qemu/hw/net/ne2000.c
<<
>>
Prefs
   1/*
   2 * QEMU NE2000 emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "hw/hw.h"
  25#include "hw/pci/pci.h"
  26#include "net/net.h"
  27#include "ne2000.h"
  28#include "hw/loader.h"
  29#include "sysemu/sysemu.h"
  30
  31/* debug NE2000 card */
  32//#define DEBUG_NE2000
  33
  34#define MAX_ETH_FRAME_SIZE 1514
  35
  36#define E8390_CMD       0x00  /* The command register (for all pages) */
  37/* Page 0 register offsets. */
  38#define EN0_CLDALO      0x01    /* Low byte of current local dma addr  RD */
  39#define EN0_STARTPG     0x01    /* Starting page of ring bfr WR */
  40#define EN0_CLDAHI      0x02    /* High byte of current local dma addr  RD */
  41#define EN0_STOPPG      0x02    /* Ending page +1 of ring bfr WR */
  42#define EN0_BOUNDARY    0x03    /* Boundary page of ring bfr RD WR */
  43#define EN0_TSR         0x04    /* Transmit status reg RD */
  44#define EN0_TPSR        0x04    /* Transmit starting page WR */
  45#define EN0_NCR         0x05    /* Number of collision reg RD */
  46#define EN0_TCNTLO      0x05    /* Low  byte of tx byte count WR */
  47#define EN0_FIFO        0x06    /* FIFO RD */
  48#define EN0_TCNTHI      0x06    /* High byte of tx byte count WR */
  49#define EN0_ISR         0x07    /* Interrupt status reg RD WR */
  50#define EN0_CRDALO      0x08    /* low byte of current remote dma address RD */
  51#define EN0_RSARLO      0x08    /* Remote start address reg 0 */
  52#define EN0_CRDAHI      0x09    /* high byte, current remote dma address RD */
  53#define EN0_RSARHI      0x09    /* Remote start address reg 1 */
  54#define EN0_RCNTLO      0x0a    /* Remote byte count reg WR */
  55#define EN0_RTL8029ID0  0x0a    /* Realtek ID byte #1 RD */
  56#define EN0_RCNTHI      0x0b    /* Remote byte count reg WR */
  57#define EN0_RTL8029ID1  0x0b    /* Realtek ID byte #2 RD */
  58#define EN0_RSR         0x0c    /* rx status reg RD */
  59#define EN0_RXCR        0x0c    /* RX configuration reg WR */
  60#define EN0_TXCR        0x0d    /* TX configuration reg WR */
  61#define EN0_COUNTER0    0x0d    /* Rcv alignment error counter RD */
  62#define EN0_DCFG        0x0e    /* Data configuration reg WR */
  63#define EN0_COUNTER1    0x0e    /* Rcv CRC error counter RD */
  64#define EN0_IMR         0x0f    /* Interrupt mask reg WR */
  65#define EN0_COUNTER2    0x0f    /* Rcv missed frame error counter RD */
  66
  67#define EN1_PHYS        0x11
  68#define EN1_CURPAG      0x17
  69#define EN1_MULT        0x18
  70
  71#define EN2_STARTPG     0x21    /* Starting page of ring bfr RD */
  72#define EN2_STOPPG      0x22    /* Ending page +1 of ring bfr RD */
  73
  74#define EN3_CONFIG0     0x33
  75#define EN3_CONFIG1     0x34
  76#define EN3_CONFIG2     0x35
  77#define EN3_CONFIG3     0x36
  78
  79/*  Register accessed at EN_CMD, the 8390 base addr.  */
  80#define E8390_STOP      0x01    /* Stop and reset the chip */
  81#define E8390_START     0x02    /* Start the chip, clear reset */
  82#define E8390_TRANS     0x04    /* Transmit a frame */
  83#define E8390_RREAD     0x08    /* Remote read */
  84#define E8390_RWRITE    0x10    /* Remote write  */
  85#define E8390_NODMA     0x20    /* Remote DMA */
  86#define E8390_PAGE0     0x00    /* Select page chip registers */
  87#define E8390_PAGE1     0x40    /* using the two high-order bits */
  88#define E8390_PAGE2     0x80    /* Page 3 is invalid. */
  89
  90/* Bits in EN0_ISR - Interrupt status register */
  91#define ENISR_RX        0x01    /* Receiver, no error */
  92#define ENISR_TX        0x02    /* Transmitter, no error */
  93#define ENISR_RX_ERR    0x04    /* Receiver, with error */
  94#define ENISR_TX_ERR    0x08    /* Transmitter, with error */
