qemu/hw/nvram/eeprom93xx.c
<<
>>
Prefs
   1/*
   2 * QEMU EEPROM 93xx emulation
   3 *
   4 * Copyright (c) 2006-2007 Stefan Weil
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20/* Emulation for serial EEPROMs:
  21 * NMC93C06 256-Bit (16 x 16)
  22 * NMC93C46 1024-Bit (64 x 16)
  23 * NMC93C56 2028 Bit (128 x 16)
  24 * NMC93C66 4096 Bit (256 x 16)
  25 * Compatible devices include FM93C46 and others.
  26 *
  27 * Other drivers use these interface functions:
  28 * eeprom93xx_new   - add a new EEPROM (with 16, 64 or 256 words)
  29 * eeprom93xx_free  - destroy EEPROM
  30 * eeprom93xx_read  - read data from the EEPROM
  31 * eeprom93xx_write - write data to the EEPROM
  32 * eeprom93xx_data  - get EEPROM data array for external manipulation
  33 *
  34 * Todo list:
  35 * - No emulation of EEPROM timings.
  36 */
  37
  38#include "hw/hw.h"
  39#include "hw/nvram/eeprom93xx.h"
  40
  41/* Debug EEPROM emulation. */
  42//~ #define DEBUG_EEPROM
  43
  44#ifdef DEBUG_EEPROM
  45#define logout(fmt, ...) fprintf(stderr, "EEPROM\t%-24s" fmt, __func__, ## __VA_ARGS__)
  46#else
  47#define logout(fmt, ...) ((void)0)
  48#endif
  49
  50#define EEPROM_INSTANCE  0
  51#define OLD_EEPROM_VERSION 20061112
  52#define EEPROM_VERSION (OLD_EEPROM_VERSION + 1)
  53
  54#if 0
  55typedef enum {
  56  eeprom_read  = 0x80,   /* read register xx */
  57  eeprom_write = 0x40,   /* write register xx */
  58  eeprom_erase = 0xc0,   /* erase register xx */
  59  eeprom_ewen  = 0x30,   /* erase / write enable */
  60  eeprom_ewds  = 0x00,   /* erase / write disable */
  61  eeprom_eral  = 0x20,   /* erase all registers */
  62  eeprom_wral  = 0x10,   /* write all registers */
  63  eeprom_amask = 0x0f,
  64  eeprom_imask = 0xf0
  65} eeprom_instruction_t;
  66#endif
  67
  68#ifdef DEBUG_EEPROM
  69static const char *opstring[] = {
  70  "extended", "write", "read", "erase"
  71};
  72#endif
  73
  74struct _eeprom_t {
  75    uint8_t  tick;
  76    uint8_t  address;
  77    uint8_t  command;
  78    uint8_t  writable;
  79
  80    uint8_t eecs;
  81    uint8_t eesk;
  82    uint8_t eedo;
  83
  84    uint8_t  addrbits;
  85    uint16_t size;
  86    uint16_t data;
  87    uint16_t contents[0];
  88};
