool enabled = bs->io_limits_enabled;
  82    int i;
  83
  84    bs->io_limits_enabled = false;
  85
  86    for (i = 0; i < 2; i++) {
  87        while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
  88            drained = true;
  89        }
  90    }
  91
  92    bs->io_limits_enabled = enabled;
  93
  94    return drained;
  95}
  96
  97void bdrv_io_limits_disable(BlockDriverState *bs)
  98{
  99    bs->io_limits_enabled = false;
 100    bdrv_start_throttled_reqs(bs);
 101    throttle_group_unregister_bs(bs);
 102}
 103
 104/* should be called before bdrv_set_io_limits if a limit is set */
 105void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
 106{
 107    assert(!bs->io_limits_enabled);
 108    throttle_group_register_bs(bs, group);
 109    bs->io_limits_enabled = true;
 110}
 111
 112void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
 113{
 114    /* this bs is not part of any group */
 115    if (!bs->throttle_state) {
 116        return;
 117    }
 118
 119    /* this bs is a part of the same group than the one we want */
 120    if (!g_strcmp0(throttle_group_get_name(bs), group)) {
 121        return;
 122    }
 123
 124    /* need to change the group this bs belong to */
 125    bdrv_io_limits_disable(bs);
 126    bdrv_io_limits_enable(bs, group);
 127}
 128
 129void bdrv_setup_io_funcs(BlockDriver *bdrv)
 130{
 131    /* Block drivers without coroutine functions need emulation */
 132    if (!bdrv->bdrv_co_readv) {
 133        bdrv->bdrv_co_readv = bdrv_co_readv_em;
 134        bdrv->bdrv_co_writev = bdrv_co_writev_em;
 135
 136        /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
 137         * the block driver lacks aio we need to emulate that too.
 138         */
 139        if (!bdrv->bdrv_aio_readv) {
 140            /* add AIO emulation layer */
 141            bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
 142            bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
 143        }
 144    }
 145}
 146
 147void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
 148{
 149    BlockDriver *drv = bs->drv;
 150    Error *local_err = NULL;
 151
 152    memset(&bs->bl, 0, sizeof(bs->bl));
 153
 154    if (!drv) {
 155        return;
 156    }
 157
 158    /* Take some limits from the children as a default */
 159    if (bs->file) {
 160        bdrv_refresh_limits(bs->file->bs, &local_err);
 161        if (local_err) {
 162            error_propagate(errp, local_err);
 163            return;
 164        }
 165        bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
 166        bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
 167        bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
 168        bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
 169    } else {
 170        bs->bl.min_mem_alignment = 512;
 171        bs->bl.opt_mem_alignment = getpagesize();
 172    }
 173
 174    if (bs->backing) {
 175        bdrv_refresh_limits(bs->backing->bs, &local_err);
 176        if (local_err) {
 177            error_propagate(errp, local_err);
 178            return;
 179        }
 180        bs->bl.opt_transfer_length =
 181            MAX(bs->bl.opt_transfer_length,
 182                bs->backing->bs->bl.opt_transfer_length);
 183        bs->bl.max_transfer_length =
 184            MIN_NON_ZERO(bs->bl.max_transfer_length,
 185                         bs->backing->bs->bl.max_transfer_length);
 186        bs->bl.opt_mem_alignment =
 187            MAX(bs->bl.opt_mem_alignment,
 188                bs->backing->bs->bl.opt_mem_alignment);
 189        bs->bl.min_mem_alignment =
 190            MAX(bs->bl.min_mem_alignment,
 191                bs->backing->bs->bl.min_mem_alignment);
 192    }
 193
 194    /* Then let the driver override it */
 195    if (drv->bdrv_refresh_limits) {
 196        drv->bdrv_refresh_limits(bs, errp);
 197    }
 198}
 199
 200/**
 201 * The copy-on-read flag is actually a reference count so multiple users may
 202 * use the feature without worrying about clobbering its previous state.
 203 * Copy-on-read stays enabled until all users have called to disable it.
 204 */
 205void bdrv_enable_copy_on_read(BlockDriverState *bs)
 206{
 207    bs->copy_on_read++;
 208}
 209
 210void bdrv_disable_copy_on_read(BlockDriverState *bs)
 211{
 212    assert(bs->copy_on_read > 0);
 213    bs->copy_on_read--;
 214}
 215
 216/* Check if any requests are in-flight (including throttled requests) */
 217bool bdrv_requests_pending(BlockDriverState *bs)
 218{
 219    BdrvChild *child;
 220
 221    if (!QLIST_EMPTY(&bs->tracked_requests)) {
 222        return true;
 223    }
 224    if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
 225        return true;
 226    }
 227    if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
 228        return true;
 229    }
 230
 231    QLIST_FOREACH(child, &bs->children, next) {
 232        if (bdrv_requests_pending(child->bs)) {
 233            return true;
 234        }
 235    }
 236
 237    return false;
 238}
 239
 240static void bdrv_drain_recurse(BlockDriverState *bs)
 241{
 242    BdrvChild *child;
 243
 244    if (bs->drv && bs->drv->bdrv_drain) {
 245        bs->drv->bdrv_drain(bs);
 246    }
 247    QLIST_FOREACH(child, &bs->children, next) {
 248        bdrv_drain_recurse(child->bs);
 249    }
 250}
 251
 252/*
 253 * Wait for pending requests to complete on a single BlockDriverState subtree,
 254 * and suspend block driver's internal I/O until next request arrives.
 255 *
 256 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
 257 * AioContext.
 258 *
 259 * Only this BlockDriverState's AioContext is run, so in-flight requests must
 260 * not depend on events in other AioContexts.  In that case, use
 261 * bdrv_drain_all() instead.
 262 */
 263void bdrv_drain(BlockDriverState *bs)
 264{
 265    bool busy = true;
 266
 267    bdrv_drain_recurse(bs);
 268    while (busy) {
 269        /* Keep iterating */
 270         bdrv_flush_io_queue(bs);
 271         busy = bdrv_requests_pending(bs);
 272         busy |= aio_poll(bdrv_get_aio_context(bs), busy);
 273    }
 274}
 275
 276/*
 277 * Wait for pending requests to complete across all BlockDriverStates
 278 *
 279 * This function does not flush data to disk, use bdrv_flush_all() for that
 280 * after calling this function.
 281 */
 282void bdrv_drain_all(void)
 283{
 284    /* Always run first iteration so any pending completion BHs run */
 285    bool busy = true;
 286    BlockDriverState *bs = NULL;
 287    GSList *aio_ctxs = NULL, *ctx;
 288
 289    while ((bs = bdrv_next(bs))) {
 290        AioContext *aio_context = bdrv_get_aio_context(bs);
 291
 292        aio_context_acquire(aio_context);
 293        if (bs->job) {
 294            block_job_pause(bs->job);
 295        }
 296        aio_context_release(aio_context);
 297
 298        if (!g_slist_find(aio_ctxs, aio_context)) {
 299            aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
 300        }
 301    }
 302
 303    /* Note that completion of an asynchronous I/O operation can trigger any
 304     * number of other I/O operations on other devices---for example a
 305     * coroutine can submit an I/O request to another device in response to
 306     * request completion.  Therefore we must keep looping until there was no
 307     * more activity rather than simply draining each device independently.
 308     */
 309    while (busy) {
 310        busy = false;
 311
 312        for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
 313            AioContext *aio_context = ctx->data;
 314            bs = NULL;
 315
 316            aio_context_acquire(aio_context);
 317            while ((bs = bdrv_next(bs))) {
 318                if (aio_context == bdrv_get_aio_context(bs)) {
 319                    bdrv_flush_io_queue(bs);
 320                    if (bdrv_requests_pending(bs)) {
 321                        busy = true;
 322                        aio_poll(aio_context, busy);
 323                    }
 324                }
 325            }
 326            busy |= aio_poll(aio_context, false);
 327            aio_context_release(aio_context);
 328        }
 329    }
 330
 331    bs = NULL;
 332    while ((bs = bdrv_next(bs))) {
 333        AioContext *aio_context = bdrv_get_aio_context(bs);
 334
 335        aio_context_acquire(aio_context);
 336        if (bs->job) {
 337            block_job_resume(bs->job);
 338        }
 339        aio_context_release(aio_context);
 340    }
 341    g_slist_free(aio_ctxs);
 342}
 343
 344/**
 345 * Remove an active request from the tracked requests list
 346 *
 347 * This function should be called when a tracked request is completing.