  95#define ENISR_OVER      0x10    /* Receiver overwrote the ring */
  96#define ENISR_COUNTERS  0x20    /* Counters need emptying */
  97#define ENISR_RDC       0x40    /* remote dma complete */
  98#define ENISR_RESET     0x80    /* Reset completed */
  99#define ENISR_ALL       0x3f    /* Interrupts we will enable */
 100
 101/* Bits in received packet status byte and EN0_RSR*/
 102#define ENRSR_RXOK      0x01    /* Received a good packet */
 103#define ENRSR_CRC       0x02    /* CRC error */
 104#define ENRSR_FAE       0x04    /* frame alignment error */
 105#define ENRSR_FO        0x08    /* FIFO overrun */
 106#define ENRSR_MPA       0x10    /* missed pkt */
 107#define ENRSR_PHY       0x20    /* physical/multicast address */
 108#define ENRSR_DIS       0x40    /* receiver disable. set in monitor mode */
 109#define ENRSR_DEF       0x80    /* deferring */
 110
 111/* Transmitted packet status, EN0_TSR. */
 112#define ENTSR_PTX 0x01  /* Packet transmitted without error */
 113#define ENTSR_ND  0x02  /* The transmit wasn't deferred. */
 114#define ENTSR_COL 0x04  /* The transmit collided at least once. */
 115#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
 116#define ENTSR_CRS 0x10  /* The carrier sense was lost. */
 117#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
 118#define ENTSR_CDH 0x40  /* The collision detect "heartbeat" signal was lost. */
 119#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
 120
 121typedef struct PCINE2000State {
 122    PCIDevice dev;
 123    NE2000State ne2000;
 124} PCINE2000State;
 125
 126void ne2000_reset(NE2000State *s)
 127{
 128    int i;
 129
 130    s->isr = ENISR_RESET;
 131    memcpy(s->mem, &s->c.macaddr, 6);
 132    s->mem[14] = 0x57;
 133    s->mem[15] = 0x57;
 134
 135    /* duplicate prom data */
 136    for(i = 15;i >= 0; i--) {
 137        s->mem[2 * i] = s->mem[i];
 138        s->mem[2 * i + 1] = s->mem[i];
 139    }
 140}
 141
 142static void ne2000_update_irq(NE2000State *s)
 143{
 144    int isr;
 145    isr = (s->isr & s->imr) & 0x7f;
 146#if defined(DEBUG_NE2000)
 147    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
 148           isr ? 1 : 0, s->isr, s->imr);
 149#endif
 150    qemu_set_irq(s->irq, (isr != 0));
 151}
 152
 153static int ne2000_buffer_full(NE2000State *s)
 154{
 155    int avail, index, boundary;
 156
 157    if (s->stop <= s->start) {
 158        return 1;
 159    }
 160
 161    index = s->curpag << 8;
 162    boundary = s->boundary << 8;
 163    if (index < boundary)
 164        avail = boundary - index;
 165    else
 166        avail = (s->stop - s->start) - (index - boundary);
 167    if (avail < (MAX_ETH_FRAME_SIZE + 4))
 168        return 1;
 169    return 0;
 170}
 171
 172#define MIN_BUF_SIZE 60
 173
 174ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
 175{
 176    NE2000State *s = qemu_get_nic_opaque(nc);
 177    int size = size_;
 178    uint8_t *p;
 179    unsigned int total_len, next, avail, len, index, mcast_idx;
 180    uint8_t buf1[60];
 181    static const uint8_t broadcast_macaddr[6] =
 182        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
 183
 184#if defined(DEBUG_NE2000)
 185    printf("NE2000: received len=%d\n", size);
 186#endif
 187
 188    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
 189        return -1;
 190
 191    /* XXX: check this */
 192    if (s->rxcr & 0x10) {
 193        /* promiscuous: receive all */
 194    } else {
 195        if (!memcmp(buf,  broadcast_macaddr, 6)) {
 196            /* broadcast address */
 197            if (!(s->rxcr & 0x04))
 198                return size;
 199        } else if (buf[0] & 0x01) {
 200            /* multicast */
