qemu/hw/timer/mc146818rtc.c
<<
>>
Prefs
   1/*
   2 * QEMU MC146818 RTC emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "hw/hw.h"
  25#include "qemu/timer.h"
  26#include "sysemu/sysemu.h"
  27#include "hw/timer/mc146818rtc.h"
  28#include "qapi/visitor.h"
  29#include "qapi-event.h"
  30#include "qmp-commands.h"
  31
  32#ifdef TARGET_I386
  33#include "hw/i386/apic.h"
  34#endif
  35
  36//#define DEBUG_CMOS
  37//#define DEBUG_COALESCED
  38
  39#ifdef DEBUG_CMOS
  40# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
  41#else
  42# define CMOS_DPRINTF(format, ...)      do { } while (0)
  43#endif
  44
  45#ifdef DEBUG_COALESCED
  46# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
  47#else
  48# define DPRINTF_C(format, ...)      do { } while (0)
  49#endif
  50
  51#define SEC_PER_MIN     60
  52#define MIN_PER_HOUR    60
  53#define SEC_PER_HOUR    3600
  54#define HOUR_PER_DAY    24
  55#define SEC_PER_DAY     86400
  56
  57#define RTC_REINJECT_ON_ACK_COUNT 20
  58#define RTC_CLOCK_RATE            32768
  59#define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
  60
  61#define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
  62
  63typedef struct RTCState {
  64    ISADevice parent_obj;
  65
  66    MemoryRegion io;
  67    uint8_t cmos_data[128];
  68    uint8_t cmos_index;
  69    int32_t base_year;
  70    uint64_t base_rtc;
  71    uint64_t last_update;
  72    int64_t offset;
  73    qemu_irq irq;
  74    int it_shift;
  75    /* periodic timer */
  76    QEMUTimer *periodic_timer;
  77    int64_t next_periodic_time;
  78    /* update-ended timer */
  79    QEMUTimer *update_timer;
  80    uint64_t next_alarm_time;
  81    uint16_t irq_reinject_on_ack_count;
  82    uint32_t irq_coalesced;
  83    uint32_t period;
  84    QEMUTimer *coalesced_timer;
  85    Notifier clock_reset_notifier;
  86    LostTickPolicy lost_tick_policy;
  87    Notifier suspend_notifier;
  88    QLIST_ENTRY(RTCState) link;
  89} RTCState;
  90
  91static void rtc_set_time(RTCState *s);
  92static void rtc_update_time(RTCState *s);
  93static void rtc_set_cmos(RTCState *s, const struct tm *tm);
  94static inline int rtc_from_bcd(RTCState *s, int a);
  95static uint64_t get_next_alarm(RTCState *s);
  96
  97static inline bool rtc_running(RTCState *s)
  98{
  99    return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 100            (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
 101}
 102
 103static uint64_t get_guest_rtc_ns(RTCState *s)
 104{
 105    uint64_t guest_rtc;
 106    uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
 107
 108    guest_rtc = s->base_rtc * NANOSECONDS_PER_SECOND
 109                 + guest_clock - s->last_update + s->offset;
 110    return guest_rtc;
 111}
 112
 113#ifdef TARGET_I386
 114static void rtc_coalesced_timer_update(RTCState *s)
 115{
 116    if (s->irq_coalesced == 0) {
 117        timer_del(s->coalesced_timer);
 118    } else {
 119        /* divide each RTC interval to 2 - 8 smaller intervals */
 120        int c = MIN(s->irq_coalesced, 7) + 1; 
 121        int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
 122            muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
 123        timer_mod(s->coalesced_timer, next_clock);
 124    }
 125}
 126
 127static void rtc_coalesced_timer(void *opaque)
 128{
 129    RTCState *s = opaque;
 130
 131    if (s->irq_coalesced != 0) {
 132        apic_reset_irq_delivered();
 133        s->cmos_data[RTC_REG_C] |= 0xc0;
 134        DPRINTF_C("cmos: injecting from timer\n");
 135        qemu_irq_raise(s->irq);
 136        if (apic_get_irq_delivered()) {
 137            s->irq_coalesced--;
 138            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 139                      s->irq_coalesced);