 348 */
 349static void tracked_request_end(BdrvTrackedRequest *req)
 350{
 351    if (req->serialising) {
 352        req->bs->serialising_in_flight--;
 353    }
 354
 355    QLIST_REMOVE(req, list);
 356    qemu_co_queue_restart_all(&req->wait_queue);
 357}
 358
 359/**
 360 * Add an active request to the tracked requests list
 361 */
 362static void tracked_request_begin(BdrvTrackedRequest *req,
 363                                  BlockDriverState *bs,
 364                                  int64_t offset,
 365                                  unsigned int bytes,
 366                                  enum BdrvTrackedRequestType type)
 367{
 368    *req = (BdrvTrackedRequest){
 369        .bs = bs,
 370        .offset         = offset,
 371        .bytes          = bytes,
 372        .type           = type,
 373        .co             = qemu_coroutine_self(),
 374        .serialising    = false,
 375        .overlap_offset = offset,
 376        .overlap_bytes  = bytes,
 377    };
 378
 379    qemu_co_queue_init(&req->wait_queue);
 380
 381    QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
 382}
 383
 384static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
 385{
 386    int64_t overlap_offset = req->offset & ~(align - 1);
 387    unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
 388                               - overlap_offset;
 389
 390    if (!req->serialising) {
 391        req->bs->serialising_in_flight++;
 392        req->serialising = true;
 393    }
 394
 395    req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
 396    req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
 397}
 398
 399/**
 400 * Round a region to cluster boundaries
 401 */
 402void bdrv_round_to_clusters(BlockDriverState *bs,
 403                            int64_t sector_num, int nb_sectors,
 404                            int64_t *cluster_sector_num,
 405                            int *cluster_nb_sectors)
 406{
 407    BlockDriverInfo bdi;
 408
 409    if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
 410        *cluster_sector_num = sector_num;
 411        *cluster_nb_sectors = nb_sectors;
 412    } else {
 413        int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
 414        *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
 415        *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
 416                                            nb_sectors, c);
 417    }
 418}
 419
 420static int bdrv_get_cluster_size(BlockDriverState *bs)
 421{
 422    BlockDriverInfo bdi;
 423    int ret;
 424
 425    ret = bdrv_get_info(bs, &bdi);
 426    if (ret < 0 || bdi.cluster_size == 0) {
 427        return bs->request_alignment;
 428    } else {
 429        return bdi.cluster_size;
 430    }
 431}
 432
 433static bool tracked_request_overlaps(BdrvTrackedRequest *req,
 434                                     int64_t offset, unsigned int bytes)
 435{
 436    /*        aaaa   bbbb */
 437    if (offset >= req->overlap_offset + req->overlap_bytes) {
 438        return false;
 439    }
 440    /* bbbb   aaaa        */
 441    if (req->overlap_offset >= offset + bytes) {
 442        return false;
 443    }
 444    return true;
 445}
 446
 447static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
 448{
 449    BlockDriverState *bs = self->bs;
 450    BdrvTrackedRequest *req;
 451    bool retry;
 452    bool waited = false;
 453
 454    if (!bs->serialising_in_flight) {
 455        return false;
 456    }
 457
 458    do {
 459        retry = false;
 460        QLIST_FOREACH(req, &bs->tracked_requests, list) {
 461            if (req == self || (!req->serialising && !self->serialising)) {
 462                continue;
 463            }
 464            if (tracked_request_overlaps(req, self->overlap_offset,
 465                                         self->overlap_bytes))
 466            {
 467                /* Hitting this means there was a reentrant request, for
 468                 * example, a block driver issuing nested requests.  This must
 469                 * never happen since it means deadlock.
 470                 */
 471                assert(qemu_coroutine_self() != req->co);
 472
 473                /* If the request is already (indirectly) waiting for us, or
 474                 * will wait for us as soon as it wakes up, then just go on
 475                 * (instead of producing a deadlock in the former case). */
 476                if (!req->waiting_for) {
 477                    self->waiting_for = req;
 478                    qemu_co_queue_wait(&req->wait_queue);
 479                    self->waiting_for = NULL;
 480                    retry = true;
 481                    waited = true;
 482                    break;
 483                }
 484            }
 485        }
 486    } while (retry);
 487
 488    return waited;
 489}
 490
 491static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
 492                                   size_t size)
 493{
 494    if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
 495        return -EIO;
 496    }
 497
 498    if (!bdrv_is_inserted(bs)) {
 499        return -ENOMEDIUM;
 500    }
 501
 502    if (offset < 0) {
 503        return -EIO;
 504    }
 505
 506    return 0;
 507}
 508
 509static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
 510                              int nb_sectors)
 511{
 512    if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
 513        return -EIO;
 514    }
 515
 516    return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
 517                                   nb_sectors * BDRV_SECTOR_SIZE);
 518}
 519
 520typedef struct RwCo {
 521    BlockDriverState *bs;
 522    int64_t offset;
 523    QEMUIOVector *qiov;
 524    bool is_write;
 525    int ret;
 526    BdrvRequestFlags flags;
 527} RwCo;
 528
 529static void coroutine_fn bdrv_rw_co_entry(void *opaque)
 530{
 531    RwCo *rwco = opaque;
 532
 533    if (!rwco->is_write) {
 534        rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
 535                                      rwco->qiov->size, rwco->qiov,
 536                                      rwco->flags);
 537    } else {
 538        rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
 539                                       rwco->qiov->size, rwco->qiov,
 540                                       rwco->flags);
 541    }
 542}
 543
 544/*
 545 * Process a vectored synchronous request using coroutines
 546 */
 547static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
 548                        QEMUIOVector *qiov, bool is_write,
 549                        BdrvRequestFlags flags)
 550{
 551    Coroutine *co;
 552    RwCo rwco = {
 553        .bs = bs,
 554        .offset = offset,
 555        .qiov = qiov,
 556        .is_write = is_write,
 557        .ret = NOT_DONE,
 558        .flags = flags,
 559    };
 560
 561    /**
 562     * In sync call context, when the vcpu is blocked, this throttling timer
 563     * will not fire; so the I/O throttling function has to be disabled here
 564     * if it has been enabled.
 565     */
 566    if (bs->io_limits_enabled) {
 567        fprintf(stderr, "Disabling I/O throttling on '%s' due "
 568                        "to synchronous I/O.\n", bdrv_get_device_name(bs));
 569        bdrv_io_limits_disable(bs);
 570    }
 571
 572    if (qemu_in_coroutine()) {
 573        /* Fast-path if already in coroutine context */
 574        bdrv_rw_co_entry(&rwco);
 575    } else {
 576        AioContext *aio_context = bdrv_get_aio_context(bs);
 577
 578        co = qemu_coroutine_create(bdrv_rw_co_entry);
 579        qemu_coroutine_enter(co, &rwco);
 580        while (rwco.ret == NOT_DONE) {
 581            aio_poll(aio_context, true);
 582        }
 583    }
 584    return rwco.ret;
 585}
 586
 587/*
 588 * Process a synchronous request using coroutines
 589 */
 590static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
 591                      int nb_sectors, bool is_write, BdrvRequestFlags flags)
 592{
 593    QEMUIOVector qiov;
 594    struct iovec iov = {
 595        .iov_base = (void *)buf,
 596        .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
 597    };
 598
 599    if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
 600        return -EINVAL;
 601    }
 602
 603    qemu_iovec_init_external(&qiov, &iov, 1);
 604    return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
 605                        &qiov, is_write, flags);
 606}
 607
 608/* return < 0 if error. See bdrv_write() for the return codes */
 609int bdrv_read(BlockDriverState *bs, int64_t sector_num,
 610              uint8_t *buf, int nb_sectors)
 611{
 612    return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
 613}
 614
 615/* Just like bdrv_read(), but with I/O throttling temporarily disabled */
 616int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
 617                          uint8_t *buf, int nb_sectors)
 618{
 619    bool enabled;
 620    int ret;
 621
 622    enabled = bs->io_limits_enabled;
 623    bs->io_limits_enabled = false;
 624    ret = bdrv_read(bs, sector_num, buf, nb_sectors);
 625    bs->io_limits_enabled = enabled;
 626    return ret;
 627}
 628
 629/* Return < 0 if error. Important errors are:
 630  -EIO         generic I/O error (may happen for all errors)
 631  -ENOMEDIUM   No media inserted.
 632  -EINVAL      Invalid sector number or nb_sectors
 633  -EACCES      Trying to write a read-only device
 634*/
 635int bdrv_write(BlockDriverState *bs, int64_t sector_num,
 636               const uint8_t *buf, int nb_sectors)
 637{
 638    return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
 639}
 640
 641int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
 642                      int nb_sectors, BdrvRequestFlags flags)
 643{
 644    return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
 645                      BDRV_REQ_ZERO_WRITE | flags);
 646}
 647
 648/*
 649 * Completely zero out a block device with the help of bdrv_write_zeroes.
 650 * The operation is sped up by checking the block status and only writing
 651 * zeroes to the device if they currently do not return zeroes. Optional
 652 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
 653 *
 654 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
 655 */
 656int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
 657{
 658    int64_t target_sectors, ret, nb_sectors, sector_num = 0;
 659    int n;
 660
 661    target_sectors = bdrv_nb_sectors(bs);
 662    if (target_sectors < 0) {
 663        return target_sectors;
 664    }
 665
 666    for (;;) {
 667        nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
 668        if (nb_sectors <= 0) {
 669            return 0;
 670        }
 671        ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
 672        if (ret < 0) {
 673            error_report("error getting block status at sector %" PRId64 ": %s",
 674                         sector_num, strerror(-ret));
 675            return ret;
 676        }
 677        if (ret & BDRV_BLOCK_ZERO) {
 678            sector_num += n;
 679            continue;
 680        }
 681        ret = bdrv_write_zeroes(bs, sector_num, n, flags);
 682        if (ret < 0) {
 683            error_report("error writing zeroes at sector %" PRId64 ": %s",
 684                         sector_num, strerror(-ret));
 685            return ret;
 686        }
 687        sector_num += n;
 688    }
 689}
 690
 691int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
 692{
 693    QEMUIOVector qiov;
 694    struct iovec iov = {
 695        .iov_base = (void *)buf,
 696        .iov_len = bytes,
 697    };
 698    int ret;
 699
 700    if (bytes < 0) {
 701        return -EINVAL;
 702    }
 703
 704    qemu_iovec_init_external(&qiov, &iov, 1);
 705    ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
 706    if (ret < 0) {
 707        return ret;
 708    }
 709
 710    return bytes;
 711}
 712
 713int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
 714{
 715    int ret;
 716
 717    ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
 718    if (ret < 0) {
 719        return ret;
 720    }
 721
 722    return qiov->size;
 723}
 724
 725int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
 726                const void *buf, int bytes)
 727{
 728    QEMUIOVector qiov;
 729    struct iovec iov = {
 730        .iov_base   = (void *) buf,
 731        .iov_len    = bytes,
 732    };
 733
 734    if (bytes < 0) {
 735        return -EINVAL;
 736    }
 737
 738    qemu_iovec_init_external(&qiov, &iov, 1);
 739    return bdrv_pwritev(bs, offset, &qiov);
 740}
 741
 742/*
 743 * Writes to the file and ensures that no writes are reordered across this
 744 * request (acts as a barrier)
 745 *
 746 * Returns 0 on success, -errno in error cases.