 201            if (!(s->rxcr & 0x08))
 202                return size;
 203            mcast_idx = compute_mcast_idx(buf);
 204            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
 205                return size;
 206        } else if (s->mem[0] == buf[0] &&
 207                   s->mem[2] == buf[1] &&
 208                   s->mem[4] == buf[2] &&
 209                   s->mem[6] == buf[3] &&
 210                   s->mem[8] == buf[4] &&
 211                   s->mem[10] == buf[5]) {
 212            /* match */
 213        } else {
 214            return size;
 215        }
 216    }
 217
 218
 219    /* if too small buffer, then expand it */
 220    if (size < MIN_BUF_SIZE) {
 221        memcpy(buf1, buf, size);
 222        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
 223        buf = buf1;
 224        size = MIN_BUF_SIZE;
 225    }
 226
 227    index = s->curpag << 8;
 228    if (index >= NE2000_PMEM_END) {
 229        index = s->start;
 230    }
 231    /* 4 bytes for header */
 232    total_len = size + 4;
 233    /* address for next packet (4 bytes for CRC) */
 234    next = index + ((total_len + 4 + 255) & ~0xff);
 235    if (next >= s->stop)
 236        next -= (s->stop - s->start);
 237    /* prepare packet header */
 238    p = s->mem + index;
 239    s->rsr = ENRSR_RXOK; /* receive status */
 240    /* XXX: check this */
 241    if (buf[0] & 0x01)
 242        s->rsr |= ENRSR_PHY;
 243    p[0] = s->rsr;
 244    p[1] = next >> 8;
 245    p[2] = total_len;
 246    p[3] = total_len >> 8;
 247    index += 4;
 248
 249    /* write packet data */
 250    while (size > 0) {
 251        if (index <= s->stop)
 252            avail = s->stop - index;
 253        else
 254            break;
 255        len = size;
 256        if (len > avail)
 257            len = avail;
 258        memcpy(s->mem + index, buf, len);
 259        buf += len;
 260        index += len;
 261        if (index == s->stop)
 262            index = s->start;
 263        size -= len;
 264    }
 265    s->curpag = next >> 8;
 266
 267    /* now we can signal we have received something */
 268    s->isr |= ENISR_RX;
 269    ne2000_update_irq(s);
 270
 271    return size_;
 272}
 273
 274static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 275{
 276    NE2000State *s = opaque;
 277    int offset, page, index;
 278
 279    addr &= 0xf;
 280#ifdef DEBUG_NE2000
 281    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
 282#endif
 283    if (addr == E8390_CMD) {
 284        /* control register */
 285        s->cmd = val;
 286        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
 287            s->isr &= ~ENISR_RESET;
 288            /* test specific case: zero length transfer */
 289            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
 290                s->rcnt == 0) {
 291                s->isr |= ENISR_RDC;
 292                ne2000_update_irq(s);
 293            }
 294            if (val & E8390_TRANS) {
 295                index = (s->tpsr << 8);
 296                /* XXX: next 2 lines are a hack to make netware 3.11 work */
 297                if (index >= NE2000_PMEM_END)
 298                    index -= NE2000_PMEM_SIZE;
 299                /* fail safe: check range on the transmitted length  */
 300                if (index + s->tcnt <= NE2000_PMEM_END) {
 301                    qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
 302                                     s->tcnt);
 303                }
 304                /* signal end of transfer */
 305                s->tsr = ENTSR_PTX;
 306                s->isr |= ENISR_TX;
 307                s->cmd &= ~E8390_TRANS;
 308                ne2000_update_irq(s);
 309            }
 310        }