 140        }
 141    }
 142
 143    rtc_coalesced_timer_update(s);
 144}
 145#endif
 146
 147/* handle periodic timer */
 148static void periodic_timer_update(RTCState *s, int64_t current_time)
 149{
 150    int period_code, period;
 151    int64_t cur_clock, next_irq_clock;
 152
 153    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 154    if (period_code != 0
 155        && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
 156        if (period_code <= 2)
 157            period_code += 7;
 158        /* period in 32 Khz cycles */
 159        period = 1 << (period_code - 1);
 160#ifdef TARGET_I386
 161        if (period != s->period) {
 162            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
 163            DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
 164        }
 165        s->period = period;
 166#endif
 167        /* compute 32 khz clock */
 168        cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
 169        next_irq_clock = (cur_clock & ~(period - 1)) + period;
 170        s->next_periodic_time =
 171            muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
 172        timer_mod(s->periodic_timer, s->next_periodic_time);
 173    } else {
 174#ifdef TARGET_I386
 175        s->irq_coalesced = 0;
 176#endif
 177        timer_del(s->periodic_timer);
 178    }
 179}
 180
 181static void rtc_periodic_timer(void *opaque)
 182{
 183    RTCState *s = opaque;
 184
 185    periodic_timer_update(s, s->next_periodic_time);
 186    s->cmos_data[RTC_REG_C] |= REG_C_PF;
 187    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
 188        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 189#ifdef TARGET_I386
 190        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 191            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
 192                s->irq_reinject_on_ack_count = 0;               
 193            apic_reset_irq_delivered();
 194            qemu_irq_raise(s->irq);
 195            if (!apic_get_irq_delivered()) {
 196                s->irq_coalesced++;
 197                rtc_coalesced_timer_update(s);
 198                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
 199                          s->irq_coalesced);
 200            }
 201        } else
 202#endif
 203        qemu_irq_raise(s->irq);
 204    }
 205}
 206
 207/* handle update-ended timer */
 208static void check_update_timer(RTCState *s)
 209{
 210    uint64_t next_update_time;
 211    uint64_t guest_nsec;
 212    int next_alarm_sec;
 213
 214    /* From the data sheet: "Holding the dividers in reset prevents
 215     * interrupts from operating, while setting the SET bit allows"
 216     * them to occur.  However, it will prevent an alarm interrupt
 217     * from occurring, because the time of day is not updated.
 218     */
 219    if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
 220        timer_del(s->update_timer);
 221        return;
 222    }
 223    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
 224        (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 225        timer_del(s->update_timer);
 226        return;
 227    }
 228    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
 229        (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
 230        timer_del(s->update_timer);
 231        return;
 232    }
 233
 234    guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 235    /* if UF is clear, reprogram to next second */
 236    next_update_time = qemu_clock_get_ns(rtc_clock)
 237        + NANOSECONDS_PER_SECOND - guest_nsec;
 238
 239    /* Compute time of next alarm.  One second is already accounted
 240     * for in next_update_time.