 747 */
 748int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
 749    const void *buf, int count)
 750{
 751    int ret;
 752
 753    ret = bdrv_pwrite(bs, offset, buf, count);
 754    if (ret < 0) {
 755        return ret;
 756    }
 757
 758    /* No flush needed for cache modes that already do it */
 759    if (bs->enable_write_cache) {
 760        bdrv_flush(bs);
 761    }
 762
 763    return 0;
 764}
 765
 766static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
 767        int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
 768{
 769    /* Perform I/O through a temporary buffer so that users who scribble over
 770     * their read buffer while the operation is in progress do not end up
 771     * modifying the image file.  This is critical for zero-copy guest I/O
 772     * where anything might happen inside guest memory.
 773     */
 774    void *bounce_buffer;
 775
 776    BlockDriver *drv = bs->drv;
 777    struct iovec iov;
 778    QEMUIOVector bounce_qiov;
 779    int64_t cluster_sector_num;
 780    int cluster_nb_sectors;
 781    size_t skip_bytes;
 782    int ret;
 783
 784    /* Cover entire cluster so no additional backing file I/O is required when
 785     * allocating cluster in the image file.
 786     */
 787    bdrv_round_to_clusters(bs, sector_num, nb_sectors,
 788                           &cluster_sector_num, &cluster_nb_sectors);
 789
 790    trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
 791                                   cluster_sector_num, cluster_nb_sectors);
 792
 793    iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
 794    iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
 795    if (bounce_buffer == NULL) {
 796        ret = -ENOMEM;
 797        goto err;
 798    }
 799
 800    qemu_iovec_init_external(&bounce_qiov, &iov, 1);
 801
 802    ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
 803                             &bounce_qiov);
 804    if (ret < 0) {
 805        goto err;
 806    }
 807
 808    if (drv->bdrv_co_write_zeroes &&
 809        buffer_is_zero(bounce_buffer, iov.iov_len)) {
 810        ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
 811                                      cluster_nb_sectors, 0);
 812    } else {
 813        /* This does not change the data on the disk, it is not necessary
 814         * to flush even in cache=writethrough mode.
 815         */
 816        ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
 817                                  &bounce_qiov);
 818    }
 819
 820    if (ret < 0) {
 821        /* It might be okay to ignore write errors for guest requests.  If this
 822         * is a deliberate copy-on-read then we don't want to ignore the error.
 823         * Simply report it in all cases.
 824         */
 825        goto err;
 826    }
 827
 828    skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
 829    qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
 830                        nb_sectors * BDRV_SECTOR_SIZE);
 831
 832err:
 833    qemu_vfree(bounce_buffer);
 834    return ret;
 835}
 836
 837/*
 838 * Forwards an already correctly aligned request to the BlockDriver. This
 839 * handles copy on read and zeroing after EOF; any other features must be
 840 * implemented by the caller.
 841 */
 842static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
 843    BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
 844    int64_t align, QEMUIOVector *qiov, int flags)
 845{
 846    BlockDriver *drv = bs->drv;
 847    int ret;
 848
 849    int64_t sector_num = offset >> BDRV_SECTOR_BITS;
 850    unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
 851
 852    assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
 853    assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
 854    assert(!qiov || bytes == qiov->size);
 855
 856    /* Handle Copy on Read and associated serialisation */
 857    if (flags & BDRV_REQ_COPY_ON_READ) {
 858        /* If we touch the same cluster it counts as an overlap.  This
 859         * guarantees that allocating writes will be serialized and not race
 860         * with each other for the same cluster.  For example, in copy-on-read
 861         * it ensures that the CoR read and write operations are atomic and
 862         * guest writes cannot interleave between them. */
 863        mark_request_serialising(req, bdrv_get_cluster_size(bs));
 864    }
 865
 866    if (!(flags & BDRV_REQ_NO_SERIALISING)) {
 867        wait_serialising_requests(req);
 868    }
 869
 870    if (flags & BDRV_REQ_COPY_ON_READ) {
 871        int pnum;
 872
 873        ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
 874        if (ret < 0) {
 875            goto out;
 876        }
 877
 878        if (!ret || pnum != nb_sectors) {
 879            ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
 880            goto out;
 881        }
 882    }
 883
 884    /* Forward the request to the BlockDriver */
 885    if (!bs->zero_beyond_eof) {
 886        ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
 887    } else {
 888        /* Read zeros after EOF */
 889        int64_t total_sectors, max_nb_sectors;
 890
 891        total_sectors = bdrv_nb_sectors(bs);
 892        if (total_sectors < 0) {
 893            ret = total_sectors;
 894            goto out;
 895        }
 896
 897        max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
 898                                  align >> BDRV_SECTOR_BITS);
 899        if (nb_sectors < max_nb_sectors) {
 900            ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
 901        } else if (max_nb_sectors > 0) {
 902            QEMUIOVector local_qiov;
 903
 904            qemu_iovec_init(&local_qiov, qiov->niov);
 905            qemu_iovec_concat(&local_qiov, qiov, 0,
 906                              max_nb_sectors * BDRV_SECTOR_SIZE);
 907
 908            ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
 909                                     &local_qiov);
 910
 911            qemu_iovec_destroy(&local_qiov);
 912        } else {
 913            ret = 0;
 914        }
 915
 916        /* Reading beyond end of file is supposed to produce zeroes */
 917        if (ret == 0 && total_sectors < sector_num + nb_sectors) {
 918            uint64_t offset = MAX(0, total_sectors - sector_num);
 919            uint64_t bytes = (sector_num + nb_sectors - offset) *
 920                              BDRV_SECTOR_SIZE;
 921            qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
 922        }
 923    }
 924
 925out:
 926    return ret;
 927}
 928
 929/*
 930 * Handle a read request in coroutine context
 931 */
 932static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
 933    int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
 934    BdrvRequestFlags flags)
 935{
 936    BlockDriver *drv = bs->drv;
 937    BdrvTrackedRequest req;
 938
 939    /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
 940    uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
 941    uint8_t *head_buf = NULL;
 942    uint8_t *tail_buf = NULL;
 943    QEMUIOVector local_qiov;
 944    bool use_local_qiov = false;
 945    int ret;
 946
 947    if (!drv) {
 948        return -ENOMEDIUM;
 949    }
 950
 951    ret = bdrv_check_byte_request(bs, offset, bytes);
 952    if (ret < 0) {
 953        return ret;
 954    }
 955
 956    /* Don't do copy-on-read if we read data before write operation */
 957    if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
 958        flags |= BDRV_REQ_COPY_ON_READ;
 959    }
 960
 961    /* throttling disk I/O */
 962    if (bs->io_limits_enabled) {
 963        throttle_group_co_io_limits_intercept(bs, bytes, false);
 964    }
 965
 966    /* Align read if necessary by padding qiov */
 967    if (offset & (align - 1)) {
 968        head_buf = qemu_blockalign(bs, align);
 969        qemu_iovec_init(&local_qiov, qiov->niov + 2);
 970        qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
 971        qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
 972        use_local_qiov = true;
 973
 974        bytes += offset & (align - 1);
 975        offset = offset & ~(align - 1);
 976    }
 977
 978    if ((offset + bytes) & (align - 1)) {
 979        if (!use_local_qiov) {
 980            qemu_iovec_init(&local_qiov, qiov->niov + 1);
 981            qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
 982            use_local_qiov = true;
 983        }
 984        tail_buf = qemu_blockalign(bs, align);
 985        qemu_iovec_add(&local_qiov, tail_buf,
 986                       align - ((offset + bytes) & (align - 1)));
 987
 988        bytes = ROUND_UP(bytes, align);
 989    }
 990
 991    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
 992    ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
 993                              use_local_qiov ? &local_qiov : qiov,
 994                              flags);
 995    tracked_request_end(&req);
 996
 997    if (use_local_qiov) {
 998        qemu_iovec_destroy(&local_qiov);
 999        qemu_vfree(head_buf);
1000        qemu_vfree(tail_buf);
1001    }
1002
1003    return ret;
1004}
1005
1006static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1007    int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1008    BdrvRequestFlags flags)
1009{
1010    if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1011        return -EINVAL;
1012    }
1013
1014    return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1015                             nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1016}
1017
1018int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1019    int nb_sectors, QEMUIOVector *qiov)
1020{
1021    trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1022
1023    return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1024}
1025
1026int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs,
1027    int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1028{
1029    trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors);
1030
1031    return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1032                            BDRV_REQ_NO_SERIALISING);
1033}
1034
1035int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1036    int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1037{
1038    trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1039
1040    return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1041                            BDRV_REQ_COPY_ON_READ);
1042}
1043
1044#define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1045
1046static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1047    int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1048{
1049    BlockDriver *drv = bs->drv;
1050    QEMUIOVector qiov;
1051    struct iovec iov = {0};
1052    int ret = 0;
1053
1054    int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1055                                        BDRV_REQUEST_MAX_SECTORS);
1056
1057    while (nb_sectors > 0 && !ret) {
1058        int num = nb_sectors;
1059
1060        /* Align request.  Block drivers can expect the "bulk" of the request
1061         * to be aligned.