 311    } else {
 312        page = s->cmd >> 6;
 313        offset = addr | (page << 4);
 314        switch(offset) {
 315        case EN0_STARTPG:
 316            if (val << 8 <= NE2000_PMEM_END) {
 317                s->start = val << 8;
 318            }
 319            break;
 320        case EN0_STOPPG:
 321            if (val << 8 <= NE2000_PMEM_END) {
 322                s->stop = val << 8;
 323            }
 324            break;
 325        case EN0_BOUNDARY:
 326            if (val << 8 < NE2000_PMEM_END) {
 327                s->boundary = val;
 328            }
 329            break;
 330        case EN0_IMR:
 331            s->imr = val;
 332            ne2000_update_irq(s);
 333            break;
 334        case EN0_TPSR:
 335            s->tpsr = val;
 336            break;
 337        case EN0_TCNTLO:
 338            s->tcnt = (s->tcnt & 0xff00) | val;
 339            break;
 340        case EN0_TCNTHI:
 341            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
 342            break;
 343        case EN0_RSARLO:
 344            s->rsar = (s->rsar & 0xff00) | val;
 345            break;
 346        case EN0_RSARHI:
 347            s->rsar = (s->rsar & 0x00ff) | (val << 8);
 348            break;
 349        case EN0_RCNTLO:
 350            s->rcnt = (s->rcnt & 0xff00) | val;
 351            break;
 352        case EN0_RCNTHI:
 353            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
 354            break;
 355        case EN0_RXCR:
 356            s->rxcr = val;
 357            break;
 358        case EN0_DCFG:
 359            s->dcfg = val;
 360            break;
 361        case EN0_ISR:
 362            s->isr &= ~(val & 0x7f);
 363            ne2000_update_irq(s);
 364            break;
 365        case EN1_PHYS ... EN1_PHYS + 5:
 366            s->phys[offset - EN1_PHYS] = val;
 367            break;
 368        case EN1_CURPAG:
 369            if (val << 8 < NE2000_PMEM_END) {
 370                s->curpag = val;
 371            }
 372            break;
 373        case EN1_MULT ... EN1_MULT + 7:
 374            s->mult[offset - EN1_MULT] = val;
 375            break;
 376        }
 377    }
 378}
 379
 380static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
 381{
 382    NE2000State *s = opaque;
 383    int offset, page, ret;
 384
 385    addr &= 0xf;
 386    if (addr == E8390_CMD) {
 387        ret = s->cmd;
 388    } else {
 389        page = s->cmd >> 6;
 390        offset = addr | (page << 4);
 391        switch(offset) {
 392        case EN0_TSR:
 393            ret = s->tsr;
 394            break;
 395        case EN0_BOUNDARY:
 396            ret = s->boundary;
 397            break;
 398        case EN0_ISR:
 399            ret = s->isr;
 400            break;
 401        case EN0_RSARLO:
 402            ret = s->rsar & 0x00ff;
 403            break;
 404        case EN0_RSARHI:
 405            ret = s->rsar >> 8;
 406            break;
 407        case EN1_PHYS ... EN1_PHYS + 5:
 408            ret = s->phys[offset - EN1_PHYS];
 409            break;
 410        case EN1_CURPAG:
 411            ret = s->curpag;
 412            break;
 413        case EN1_MULT ... EN1_MULT + 7:
 414            ret = s->mult[offset - EN1_MULT];
 415            break;
 416        case EN0_RSR:
 417            ret = s->rsr;
 418            break;
 419        case EN2_STARTPG:
 420            ret = s->start >> 8;
 421            break;
 422        case EN2_STOPPG:
 423            ret = s->stop >> 8;
 424            break;
 425        case EN0_RTL8029ID0:
 426            ret = 0x50;
 427            break;
 428        case EN0_RTL8029ID1:
 429            ret = 0x43;
 430            break;
 431        case EN3_CONFIG0:
 432            ret = 0;            /* 10baseT media */
 433            break;
 434        case EN3_CONFIG2:
 435            ret = 0x40;         /* 10baseT active */
 436            break;
 437        case EN3_CONFIG3:
 438            ret = 0x40;         /* Full duplex */
 439            break;
 440        default:
 441            ret = 0x00;
 442            break;
 443        }
 444    }
 445#ifdef DEBUG_NE2000
 446    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
 447#endif
 448    return ret;
 449}
 450
 451static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
 452                                     uint32_t val)
 453{
 454    if (addr < 32 ||
 455        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 456        s->mem[addr] = val;
 457    }
 458}
 459
 460static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
 461                                     uint32_t val)
 462{
 463    addr &= ~1; /* XXX: check exact behaviour if not even */
 464    if (addr < 32 ||
 465        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 466        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
 467    }
 468}
 469
 470static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
 471                                     uint32_t val)
 472{
 473    addr &= ~1; /* XXX: check exact behaviour if not even */
 474    if (addr < 32
 475        || (addr >= NE2000_PMEM_START
 476            && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
 477        stl_le_p(s->mem + addr, val);
 478    }
 479}
 480
 481static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
 482{
 483    if (addr < 32 ||
 484        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 485        return s->mem[addr];
 486    } else {
 487        return 0xff;
 488    }
 489}
 490
 491static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
 492{
 493    addr &= ~1; /* XXX: check exact behaviour if not even */
 494    if (addr < 32 ||
 495        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 496        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
 497    } else {
 498        return 0xffff;
 499    }
 500}
 501
 502static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
 503{
 504    addr &= ~1; /* XXX: check exact behaviour if not even */
 505    if (addr < 32
 506        || (addr >= NE2000_PMEM_START
 507            && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
 508        return ldl_le_p(s->mem + addr);
 509    } else {
 510        return 0xffffffff;
 511    }
 512}
 513
 514static inline void ne2000_dma_update(NE2000State *s, int len)
 515{
 516    s->rsar += len;
 517    /* wrap */
 518    /* XXX: check what to do if rsar > stop */
 519    if (s->rsar == s->stop)
 520        s->rsar = s->start;
 521
 522    if (s->rcnt <= len) {
 523        s->rcnt = 0;
 524        /* signal end of transfer */
 525        s->isr |= ENISR_RDC;
 526        ne2000_update_irq(s);
 527    } else {
 528        s->rcnt -= len;
 529    }
 530}
 531
 532static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 533{
 534    NE2000State *s = opaque;
 535
 536#ifdef DEBUG_NE2000
 537    printf("NE2000: asic write val=0x%04x\n", val);
 538#endif
 539    if (s->rcnt == 0)
 540        return;
 541    if (s->dcfg & 0x01) {
 542        /* 16 bit access */
 543        ne2000_mem_writew(s, s->rsar, val);
 544        ne2000_dma_update(s, 2);
 545    } else {
 546        /* 8 bit access */
 547        ne2000_mem_writeb(s, s->rsar, val);
 548        ne2000_dma_update(s, 1);
 549    }
 550}
 551
 552static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
 553{
 554    NE2000State *s = opaque;
 555    int ret;
 556
 557    if (s->dcfg & 0x01) {
 558        /* 16 bit access */