  89
  90/* Code for saving and restoring of EEPROM state. */
  91
  92/* Restore an uint16_t from an uint8_t
  93   This is a Big hack, but it is how the old state did it.
  94 */
  95
  96static int get_uint16_from_uint8(QEMUFile *f, void *pv, size_t size)
  97{
  98    uint16_t *v = pv;
  99    *v = qemu_get_ubyte(f);
 100    return 0;
 101}
 102
 103static void put_unused(QEMUFile *f, void *pv, size_t size)
 104{
 105    fprintf(stderr, "uint16_from_uint8 is used only for backwards compatibility.\n");
 106    fprintf(stderr, "Never should be used to write a new state.\n");
 107    exit(0);
 108}
 109
 110static const VMStateInfo vmstate_hack_uint16_from_uint8 = {
 111    .name = "uint16_from_uint8",
 112    .get  = get_uint16_from_uint8,
 113    .put  = put_unused,
 114};
 115
 116#define VMSTATE_UINT16_HACK_TEST(_f, _s, _t)                           \
 117    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint16_from_uint8, uint16_t)
 118
 119static bool is_old_eeprom_version(void *opaque, int version_id)
 120{
 121    return version_id == OLD_EEPROM_VERSION;
 122}
 123
 124static const VMStateDescription vmstate_eeprom = {
 125    .name = "eeprom",
 126    .version_id = EEPROM_VERSION,
 127    .minimum_version_id = OLD_EEPROM_VERSION,
 128    .fields = (VMStateField[]) {
 129        VMSTATE_UINT8(tick, eeprom_t),
 130        VMSTATE_UINT8(address, eeprom_t),
 131        VMSTATE_UINT8(command, eeprom_t),
 132        VMSTATE_UINT8(writable, eeprom_t),
 133
 134        VMSTATE_UINT8(eecs, eeprom_t),
 135        VMSTATE_UINT8(eesk, eeprom_t),
 136        VMSTATE_UINT8(eedo, eeprom_t),
 137
 138        VMSTATE_UINT8(addrbits, eeprom_t),
 139        VMSTATE_UINT16_HACK_TEST(size, eeprom_t, is_old_eeprom_version),
 140        VMSTATE_UNUSED_TEST(is_old_eeprom_version, 1),
 141        VMSTATE_UINT16_EQUAL_V(size, eeprom_t, EEPROM_VERSION),
 142        VMSTATE_UINT16(data, eeprom_t),
 143        VMSTATE_VARRAY_UINT16_UNSAFE(contents, eeprom_t, size, 0,
 144                                     vmstate_info_uint16, uint16_t),
 145        VMSTATE_END_OF_LIST()
 146    }
 147};
 148
 149void eeprom93xx_write(eeprom_t *eeprom, int eecs, int eesk, int eedi)
 150{
 151    uint8_t tick = eeprom->tick;
 152    uint8_t eedo = eeprom->eedo;
 153    uint16_t address = eeprom->address;
 154    uint8_t command = eeprom->command;
 155
 156    logout("CS=%u SK=%u DI=%u DO=%u, tick = %u\n",
 157           eecs, eesk, eedi, eedo, tick);
 158
 159    if (!eeprom->eecs && eecs) {
 160        /* Start chip select cycle. */
 161        logout("Cycle start, waiting for 1st start bit (0)\n");
 162        tick = 0;
 163        command = 0x0;
 164        address = 0x0;
 165    } else if (eeprom->eecs && !eecs) {
 166        /* End chip select cycle. This triggers write / erase. */
 167        if (eeprom->writable) {
 168            uint8_t subcommand = address >> (eeprom->addrbits - 2);
 169            if (command == 0 && subcommand == 2) {
 170                /* Erase all. */
 171                for (address = 0; address < eeprom->size; address++) {
 172                    eeprom->contents[address] = 0xffff;
 173                }
 174            } else if (command == 3) {
 175                /* Erase word. */
 176                eeprom->contents[address] = 0xffff;
 177            } else if (tick >= 2 + 2 + eeprom->addrbits + 16) {
 178                if (command == 1) {
 179                    /* Write word. */
 180                    eeprom->contents[address] &= eeprom->data;
 181                } else if (command == 0 && subcommand == 1) {
 182                    /* Write all. */
 183                    for (address = 0; address < eeprom->size; address++) {
 184                        eeprom->contents[address] &= eeprom->data;
 185                    }
 186                }
 187            }
 188        }
 189        /* Output DO is tristate, read results in 1. */
 190        eedo = 1;
 191    } else if (eecs && !eeprom->eesk && eesk) {
 192        /* Raising edge of clock shifts data in. */
 193        if (tick == 0) {
 194            /* Wait for 1st start bit. */
 195            if (eedi == 0) {
 196                logout("Got correct 1st start bit, waiting for 2nd start bit (1)\n");
 197                tick++;
 198            } else {
 199                logout("wrong 1st start bit (is 1, should be 0)\n");
 200                tick = 2;
 201                //~ assert(!"wrong start bit");
 202            }
 203        } else if (tick == 1) {