1062         */
1063        if (bs->bl.write_zeroes_alignment
1064            && num > bs->bl.write_zeroes_alignment) {
1065            if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1066                /* Make a small request up to the first aligned sector.  */
1067                num = bs->bl.write_zeroes_alignment;
1068                num -= sector_num % bs->bl.write_zeroes_alignment;
1069            } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1070                /* Shorten the request to the last aligned sector.  num cannot
1071                 * underflow because num > bs->bl.write_zeroes_alignment.
1072                 */
1073                num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1074            }
1075        }
1076
1077        /* limit request size */
1078        if (num > max_write_zeroes) {
1079            num = max_write_zeroes;
1080        }
1081
1082        ret = -ENOTSUP;
1083        /* First try the efficient write zeroes operation */
1084        if (drv->bdrv_co_write_zeroes) {
1085            ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1086        }
1087
1088        if (ret == -ENOTSUP) {
1089            /* Fall back to bounce buffer if write zeroes is unsupported */
1090            int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1091                                            MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1092            num = MIN(num, max_xfer_len);
1093            iov.iov_len = num * BDRV_SECTOR_SIZE;
1094            if (iov.iov_base == NULL) {
1095                iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1096                if (iov.iov_base == NULL) {
1097                    ret = -ENOMEM;
1098                    goto fail;
1099                }
1100                memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1101            }
1102            qemu_iovec_init_external(&qiov, &iov, 1);
1103
1104            ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1105
1106            /* Keep bounce buffer around if it is big enough for all
1107             * all future requests.
1108             */
1109            if (num < max_xfer_len) {
1110                qemu_vfree(iov.iov_base);
1111                iov.iov_base = NULL;
1112            }
1113        }
1114
1115        sector_num += num;
1116        nb_sectors -= num;
1117    }
1118
1119fail:
1120    qemu_vfree(iov.iov_base);
1121    return ret;
1122}
1123
1124/*
1125 * Forwards an already correctly aligned write request to the BlockDriver.
1126 */
1127static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1128    BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1129    QEMUIOVector *qiov, int flags)
1130{
1131    BlockDriver *drv = bs->drv;
1132    bool waited;
1133    int ret;
1134
1135    int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1136    unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1137
1138    assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1139    assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1140    assert(!qiov || bytes == qiov->size);
1141
1142    waited = wait_serialising_requests(req);
1143    assert(!waited || !req->serialising);
1144    assert(req->overlap_offset <= offset);
1145    assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1146
1147    ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1148
1149    if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1150        !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1151        qemu_iovec_is_zero(qiov)) {
1152        flags |= BDRV_REQ_ZERO_WRITE;
1153        if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1154            flags |= BDRV_REQ_MAY_UNMAP;
1155        }
1156    }
1157
1158    if (ret < 0) {
1159        /* Do nothing, write notifier decided to fail this request */
1160    } else if (flags & BDRV_REQ_ZERO_WRITE) {
1161        bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1162        ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1163    } else {
1164        bdrv_debug_event(bs, BLKDBG_PWRITEV);
1165        ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1166    }
1167    bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1168
1169    if (ret == 0 && !bs->enable_write_cache) {
1170        ret = bdrv_co_flush(bs);
1171    }
1172
1173    bdrv_set_dirty(bs, sector_num, nb_sectors);
1174
1175    if (bs->wr_highest_offset < offset + bytes) {
1176        bs->wr_highest_offset = offset + bytes;
1177    }
1178
1179    if (ret >= 0) {
1180        bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1181    }
1182
1183    return ret;
1184}
1185
1186static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1187                                                int64_t offset,
1188                                                unsigned int bytes,
1189                                                BdrvRequestFlags flags,
1190                                                BdrvTrackedRequest *req)
1191{
1192    uint8_t *buf = NULL;
1193    QEMUIOVector local_qiov;
1194    struct iovec iov;
1195    uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1196    unsigned int head_padding_bytes, tail_padding_bytes;
1197    int ret = 0;
1198
1199    head_padding_bytes = offset & (align - 1);
1200    tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1201
1202
1203    assert(flags & BDRV_REQ_ZERO_WRITE);
1204    if (head_padding_bytes || tail_padding_bytes) {
1205        buf = qemu_blockalign(bs, align);
1206        iov = (struct iovec) {
1207            .iov_base   = buf,
1208            .iov_len    = align,
1209        };
1210        qemu_iovec_init_external(&local_qiov, &iov, 1);
1211    }
1212    if (head_padding_bytes) {
1213        uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1214
1215        /* RMW the unaligned part before head. */
1216        mark_request_serialising(req, align);
1217        wait_serialising_requests(req);
1218        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1219        ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1220                                  align, &local_qiov, 0);
1221        if (ret < 0) {
1222            goto fail;
1223        }
1224        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1225
1226        memset(buf + head_padding_bytes, 0, zero_bytes);
1227        ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1228                                   &local_qiov,
1229                                   flags & ~BDRV_REQ_ZERO_WRITE);
1230        if (ret < 0) {
1231            goto fail;
1232        }
1233        offset += zero_bytes;
1234        bytes -= zero_bytes;
1235    }
1236
1237    assert(!bytes || (offset & (align - 1)) == 0);
1238    if (bytes >= align) {
1239        /* Write the aligned part in the middle. */
1240        uint64_t aligned_bytes = bytes & ~(align - 1);
1241        ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1242                                   NULL, flags);
1243        if (ret < 0) {
1244            goto fail;
1245        }
1246        bytes -= aligned_bytes;
1247        offset += aligned_bytes;
1248    }
1249
1250    assert(!bytes || (offset & (align - 1)) == 0);
1251    if (bytes) {
1252        assert(align == tail_padding_bytes + bytes);
1253        /* RMW the unaligned part after tail. */
1254        mark_request_serialising(req, align);
1255        wait_serialising_requests(req);
1256        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1257        ret = bdrv_aligned_preadv(bs, req, offset, align,
1258                                  align, &local_qiov, 0);
1259        if (ret < 0) {
1260            goto fail;
1261        }
1262        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1263
1264        memset(buf, 0, bytes);
1265        ret = bdrv_aligned_pwritev(bs, req, offset, align,
1266                                   &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1267    }
1268fail:
1269    qemu_vfree(buf);
1270    return ret;
1271
1272}
1273
1274/*
1275 * Handle a write request in coroutine context
1276 */
1277static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1278    int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1279    BdrvRequestFlags flags)
1280{
1281    BdrvTrackedRequest req;
1282    /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1283    uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1284    uint8_t *head_buf = NULL;
1285    uint8_t *tail_buf = NULL;
1286    QEMUIOVector local_qiov;
1287    bool use_local_qiov = false;
1288    int ret;
1289
1290    if (!bs->drv) {
1291        return -ENOMEDIUM;
1292    }
1293    if (bs->read_only) {
1294        return -EPERM;
1295    }
1296
1297    ret = bdrv_check_byte_request(bs, offset, bytes);
1298    if (ret < 0) {
1299        return ret;
1300    }
1301
1302    /* throttling disk I/O */
1303    if (bs->io_limits_enabled) {
1304        throttle_group_co_io_limits_intercept(bs, bytes, true);
1305    }
1306
1307    /*
1308     * Align write if necessary by performing a read-modify-write cycle.
1309     * Pad qiov with the read parts and be sure to have a tracked request not
1310     * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1311     */
1312    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1313
1314    if (!qiov) {
1315        ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1316        goto out;
1317    }
1318
1319    if (offset & (align - 1)) {
1320        QEMUIOVector head_qiov;
1321        struct iovec head_iov;
1322
1323        mark_request_serialising(&req, align);
1324        wait_serialising_requests(&req);
1325
1326        head_buf = qemu_blockalign(bs, align);
1327        head_iov = (struct iovec) {
1328            .iov_base   = head_buf,
1329            .iov_len    = align,
1330        };
1331        qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1332
1333        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1334        ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1335                                  align, &head_qiov, 0);
1336        if (ret < 0) {
1337            goto fail;
1338        }
1339        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1340
1341        qemu_iovec_init(&local_qiov, qiov->niov + 2);
1342        qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1343        qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1344        use_local_qiov = true;
1345
1346        bytes += offset & (align - 1);
1347        offset = offset & ~(align - 1);
1348    }
1349
1350    if ((offset + bytes) & (align - 1)) {
1351        QEMUIOVector tail_qiov;
1352        struct iovec tail_iov;
1353        size_t tail_bytes;
1354        bool waited;
1355
1356        mark_request_serialising(&req, align);
1357        waited = wait_serialising_requests(&req);
1358        assert(!waited || !use_local_qiov);
1359
1360        tail_buf = qemu_blockalign(bs, align);
1361        tail_iov = (struct iovec) {
1362            .iov_base   = tail_buf,
1363            .iov_len    = align,
1364        };
1365        qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1366
1367        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1368        ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1369                                  align, &tail_qiov, 0);
1370        if (ret < 0) {
1371            goto fail;
1372        }
1373        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1374
1375        if (!use_local_qiov) {
1376            qemu_iovec_init(&local_qiov, qiov->niov + 1);
1377            qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1378            use_local_qiov = true;
1379        }
1380
1381        tail_bytes = (offset + bytes) & (align - 1);
1382        qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1383
1384        bytes = ROUND_UP(bytes, align);
1385    }
1386
1387    ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1388                               use_local_qiov ? &local_qiov : qiov,
1389                               flags);
1390
1391fail:
1392
1393    if (use_local_qiov) {
1394        qemu_iovec_destroy(&local_qiov);
1395    }
1396    qemu_vfree(head_buf);
1397    qemu_vfree(tail_buf);
1398out:
1399    tracked_request_end(&req);
1400    return ret;
1401}
1402
1403static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1404    int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1405    BdrvRequestFlags flags)
1406{
1407    if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1408        return -EINVAL;
1409    }
1410
1411    return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1412                              nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1413}
1414
1415int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1416    int nb_sectors, QEMUIOVector *qiov)
1417{
1418    trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1419
1420    return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1421}
1422
1423int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1424                                      int64_t sector_num, int nb_sectors,
1425                                      BdrvRequestFlags flags)
1426{
1427    trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1428
1429    if (!(bs->open_flags & BDRV_O_UNMAP)) {
1430        flags &= ~BDRV_REQ_MAY_UNMAP;
1431    }
1432
1433    return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1434                             BDRV_REQ_ZERO_WRITE | flags);
1435}
1436
1437int bdrv_flush_all(void)
1438{
1439    BlockDriverState *bs = NULL;
1440    int result = 0;
1441
1442    while ((bs = bdrv_next(bs))) {
1443        AioContext *aio_context = bdrv_get_aio_context(bs);
1444        int ret;
1445
1446        aio_context_acquire(aio_context);
1447        ret = bdrv_flush(bs);
1448        if (ret < 0 && !result) {
1449            result = ret;
1450        }
1451        aio_context_release(aio_context);
1452    }
1453
1454    return result;
1455}
1456
1457typedef struct BdrvCoGetBlockStatusData {
1458    BlockDriverState *bs;
1459    BlockDriverState *base;
1460    int64_t sector_num;
1461    int nb_sectors;
1462    int *pnum;
1463    int64_t ret;
1464    bool done;
1465} BdrvCoGetBlockStatusData;
1466
1467/*
1468 * Returns the allocation status of the specified sectors.