 559        ret = ne2000_mem_readw(s, s->rsar);
 560        ne2000_dma_update(s, 2);
 561    } else {
 562        /* 8 bit access */
 563        ret = ne2000_mem_readb(s, s->rsar);
 564        ne2000_dma_update(s, 1);
 565    }
 566#ifdef DEBUG_NE2000
 567    printf("NE2000: asic read val=0x%04x\n", ret);
 568#endif
 569    return ret;
 570}
 571
 572static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
 573{
 574    NE2000State *s = opaque;
 575
 576#ifdef DEBUG_NE2000
 577    printf("NE2000: asic writel val=0x%04x\n", val);
 578#endif
 579    if (s->rcnt == 0)
 580        return;
 581    /* 32 bit access */
 582    ne2000_mem_writel(s, s->rsar, val);
 583    ne2000_dma_update(s, 4);
 584}
 585
 586static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
 587{
 588    NE2000State *s = opaque;
 589    int ret;
 590
 591    /* 32 bit access */
 592    ret = ne2000_mem_readl(s, s->rsar);
 593    ne2000_dma_update(s, 4);
 594#ifdef DEBUG_NE2000
 595    printf("NE2000: asic readl val=0x%04x\n", ret);
 596#endif
 597    return ret;
 598}
 599
 600static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 601{
 602    /* nothing to do (end of reset pulse) */
 603}
 604
 605static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
 606{
 607    NE2000State *s = opaque;
 608    ne2000_reset(s);
 609    return 0;
 610}
 611
 612static int ne2000_post_load(void* opaque, int version_id)
 613{
 614    NE2000State* s = opaque;
 615
 616    if (version_id < 2) {
 617        s->rxcr = 0x0c;
 618    }
 619    return 0;
 620}
 621
 622const VMStateDescription vmstate_ne2000 = {
 623    .name = "ne2000",
 624    .version_id = 2,
 625    .minimum_version_id = 0,
 626    .post_load = ne2000_post_load,
 627    .fields = (VMStateField[]) {
 628        VMSTATE_UINT8_V(rxcr, NE2000State, 2),
 629        VMSTATE_UINT8(cmd, NE2000State),
 630        VMSTATE_UINT32(start, NE2000State),
 631        VMSTATE_UINT32(stop, NE2000State),
 632        VMSTATE_UINT8(boundary, NE2000State),
 633        VMSTATE_UINT8(tsr, NE2000State),
 634        VMSTATE_UINT8(tpsr, NE2000State),
 635        VMSTATE_UINT16(tcnt, NE2000State),
 636        VMSTATE_UINT16(rcnt, NE2000State),
 637        VMSTATE_UINT32(rsar, NE2000State),
 638        VMSTATE_UINT8(rsr, NE2000State),
 639        VMSTATE_UINT8(isr, NE2000State),
 640        VMSTATE_UINT8(dcfg, NE2000State),
 641        VMSTATE_UINT8(imr, NE2000State),
 642        VMSTATE_BUFFER(phys, NE2000State),
 643        VMSTATE_UINT8(curpag, NE2000State),
 644        VMSTATE_BUFFER(mult, NE2000State),
 645        VMSTATE_UNUSED(4), /* was irq */
 646        VMSTATE_BUFFER(mem, NE2000State),
 647        VMSTATE_END_OF_LIST()
 648    }
 649};
 650
 651static const VMStateDescription vmstate_pci_ne2000 = {
 652    .name = "ne2000",
 653    .version_id = 3,
 654    .minimum_version_id = 3,
 655    .fields = (VMStateField[]) {
 656        VMSTATE_PCI_DEVICE(dev, PCINE2000State),
 657        VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
 658        VMSTATE_END_OF_LIST()
 659    }
 660};
 661
 662static uint64_t ne2000_read(void *opaque, hwaddr addr,
 663                            unsigned size)
 664{
 665    NE2000State *s = opaque;
 666
 667    if (addr < 0x10 && size == 1) {
 668        return ne2000_ioport_read(s, addr);
 669    } else if (addr == 0x10) {
 670        if (size <= 2) {
 671            return ne2000_asic_ioport_read(s, addr);
 672        } else {
 673            return ne2000_asic_ioport_readl(s, addr);
 674        }
 675    } else if (addr == 0x1f && size == 1) {
 676        return ne2000_reset_ioport_read(s, addr);
 677    }
 678    return ((uint64_t)1 << (size * 8)) - 1;
 679}
 680
 681static void ne2000_write(void *opaque, hwaddr addr,