 204            /* Wait for 2nd start bit. */
 205            if (eedi != 0) {
 206                logout("Got correct 2nd start bit, getting command + address\n");
 207                tick++;
 208            } else {
 209                logout("1st start bit is longer than needed\n");
 210            }
 211        } else if (tick < 2 + 2) {
 212            /* Got 2 start bits, transfer 2 opcode bits. */
 213            tick++;
 214            command <<= 1;
 215            if (eedi) {
 216                command += 1;
 217            }
 218        } else if (tick < 2 + 2 + eeprom->addrbits) {
 219            /* Got 2 start bits and 2 opcode bits, transfer all address bits. */
 220            tick++;
 221            address = ((address << 1) | eedi);
 222            if (tick == 2 + 2 + eeprom->addrbits) {
 223                logout("%s command, address = 0x%02x (value 0x%04x)\n",
 224                       opstring[command], address, eeprom->contents[address]);
 225                if (command == 2) {
 226                    eedo = 0;
 227                }
 228                address = address % eeprom->size;
 229                if (command == 0) {
 230                    /* Command code in upper 2 bits of address. */
 231                    switch (address >> (eeprom->addrbits - 2)) {
 232                    case 0:
 233                        logout("write disable command\n");
 234                        eeprom->writable = 0;
 235                        break;
 236                    case 1:
 237                        logout("write all command\n");
 238                        break;
 239                    case 2:
 240                        logout("erase all command\n");
 241                        break;
 242                    case 3:
 243                        logout("write enable command\n");
 244                        eeprom->writable = 1;
 245                        break;
 246                    }
 247                } else {
 248                    /* Read, write or erase word. */
 249                    eeprom->data = eeprom->contents[address];
 250                }
 251            }
 252        } else if (tick < 2 + 2 + eeprom->addrbits + 16) {
 253            /* Transfer 16 data bits. */
 254            tick++;
 255            if (command == 2) {
 256                /* Read word. */
 257                eedo = ((eeprom->data & 0x8000) != 0);
 258            }
 259            eeprom->data <<= 1;
 260            eeprom->data += eedi;
 261        } else {
 262            logout("additional unneeded tick, not processed\n");
 263        }
 264    }
 265    /* Save status of EEPROM. */
 266    eeprom->tick = tick;
 267    eeprom->eecs = eecs;
 268    eeprom->eesk = eesk;
 269    eeprom->eedo = eedo;
 270    eeprom->address = address;
 271    eeprom->command = command;
 272}
 273
 274uint16_t eeprom93xx_read(eeprom_t *eeprom)
 275{
 276    /* Return status of pin DO (0 or 1). */
 277    logout("CS=%u DO=%u\n", eeprom->eecs, eeprom->eedo);
 278    return eeprom->eedo;
 279}
 280
 281#if 0
 282void eeprom93xx_reset(eeprom_t *eeprom)
 283{
 284    /* prepare eeprom */
 285    logout("eeprom = 0x%p\n", eeprom);
 286    eeprom->tick = 0;
 287    eeprom->command = 0;
 288}
 289#endif
 290
 291eeprom_t *eeprom93xx_new(DeviceState *dev, uint16_t nwords)
 292{
 293    /* Add a new EEPROM (with 16, 64 or 256 words). */
 294    eeprom_t *eeprom;
 295    uint8_t addrbits;
 296
 297    switch (nwords) {
 298    case 16:
 299    case 64:
 300        addrbits = 6;
 301        break;
 302    case 128:
 303    case 256:
 304        addrbits = 8;
 305        break;
 306    default:
 307        assert(!"Unsupported EEPROM size, fallback to 64 words!");
 308        nwords = 64;
 309        addrbits = 6;
 310    }
 311
 312    eeprom = (eeprom_t *)g_malloc0(sizeof(*eeprom) + nwords * 2);
 313    eeprom->size = nwords;
 314    eeprom->addrbits = addrbits;
 315    /* Output DO is tristate, read results in 1. */
 316    eeprom->eedo = 1;
 317    logout("eeprom = 0x%p, nwords = %u\n", eeprom, nwords);
 318    vmstate_register(dev, 0, &vmstate_eeprom, eeprom);
 319    return eeprom;
 320}
 321
 322void eeprom93xx_free(DeviceState *dev, eeprom_t *eeprom)
 323{
 324    /* Destroy EEPROM. */
 325    logout("eeprom = 0x%p\n", eeprom);
 326    vmstate_unregister(dev, &vmstate_eeprom, eeprom);
 327    g_free(eeprom);
 328}
 329
 330uint16_t *eeprom93xx_data(eeprom_t *eeprom)
 331{
 332    /* Get EEPROM data array. */
 333    return &eeprom->contents[0];
 334}
 335
 336/* eof */
 337