1469 * Drivers not implementing the functionality are assumed to not support
1470 * backing files, hence all their sectors are reported as allocated.
1471 *
1472 * If 'sector_num' is beyond the end of the disk image the return value is 0
1473 * and 'pnum' is set to 0.
1474 *
1475 * 'pnum' is set to the number of sectors (including and immediately following
1476 * the specified sector) that are known to be in the same
1477 * allocated/unallocated state.
1478 *
1479 * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1480 * beyond the end of the disk image it will be clamped.
1481 */
1482static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1483                                                     int64_t sector_num,
1484                                                     int nb_sectors, int *pnum)
1485{
1486    int64_t total_sectors;
1487    int64_t n;
1488    int64_t ret, ret2;
1489
1490    total_sectors = bdrv_nb_sectors(bs);
1491    if (total_sectors < 0) {
1492        return total_sectors;
1493    }
1494
1495    if (sector_num >= total_sectors) {
1496        *pnum = 0;
1497        return 0;
1498    }
1499
1500    n = total_sectors - sector_num;
1501    if (n < nb_sectors) {
1502        nb_sectors = n;
1503    }
1504
1505    if (!bs->drv->bdrv_co_get_block_status) {
1506        *pnum = nb_sectors;
1507        ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1508        if (bs->drv->protocol_name) {
1509            ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1510        }
1511        return ret;
1512    }
1513
1514    ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1515    if (ret < 0) {
1516        *pnum = 0;
1517        return ret;
1518    }
1519
1520    if (ret & BDRV_BLOCK_RAW) {
1521        assert(ret & BDRV_BLOCK_OFFSET_VALID);
1522        return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1523                                     *pnum, pnum);
1524    }
1525
1526    if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1527        ret |= BDRV_BLOCK_ALLOCATED;
1528    } else {
1529        if (bdrv_unallocated_blocks_are_zero(bs)) {
1530            ret |= BDRV_BLOCK_ZERO;
1531        } else if (bs->backing) {
1532            BlockDriverState *bs2 = bs->backing->bs;
1533            int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1534            if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1535                ret |= BDRV_BLOCK_ZERO;
1536            }
1537        }
1538    }
1539
1540    if (bs->file &&
1541        (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1542        (ret & BDRV_BLOCK_OFFSET_VALID)) {
1543        int file_pnum;
1544
1545        ret2 = bdrv_co_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1546                                        *pnum, &file_pnum);
1547        if (ret2 >= 0) {
1548            /* Ignore errors.  This is just providing extra information, it
1549             * is useful but not necessary.
1550             */
1551            if (!file_pnum) {
1552                /* !file_pnum indicates an offset at or beyond the EOF; it is
1553                 * perfectly valid for the format block driver to point to such
1554                 * offsets, so catch it and mark everything as zero */
1555                ret |= BDRV_BLOCK_ZERO;
1556            } else {
1557                /* Limit request to the range reported by the protocol driver */
1558                *pnum = file_pnum;
1559                ret |= (ret2 & BDRV_BLOCK_ZERO);
1560            }
1561        }
1562    }
1563
1564    return ret;
1565}
1566
1567static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1568        BlockDriverState *base,
1569        int64_t sector_num,
1570        int nb_sectors,
1571        int *pnum)
1572{
1573    BlockDriverState *p;
1574    int64_t ret = 0;
1575
1576    assert(bs != base);
1577    for (p = bs; p != base; p = backing_bs(p)) {
1578        ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum);
1579        if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1580            break;
1581        }
1582        /* [sector_num, pnum] unallocated on this layer, which could be only
1583         * the first part of [sector_num, nb_sectors].  */
1584        nb_sectors = MIN(nb_sectors, *pnum);
1585    }
1586    return ret;
1587}
1588
1589/* Coroutine wrapper for bdrv_get_block_status_above() */
1590static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1591{
1592    BdrvCoGetBlockStatusData *data = opaque;
1593
1594    data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1595                                               data->sector_num,
1596                                               data->nb_sectors,
1597                                               data->pnum);
1598    data->done = true;
1599}
1600
1601/*
1602 * Synchronous wrapper around bdrv_co_get_block_status_above().
1603 *
1604 * See bdrv_co_get_block_status_above() for details.
1605 */
1606int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1607                                    BlockDriverState *base,
1608                                    int64_t sector_num,
1609                                    int nb_sectors, int *pnum)
1610{
1611    Coroutine *co;
1612    BdrvCoGetBlockStatusData data = {
1613        .bs = bs,
1614        .base = base,
1615        .sector_num = sector_num,
1616        .nb_sectors = nb_sectors,
1617        .pnum = pnum,
1618        .done = false,
1619    };
1620
1621    if (qemu_in_coroutine()) {
1622        /* Fast-path if already in coroutine context */
1623        bdrv_get_block_status_above_co_entry(&data);
1624    } else {
1625        AioContext *aio_context = bdrv_get_aio_context(bs);
1626
1627        co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1628        qemu_coroutine_enter(co, &data);
1629        while (!data.done) {
1630            aio_poll(aio_context, true);
1631        }
1632    }
1633    return data.ret;
1634}
1635
1636int64_t bdrv_get_block_status(BlockDriverState *bs,
1637                              int64_t sector_num,
1638                              int nb_sectors, int *pnum)
1639{
1640    return bdrv_get_block_status_above(bs, backing_bs(bs),
1641                                       sector_num, nb_sectors, pnum);
1642}
1643
1644int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1645                                   int nb_sectors, int *pnum)
1646{
1647    int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1648    if (ret < 0) {
1649        return ret;
1650    }
1651    return !!(ret & BDRV_BLOCK_ALLOCATED);
1652}
1653
1654/*
1655 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1656 *
1657 * Return true if the given sector is allocated in any image between
1658 * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1659 * sector is allocated in any image of the chain.  Return false otherwise.
1660 *
1661 * 'pnum' is set to the number of sectors (including and immediately following
1662 *  the specified sector) that are known to be in the same
1663 *  allocated/unallocated state.
1664 *
1665 */
1666int bdrv_is_allocated_above(BlockDriverState *top,
1667                            BlockDriverState *base,
1668                            int64_t sector_num,
1669                            int nb_sectors, int *pnum)
1670{
1671    BlockDriverState *intermediate;
1672    int ret, n = nb_sectors;
1673
1674    intermediate = top;
1675    while (intermediate && intermediate != base) {
1676        int pnum_inter;
1677        ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1678                                &pnum_inter);
1679        if (ret < 0) {
1680            return ret;
1681        } else if (ret) {
1682            *pnum = pnum_inter;
1683            return 1;
1684        }
1685
1686        /*
1687         * [sector_num, nb_sectors] is unallocated on top but intermediate
1688         * might have
1689         *
1690         * [sector_num+x, nr_sectors] allocated.