 682                         uint64_t data, unsigned size)
 683{
 684    NE2000State *s = opaque;
 685
 686    if (addr < 0x10 && size == 1) {
 687        ne2000_ioport_write(s, addr, data);
 688    } else if (addr == 0x10) {
 689        if (size <= 2) {
 690            ne2000_asic_ioport_write(s, addr, data);
 691        } else {
 692            ne2000_asic_ioport_writel(s, addr, data);
 693        }
 694    } else if (addr == 0x1f && size == 1) {
 695        ne2000_reset_ioport_write(s, addr, data);
 696    }
 697}
 698
 699static const MemoryRegionOps ne2000_ops = {
 700    .read = ne2000_read,
 701    .write = ne2000_write,
 702    .endianness = DEVICE_LITTLE_ENDIAN,
 703};
 704
 705/***********************************************************/
 706/* PCI NE2000 definitions */
 707
 708void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
 709{
 710    memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
 711}
 712
 713static NetClientInfo net_ne2000_info = {
 714    .type = NET_CLIENT_OPTIONS_KIND_NIC,
 715    .size = sizeof(NICState),
 716    .receive = ne2000_receive,
 717};
 718
 719static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
 720{
 721    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 722    NE2000State *s;
 723    uint8_t *pci_conf;
 724
 725    pci_conf = d->dev.config;
 726    pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
 727
 728    s = &d->ne2000;
 729    ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
 730    pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
 731    s->irq = pci_allocate_irq(&d->dev);
 732
 733    qemu_macaddr_default_if_unset(&s->c.macaddr);
 734    ne2000_reset(s);
 735
 736    s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
 737                          object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
 738    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
 739}
 740
 741static void pci_ne2000_exit(PCIDevice *pci_dev)
 742{
 743    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 744    NE2000State *s = &d->ne2000;
 745
 746    qemu_del_nic(s->nic);
 747    qemu_free_irq(s->irq);
 748}
 749
 750static void ne2000_instance_init(Object *obj)
 751{
 752    PCIDevice *pci_dev = PCI_DEVICE(obj);
 753    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 754    NE2000State *s = &d->ne2000;
 755
 756    device_add_bootindex_property(obj, &s->c.bootindex,
 757                                  "bootindex", "/ethernet-phy@0",
 758                                  &pci_dev->qdev, NULL);
 759}
 760
 761static Property ne2000_properties[] = {
 762    DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
 763    DEFINE_PROP_END_OF_LIST(),
 764};
 765
 766static void ne2000_class_init(ObjectClass *klass, void *data)
 767{
 768    DeviceClass *dc = DEVICE_CLASS(klass);
 769    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
 770
 771    k->realize = pci_ne2000_realize;
 772    k->exit = pci_ne2000_exit;
 773    k->romfile = "efi-ne2k_pci.rom",
 774    k->vendor_id = PCI_VENDOR_ID_REALTEK;
 775    k->device_id = PCI_DEVICE_ID_REALTEK_8029;
 776    k->class_id = PCI_CLASS_NETWORK_ETHERNET;
 777    dc->vmsd = &vmstate_pci_ne2000;
 778    dc->props = ne2000_properties;
 779    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
 780}
 781
 782static const TypeInfo ne2000_info = {
 783    .name          = "ne2k_pci",
 784    .parent        = TYPE_PCI_DEVICE,
 785    .instance_size = sizeof(PCINE2000State),
 786    .class_init    = ne2000_class_init,
 787    .instance_init = ne2000_instance_init,
 788};
 789
 790static void ne2000_register_types(void)
 791{
 792    type_register_static(&ne2000_info);
 793}
 794
 795type_init(ne2000_register_types)
 796