1691         */
1692        if (n > pnum_inter &&
1693            (intermediate == top ||
1694             sector_num + pnum_inter < intermediate->total_sectors)) {
1695            n = pnum_inter;
1696        }
1697
1698        intermediate = backing_bs(intermediate);
1699    }
1700
1701    *pnum = n;
1702    return 0;
1703}
1704
1705int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1706                          const uint8_t *buf, int nb_sectors)
1707{
1708    BlockDriver *drv = bs->drv;
1709    int ret;
1710
1711    if (!drv) {
1712        return -ENOMEDIUM;
1713    }
1714    if (!drv->bdrv_write_compressed) {
1715        return -ENOTSUP;
1716    }
1717    ret = bdrv_check_request(bs, sector_num, nb_sectors);
1718    if (ret < 0) {
1719        return ret;
1720    }
1721
1722    assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1723
1724    return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1725}
1726
1727int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1728                      int64_t pos, int size)
1729{
1730    QEMUIOVector qiov;
1731    struct iovec iov = {
1732        .iov_base   = (void *) buf,
1733        .iov_len    = size,
1734    };
1735
1736    qemu_iovec_init_external(&qiov, &iov, 1);
1737    return bdrv_writev_vmstate(bs, &qiov, pos);
1738}
1739
1740int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1741{
1742    BlockDriver *drv = bs->drv;
1743
1744    if (!drv) {
1745        return -ENOMEDIUM;
1746    } else if (drv->bdrv_save_vmstate) {
1747        return drv->bdrv_save_vmstate(bs, qiov, pos);
1748    } else if (bs->file) {
1749        return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1750    }
1751
1752    return -ENOTSUP;
1753}
1754
1755int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1756                      int64_t pos, int size)
1757{
1758    BlockDriver *drv = bs->drv;
1759    if (!drv)
1760        return -ENOMEDIUM;
1761    if (drv->bdrv_load_vmstate)
1762        return drv->bdrv_load_vmstate(bs, buf, pos, size);
1763    if (bs->file)
1764        return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1765    return -ENOTSUP;
1766}
1767
1768/**************************************************************/
1769/* async I/Os */
1770
1771BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1772                           QEMUIOVector *qiov, int nb_sectors,
1773                           BlockCompletionFunc *cb, void *opaque)
1774{
1775    trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1776
1777    return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1778                                 cb, opaque, false);
1779}
1780
1781BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1782                            QEMUIOVector *qiov, int nb_sectors,
1783                            BlockCompletionFunc *cb, void *opaque)
1784{
1785    trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1786
1787    return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1788                                 cb, opaque, true);
1789}
1790
1791BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1792        int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1793        BlockCompletionFunc *cb, void *opaque)
1794{
1795    trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1796
1797    return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1798                                 BDRV_REQ_ZERO_WRITE | flags,
1799                                 cb, opaque, true);
1800}
1801
1802
1803typedef struct MultiwriteCB {
1804    int error;
1805    int num_requests;
1806    int num_callbacks;
1807    struct {
1808        BlockCompletionFunc *cb;
1809        void *opaque;
1810        QEMUIOVector *free_qiov;
1811    } callbacks[];
1812} MultiwriteCB;
1813
1814static void multiwrite_user_cb(MultiwriteCB *mcb)
1815{
1816    int i;
1817
1818    for (i = 0; i < mcb->num_callbacks; i++) {
1819        mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1820        if (mcb->callbacks[i].free_qiov) {
1821            qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1822        }
1823        g_free(mcb->callbacks[i].free_qiov);
1824    }
1825}
1826
1827static void multiwrite_cb(void *opaque, int ret)
1828{
1829    MultiwriteCB *mcb = opaque;
1830
1831    trace_multiwrite_cb(mcb, ret);
1832
1833    if (ret < 0 && !mcb->error) {
1834        mcb->error = ret;
1835    }
1836
1837    mcb->num_requests--;
1838    if (mcb->num_requests == 0) {
1839        multiwrite_user_cb(mcb);
1840        g_free(mcb);
1841    }
1842}
1843
1844static int multiwrite_req_compare(const void *a, const void *b)
1845{
1846    const BlockRequest *req1 = a, *req2 = b;
1847
1848    /*
1849     * Note that we can't simply subtract req2->sector from req1->sector
1850     * here as that could overflow the return value.
1851     */
1852    if (req1->sector > req2->sector) {
1853        return 1;
1854    } else if (req1->sector < req2->sector) {
1855        return -1;
1856    } else {
1857        return 0;
1858    }
1859}
1860
1861/*
1862 * Takes a bunch of requests and tries to merge them. Returns the number of
1863 * requests that remain after merging.
1864 */
1865static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1866    int num_reqs, MultiwriteCB *mcb)
1867{
1868    int i, outidx;
1869
1870    // Sort requests by start sector
1871    qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1872
1873    // Check if adjacent requests touch the same clusters. If so, combine them,
1874    // filling up gaps with zero sectors.
1875    outidx = 0;
1876    for (i = 1; i < num_reqs; i++) {
1877        int merge = 0;
1878        int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1879
1880        // Handle exactly sequential writes and overlapping writes.
1881        if (reqs[i].sector <= oldreq_last) {
1882            merge = 1;
1883        }
1884
1885        if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1886            merge = 0;
1887        }
1888
1889        if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1890            reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1891            merge = 0;
1892        }
1893
1894        if (merge) {
1895            size_t size;
1896            QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1897            qemu_iovec_init(qiov,
1898                reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1899
1900            // Add the first request to the merged one. If the requests are
1901            // overlapping, drop the last sectors of the first request.
1902            size = (reqs[i].sector - reqs[outidx].sector) << 9;
1903            qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1904
1905            // We should need to add any zeros between the two requests
1906            assert (reqs[i].sector <= oldreq_last);
1907
1908            // Add the second request
1909            qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1910
1911            // Add tail of first request, if necessary
1912            if (qiov->size < reqs[outidx].qiov->size) {
1913                qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1914                                  reqs[outidx].qiov->size - qiov->size);
1915            }
1916
1917            reqs[outidx].nb_sectors = qiov->size >> 9;
1918            reqs[outidx].qiov = qiov;
1919
1920            mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1921        } else {
1922            outidx++;
1923            reqs[outidx].sector     = reqs[i].sector;
1924            reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1925            reqs[outidx].qiov       = reqs[i].qiov;
1926        }
1927    }
1928
1929    if (bs->blk) {
1930        block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1931                              num_reqs - outidx - 1);
1932    }
1933
1934    return outidx + 1;
1935}
1936
1937/*
1938 * Submit multiple AIO write requests at once.
1939 *
1940 * On success, the function returns 0 and all requests in the reqs array have
1941 * been submitted. In error case this function returns -1, and any of the
1942 * requests may or may not be submitted yet. In particular, this means that the
1943 * callback will be called for some of the requests, for others it won't. The
1944 * caller must check the error field of the BlockRequest to wait for the right
1945 * callbacks (if error != 0, no callback will be called).
1946 *
1947 * The implementation may modify the contents of the reqs array, e.g. to merge
1948 * requests. However, the fields opaque and error are left unmodified as they
1949 * are used to signal failure for a single request to the caller.
1950 */
1951int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1952{
1953    MultiwriteCB *mcb;
1954    int i;
1955
1956    /* don't submit writes if we don't have a medium */
1957    if (bs->drv == NULL) {
1958        for (i = 0; i < num_reqs; i++) {
1959            reqs[i].error = -ENOMEDIUM;
1960        }
1961        return -1;
1962    }
1963
1964    if (num_reqs == 0) {
1965        return 0;
1966    }
1967
1968    // Create MultiwriteCB structure
1969    mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1970    mcb->num_requests = 0;
1971    mcb->num_callbacks = num_reqs;
1972
1973    for (i = 0; i < num_reqs; i++) {
1974        mcb->callbacks[i].cb = reqs[i].cb;
1975        mcb->callbacks[i].opaque = reqs[i].opaque;
1976    }
1977
1978    // Check for mergable requests
1979    num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1980
1981    trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1982
1983    /* Run the aio requests. */
1984    mcb->num_requests = num_reqs;
1985    for (i = 0; i < num_reqs; i++) {
1986        bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1987                              reqs[i].nb_sectors, reqs[i].flags,
1988                              multiwrite_cb, mcb,
1989                              true);
1990    }
1991
1992    return 0;
1993}
1994
1995void bdrv_aio_cancel(BlockAIOCB *acb)
1996{
1997    qemu_aio_ref(acb);
1998    bdrv_aio_cancel_async(acb);
1999    while (acb->refcnt > 1) {
2000        if (acb->aiocb_info->get_aio_context) {
2001            aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2002        } else if (acb->bs) {
2003            aio_poll(bdrv_get_aio_context(acb->bs), true);
2004        } else {
2005            abort();
2006        }
2007    }
2008    qemu_aio_unref(acb);
2009}
2010
2011/* Async version of aio cancel. The caller is not blocked if the acb implements
2012 * cancel_async, otherwise we do nothing and let the request normally complete.
2013 * In either case the completion callback must be called. */
2014void bdrv_aio_cancel_async(BlockAIOCB *acb)
2015{
2016    if (acb->aiocb_info->cancel_async) {
2017        acb->aiocb_info->cancel_async(acb);
2018    }
2019}
2020
2021/**************************************************************/
2022/* async block device emulation */
2023
2024typedef struct BlockAIOCBSync {
2025    BlockAIOCB common;
2026    QEMUBH *bh;
2027    int ret;
2028    /* vector translation state */
2029    QEMUIOVector *qiov;
2030    uint8_t *bounce;
2031    int is_write;
2032} BlockAIOCBSync;
2033
2034static const AIOCBInfo bdrv_em_aiocb_info = {
2035    .aiocb_size         = sizeof(BlockAIOCBSync),
2036};
2037
2038static void bdrv_aio_bh_cb(void *opaque)
2039{
2040    BlockAIOCBSync *acb = opaque;
2041
2042    if (!acb->is_write && acb->ret >= 0) {
2043        qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2044    }
2045    qemu_vfree(acb->bounce);
2046    acb->common.cb(acb->common.opaque, acb->ret);
2047    qemu_bh_delete(acb->bh);
2048    acb->bh = NULL;
2049    qemu_aio_unref(acb);
2050}
2051
2052static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2053                                      int64_t sector_num,
2054                                      QEMUIOVector *qiov,
2055                                      int nb_sectors,
2056                                      BlockCompletionFunc *cb,
2057                                      void *opaque,
2058                                      int is_write)
2059
2060{
2061    BlockAIOCBSync *acb;
2062
2063    acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2064    acb->is_write = is_write;
2065    acb->qiov = qiov;
2066    acb->bounce = qemu_try_blockalign(bs, qiov->size);
2067    acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2068
2069    if (acb->bounce == NULL) {
2070        acb->ret = -ENOMEM;
2071    } else if (is_write) {
2072        qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2073        acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2074    } else {
2075        acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2076    }
2077
2078    qemu_bh_schedule(acb->bh);
2079
2080    return &acb->common;
2081}
2082
2083static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2084        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2085        BlockCompletionFunc *cb, void *opaque)
2086{
2087    return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2088}
2089
2090static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2091        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2092        BlockCompletionFunc *cb, void *opaque)
2093{
2094    return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2095}
2096
2097
2098typedef struct BlockAIOCBCoroutine {
2099    BlockAIOCB common;
2100    BlockRequest req;
2101    bool is_write;
2102    bool need_bh;
2103    bool *done;
2104    QEMUBH* bh;
2105} BlockAIOCBCoroutine;
2106
2107static const AIOCBInfo bdrv_em_co_aiocb_info = {
2108    .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2109};
2110
2111static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2112{
2113    if (!acb->need_bh) {
2114        acb->common.cb(acb->common.opaque, acb->req.error);
2115        qemu_aio_unref(acb);
2116    }
2117}
2118
2119static void bdrv_co_em_bh(void *opaque)
2120{
2121    BlockAIOCBCoroutine *acb = opaque;
2122
2123    assert(!acb->need_bh);
2124    qemu_bh_delete(acb->bh);
2125    bdrv_co_complete(acb);
2126}
2127
2128static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2129{
2130    acb->need_bh = false;
2131    if (acb->req.error != -EINPROGRESS) {
2132        BlockDriverState *bs = acb->common.bs;
2133
2134        acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2135        qemu_bh_schedule(acb->bh);
2136    }
2137}
2138
2139/* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2140static void coroutine_fn bdrv_co_do_rw(void *opaque)
2141{
2142    BlockAIOCBCoroutine *acb = opaque;
2143    BlockDriverState *bs = acb->common.bs;
2144
2145    if (!acb->is_write) {
2146        acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2147            acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2148    } else {
2149        acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2150            acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2151    }
2152
2153    bdrv_co_complete(acb);
2154}
2155
2156static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2157                                         int64_t sector_num,
2158                                         QEMUIOVector *qiov,
2159                                         int nb_sectors,
2160                                         BdrvRequestFlags flags,
2161                                         BlockCompletionFunc *cb,
2162                                         void *opaque,
2163                                         bool is_write)
2164{
2165    Coroutine *co;
2166    BlockAIOCBCoroutine *acb;
2167
2168    acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2169    acb->need_bh = true;
2170    acb->req.error = -EINPROGRESS;
2171    acb->req.sector = sector_num;
2172    acb->req.nb_sectors = nb_sectors;
2173    acb->req.qiov = qiov;
2174    acb->req.flags = flags;
2175    acb->is_write = is_write;
2176
2177    co = qemu_coroutine_create(bdrv_co_do_rw);
2178    qemu_coroutine_enter(co, acb);
2179
2180    bdrv_co_maybe_schedule_bh(acb);
2181    return &acb->common;
2182}
2183
2184static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2185{
2186    BlockAIOCBCoroutine *acb = opaque;
2187    BlockDriverState *bs = acb->common.bs;
2188
2189    acb->req.error = bdrv_co_flush(bs);
2190    bdrv_co_complete(acb);
2191}
2192
2193BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2194        BlockCompletionFunc *cb, void *opaque)
2195{
2196    trace_bdrv_aio_flush(bs, opaque);
2197
2198    Coroutine *co;
2199    BlockAIOCBCoroutine *acb;
2200
2201    acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2202    acb->need_bh = true;
2203    acb->req.error = -EINPROGRESS;
2204
2205    co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2206    qemu_coroutine_enter(co, acb);
2207
2208    bdrv_co_maybe_schedule_bh(acb);
2209    return &acb->common;
2210}
2211
2212static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2213{
2214    BlockAIOCBCoroutine *acb = opaque;
2215    BlockDriverState *bs = acb->common.bs;
2216
2217    acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2218    bdrv_co_complete(acb);
2219}
2220
2221BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2222        int64_t sector_num, int nb_sectors,
2223        BlockCompletionFunc *cb, void *opaque)
2224{
2225    Coroutine *co;
2226    BlockAIOCBCoroutine *acb;
2227
2228    trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2229
2230    acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2231    acb->need_bh = true;
2232    acb->req.error = -EINPROGRESS;
2233    acb->req.sector = sector_num;
2234    acb->req.nb_sectors = nb_sectors;
2235    co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2236    qemu_coroutine_enter(co, acb);
2237
2238    bdrv_co_maybe_schedule_bh(acb);
2239    return &acb->common;
2240}
2241
2242void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2243                   BlockCompletionFunc *cb, void *opaque)
2244{
2245    BlockAIOCB *acb;
2246
2247    acb = g_malloc(aiocb_info->aiocb_size);
2248    acb->aiocb_info = aiocb_info;
2249    acb->bs = bs;
2250    acb->cb = cb;
2251    acb->opaque = opaque;
2252    acb->refcnt = 1;
2253    return acb;
2254}
2255
2256void qemu_aio_ref(void *p)
2257{
2258    BlockAIOCB *acb = p;
2259    acb->refcnt++;
2260}
2261
2262void qemu_aio_unref(void *p)
2263{
2264    BlockAIOCB *acb = p;
2265    assert(acb->refcnt > 0);
2266    if (--acb->refcnt == 0) {
2267        g_free(acb);
2268    }
2269}
2270
2271/**************************************************************/
2272/* Coroutine block device emulation */
2273
2274typedef struct CoroutineIOCompletion {
2275    Coroutine *coroutine;
2276    int ret;
2277} CoroutineIOCompletion;
2278
2279static void bdrv_co_io_em_complete(void *opaque, int ret)
2280{
2281    CoroutineIOCompletion *co = opaque;
2282
2283    co->ret = ret;
2284    qemu_coroutine_enter(co->coroutine, NULL);
2285}
2286
2287static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2288                                      int nb_sectors, QEMUIOVector *iov,
2289                                      bool is_write)
2290{
2291    CoroutineIOCompletion co = {
2292        .coroutine = qemu_coroutine_self(),
2293    };
2294    BlockAIOCB *acb;
2295
2296    if (is_write) {
2297        acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2298                                       bdrv_co_io_em_complete, &co);
2299    } else {
2300        acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2301                                      bdrv_co_io_em_complete, &co);
2302    }
2303
2304    trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2305    if (!acb) {
2306        return -EIO;
2307    }
2308    qemu_coroutine_yield();
2309
2310    return co.ret;
2311}
2312
2313static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2314                                         int64_t sector_num, int nb_sectors,
2315                                         QEMUIOVector *iov)
2316{
2317    return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2318}
2319
2320static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2321                                         int64_t sector_num, int nb_sectors,
2322                                         QEMUIOVector *iov)
2323{
2324    return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2325}
2326
2327static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2328{
2329    RwCo *rwco = opaque;
2330
2331    rwco->ret = bdrv_co_flush(rwco->bs);
2332}
2333
2334int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2335{
2336    int ret;
2337    BdrvTrackedRequest req;
2338
2339    if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2340        bdrv_is_sg(bs)) {
2341        return 0;
2342    }
2343
2344    tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2345    /* Write back cached data to the OS even with cache=unsafe */
2346    BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2347    if (bs->drv->bdrv_co_flush_to_os) {
2348        ret = bs->drv->bdrv_co_flush_to_os(bs);
2349        if (ret < 0) {
2350            goto out;
2351        }
2352    }
2353
2354    /* But don't actually force it to the disk with cache=unsafe */
2355    if (bs->open_flags & BDRV_O_NO_FLUSH) {
2356        goto flush_parent;
2357    }
2358
2359    BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2360    if (bs->drv->bdrv_co_flush_to_disk) {
2361        ret = bs->drv->bdrv_co_flush_to_disk(bs);
2362    } else if (bs->drv->bdrv_aio_flush) {
2363        BlockAIOCB *acb;
2364        CoroutineIOCompletion co = {
2365            .coroutine = qemu_coroutine_self(),
2366        };
2367
2368        acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2369        if (acb == NULL) {
2370            ret = -EIO;
2371        } else {
2372            qemu_coroutine_yield();
2373            ret = co.ret;
2374        }
2375    } else {
2376        /*
2377         * Some block drivers always operate in either writethrough or unsafe
2378         * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2379         * know how the server works (because the behaviour is hardcoded or
2380         * depends on server-side configuration), so we can't ensure that
2381         * everything is safe on disk. Returning an error doesn't work because
2382         * that would break guests even if the server operates in writethrough
2383         * mode.
2384         *
2385         * Let's hope the user knows what he's doing.
2386         */
2387        ret = 0;
2388    }
2389    if (ret < 0) {
2390        goto out;
2391    }
2392
2393    /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2394     * in the case of cache=unsafe, so there are no useless flushes.
2395     */
2396flush_parent:
2397    ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2398out:
2399    tracked_request_end(&req);
2400    return ret;
2401}
2402
2403int bdrv_flush(BlockDriverState *bs)
2404{
2405    Coroutine *co;
2406    RwCo rwco = {
2407        .bs = bs,
2408        .ret = NOT_DONE,
2409    };
2410
2411    if (qemu_in_coroutine()) {
2412        /* Fast-path if already in coroutine context */
2413        bdrv_flush_co_entry(&rwco);
2414    } else {
2415        AioContext *aio_context = bdrv_get_aio_context(bs);
2416
2417        co = qemu_coroutine_create(bdrv_flush_co_entry);
2418        qemu_coroutine_enter(co, &rwco);
2419        while (rwco.ret == NOT_DONE) {
2420            aio_poll(aio_context, true);
2421        }
2422    }
2423
2424    return rwco.ret;
2425}
2426
2427typedef struct DiscardCo {
2428    BlockDriverState *bs;
2429    int64_t sector_num;
2430    int nb_sectors;
2431    int ret;
2432} DiscardCo;
2433static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2434{
2435    DiscardCo *rwco = opaque;
2436
2437    rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2438}
2439
2440int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2441                                 int nb_sectors)
2442{
2443    BdrvTrackedRequest req;
2444    int max_discard, ret;
2445
2446    if (!bs->drv) {
2447        return -ENOMEDIUM;
2448    }
2449
2450    ret = bdrv_check_request(bs, sector_num, nb_sectors);
2451    if (ret < 0) {
2452        return ret;
2453    } else if (bs->read_only) {
2454        return -EPERM;
2455    }
2456
2457    /* Do nothing if disabled.  */
2458    if (!(bs->open_flags & BDRV_O_UNMAP)) {
2459        return 0;
2460    }
2461
2462    if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2463        return 0;
2464    }
2465
2466    tracked_request_begin(&req, bs, sector_num, nb_sectors,
2467                          BDRV_TRACKED_DISCARD);
2468    bdrv_set_dirty(bs, sector_num, nb_sectors);
2469
2470    max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2471    while (nb_sectors > 0) {
2472        int ret;
2473        int num = nb_sectors;
2474
2475        /* align request */
2476        if (bs->bl.discard_alignment &&
2477            num >= bs->bl.discard_alignment &&
2478            sector_num % bs->bl.discard_alignment) {
2479            if (num > bs->bl.discard_alignment) {
2480                num = bs->bl.discard_alignment;
2481            }
2482            num -= sector_num % bs->bl.discard_alignment;
2483        }
2484
2485        /* limit request size */
2486        if (num > max_discard) {
2487            num = max_discard;
2488        }
2489
2490        if (bs->drv->bdrv_co_discard) {
2491            ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2492        } else {
2493            BlockAIOCB *acb;
2494            CoroutineIOCompletion co = {
2495                .coroutine = qemu_coroutine_self(),
2496            };
2497
2498            acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2499                                            bdrv_co_io_em_complete, &co);
2500            if (acb == NULL) {
2501                ret = -EIO;
2502                goto out;
2503            } else {
2504                qemu_coroutine_yield();
2505                ret = co.ret;
2506            }
2507        }
2508        if (ret && ret != -ENOTSUP) {
2509            goto out;
2510        }
2511
2512        sector_num += num;
2513        nb_sectors -= num;
2514    }
2515    ret = 0;
2516out:
2517    tracked_request_end(&req);
2518    return ret;
2519}
2520
2521int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2522{
2523    Coroutine *co;
2524    DiscardCo rwco = {
2525        .bs = bs,
2526        .sector_num = sector_num,
2527        .nb_sectors = nb_sectors,
2528        .ret = NOT_DONE,
2529    };
2530
2531    if (qemu_in_coroutine()) {
2532        /* Fast-path if already in coroutine context */
2533        bdrv_discard_co_entry(&rwco);
2534    } else {
2535        AioContext *aio_context = bdrv_get_aio_context(bs);
2536
2537        co = qemu_coroutine_create(bdrv_discard_co_entry);
2538        qemu_coroutine_enter(co, &rwco);
2539        while (rwco.ret == NOT_DONE) {
2540            aio_poll(aio_context, true);
2541        }
2542    }
2543
2544    return rwco.ret;
2545}
2546
2547typedef struct {
2548    CoroutineIOCompletion *co;
2549    QEMUBH *bh;
2550} BdrvIoctlCompletionData;
2551
2552static void bdrv_ioctl_bh_cb(void *opaque)
2553{
2554    BdrvIoctlCompletionData *data = opaque;
2555
2556    bdrv_co_io_em_complete(data->co, -ENOTSUP);
2557    qemu_bh_delete(data->bh);
2558}
2559
2560static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2561{
2562    BlockDriver *drv = bs->drv;
2563    BdrvTrackedRequest tracked_req;
2564    CoroutineIOCompletion co = {
2565        .coroutine = qemu_coroutine_self(),
2566    };
2567    BlockAIOCB *acb;
2568
2569    tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2570    if (!drv || !drv->bdrv_aio_ioctl) {
2571        co.ret = -ENOTSUP;
2572        goto out;
2573    }
2574
2575    acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2576    if (!acb) {
2577        BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2578        data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2579                                bdrv_ioctl_bh_cb, data);
2580        data->co = &co;
2581        qemu_bh_schedule(data->bh);
2582    }
2583    qemu_coroutine_yield();
2584out:
2585    tracked_request_end(&tracked_req);
2586    return co.ret;
2587}
2588
2589typedef struct {
2590    BlockDriverState *bs;
2591    int req;
2592    void *buf;
2593    int ret;
2594} BdrvIoctlCoData;
2595
2596static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2597{
2598    BdrvIoctlCoData *data = opaque;
2599    data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2600}
2601
2602/* needed for generic scsi interface */
2603int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2604{
2605    BdrvIoctlCoData data = {
2606        .bs = bs,
2607        .req = req,
2608        .buf = buf,
2609        .ret = -EINPROGRESS,
2610    };
2611
2612    if (qemu_in_coroutine()) {
2613        /* Fast-path if already in coroutine context */
2614        bdrv_co_ioctl_entry(&data);
2615    } else {
2616        Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2617        qemu_coroutine_enter(co, &data);
2618    }
2619    while (data.ret == -EINPROGRESS) {
2620        aio_poll(bdrv_get_aio_context(bs), true);
2621    }
2622    return data.ret;
2623}
2624
2625static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2626{
2627    BlockAIOCBCoroutine *acb = opaque;
2628    acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2629                                      acb->req.req, acb->req.buf);
2630    bdrv_co_complete(acb);
2631}
2632
2633BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2634        unsigned long int req, void *buf,
2635        BlockCompletionFunc *cb, void *opaque)
2636{
2637    BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2638                                            bs, cb, opaque);
2639    Coroutine *co;
2640
2641    acb->need_bh = true;
2642    acb->req.error = -EINPROGRESS;
2643    acb->req.req = req;
2644    acb->req.buf = buf;
2645    co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2646    qemu_coroutine_enter(co, acb);
2647
2648    bdrv_co_maybe_schedule_bh(acb);
2649    return &acb->common;
2650}
2651
2652void *qemu_blockalign(BlockDriverState *bs, size_t size)
2653{
2654    return qemu_memalign(bdrv_opt_mem_align(bs), size);
2655}
2656
2657void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2658{
2659    return memset(qemu_blockalign(bs, size), 0, size);
2660}
2661
2662void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2663{
2664    size_t align = bdrv_opt_mem_align(bs);
2665
2666    /* Ensure that NULL is never returned on success */
2667    assert(align > 0);
2668    if (size == 0) {
2669        size = align;
2670    }
2671
2672    return qemu_try_memalign(align, size);
2673}
2674
2675void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2676{
2677    void *mem = qemu_try_blockalign(bs, size);
2678
2679    if (mem) {
2680        memset(mem, 0, size);
2681    }
2682
2683    return mem;
2684}
2685
2686/*
2687 * Check if all memory in this vector is sector aligned.
2688 */
2689bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2690{
2691    int i;
2692    size_t alignment = bdrv_min_mem_align(bs);
2693
2694    for (i = 0; i < qiov->niov; i++) {
2695        if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2696            return false;
2697        }
2698        if (qiov->iov[i].iov_len % alignment) {
2699            return false;
2700        }
2701    }
2702
2703    return true;
2704}
2705
2706void bdrv_add_before_write_notifier(BlockDriverState *bs,
2707                                    NotifierWithReturn *notifier)
2708{
2709    notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2710}
2711
2712void bdrv_io_plug(BlockDriverState *bs)
2713{
2714    BlockDriver *drv = bs->drv;
2715    if (drv && drv->bdrv_io_plug) {
2716        drv->bdrv_io_plug(bs);
2717    } else if (bs->file) {
2718        bdrv_io_plug(bs->file->bs);
2719    }
2720}
2721
2722void bdrv_io_unplug(BlockDriverState *bs)
2723{
2724    BlockDriver *drv = bs->drv;
2725    if (drv && drv->bdrv_io_unplug) {
2726        drv->bdrv_io_unplug(bs);
2727    } else if (bs->file) {
2728        bdrv_io_unplug(bs->file->bs);
2729    }
2730}
2731
2732void bdrv_flush_io_queue(BlockDriverState *bs)
2733{
2734    BlockDriver *drv = bs->drv;
2735    if (drv && drv->bdrv_flush_io_queue) {
2736        drv->bdrv_flush_io_queue(bs);
2737    } else if (bs->file) {
2738        bdrv_flush_io_queue(bs->file->bs);
2739    }
2740    bdrv_start_throttled_reqs(bs);
2741}
2742
2743void bdrv_drained_begin(BlockDriverState *bs)
2744{
2745    if (!bs->quiesce_counter++) {
2746        aio_disable_external(bdrv_get_aio_context(bs));
2747    }
2748    bdrv_drain(bs);
2749}
2750
2751void bdrv_drained_end(BlockDriverState *bs)
2752{
2753    assert(bs->quiesce_counter > 0);
2754    if (--bs->quiesce_counter > 0) {
2755        return;
2756    }
2757    aio_enable_external(bdrv_get_aio_context(bs));
2758}
2759