 241     */
 242    next_alarm_sec = get_next_alarm(s);
 243    s->next_alarm_time = next_update_time +
 244                         (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
 245
 246    if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
 247        /* UF is set, but AF is clear.  Program the timer to target
 248         * the alarm time.  */
 249        next_update_time = s->next_alarm_time;
 250    }
 251    if (next_update_time != timer_expire_time_ns(s->update_timer)) {
 252        timer_mod(s->update_timer, next_update_time);
 253    }
 254}
 255
 256static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
 257{
 258    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 259        hour %= 12;
 260        if (s->cmos_data[RTC_HOURS] & 0x80) {
 261            hour += 12;
 262        }
 263    }
 264    return hour;
 265}
 266
 267static uint64_t get_next_alarm(RTCState *s)
 268{
 269    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
 270    int32_t hour, min, sec;
 271
 272    rtc_update_time(s);
 273
 274    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
 275    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
 276    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
 277    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
 278
 279    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 280    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 281    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
 282    cur_hour = convert_hour(s, cur_hour);
 283
 284    if (alarm_hour == -1) {
 285        alarm_hour = cur_hour;
 286        if (alarm_min == -1) {
 287            alarm_min = cur_min;
 288            if (alarm_sec == -1) {
 289                alarm_sec = cur_sec + 1;
 290            } else if (cur_sec > alarm_sec) {
 291                alarm_min++;
 292            }
 293        } else if (cur_min == alarm_min) {
 294            if (alarm_sec == -1) {
 295                alarm_sec = cur_sec + 1;
 296            } else {
 297                if (cur_sec > alarm_sec) {
 298                    alarm_hour++;
 299                }
 300            }
 301            if (alarm_sec == SEC_PER_MIN) {
 302                /* wrap to next hour, minutes is not in don't care mode */
 303                alarm_sec = 0;
 304                alarm_hour++;
 305            }
 306        } else if (cur_min > alarm_min) {
 307            alarm_hour++;
 308        }
 309    } else if (cur_hour == alarm_hour) {
 310        if (alarm_min == -1) {
 311            alarm_min = cur_min;
 312            if (alarm_sec == -1) {
 313                alarm_sec = cur_sec + 1;
 314            } else if (cur_sec > alarm_sec) {
 315                alarm_min++;
 316            }
 317
 318            if (alarm_sec == SEC_PER_MIN) {
 319                alarm_sec = 0;
 320                alarm_min++;
 321            }
 322            /* wrap to next day, hour is not in don't care mode */
 323            alarm_min %= MIN_PER_HOUR;
 324        } else if (cur_min == alarm_min) {
 325            if (alarm_sec == -1) {
 326                alarm_sec = cur_sec + 1;
 327            }
 328            /* wrap to next day, hours+minutes not in don't care mode */
 329            alarm_sec %= SEC_PER_MIN;
 330        }
 331    }
 332
 333    /* values that are still don't care fire at the next min/sec */
 334    if (alarm_min == -1) {
 335        alarm_min = 0;
 336    }
 337    if (alarm_sec == -1) {
 338        alarm_sec = 0;
 339    }
 340
 341    /* keep values in range */
 342    if (alarm_sec == SEC_PER_MIN) {
 343        alarm_sec = 0;
 344        alarm_min++;
 345    }
 346    if (alarm_min == MIN_PER_HOUR) {
 347        alarm_min = 0;
 348        alarm_hour++;
 349    }
 350    alarm_hour %= HOUR_PER_DAY;
 351
 352    hour = alarm_hour - cur_hour;
 353    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
 354    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
 355    return sec <= 0 ? sec + SEC_PER_DAY : sec;
 356}
 357
 358static void rtc_update_timer(void *opaque)
 359{
 360    RTCState *s = opaque;
 361    int32_t irqs = REG_C_UF;
 362    int32_t new_irqs;
 363
 364    assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
 365
 366    /* UIP might have been latched, update time and clear it.  */
 367    rtc_update_time(s);
 368    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 369
 370    if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
 371        irqs |= REG_C_AF;
 372        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 373            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
 374        }
 375    }
 376
 377    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
 378    s->cmos_data[RTC_REG_C] |= irqs;
 379    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
 380        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 381        qemu_irq_raise(s->irq);
 382    }
 383    check_update_timer(s);
 384}
 385
 386static void cmos_ioport_write(void *opaque, hwaddr addr,
 387                              uint64_t data, unsigned size)
 388{
 389    RTCState *s = opaque;
 390
 391    if ((addr & 1) == 0) {
 392        s->cmos_index = data & 0x7f;
 393    } else {
 394        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
 395                     s->cmos_index, data);
 396        switch(s->cmos_index) {
 397        case RTC_SECONDS_ALARM:
 398        case RTC_MINUTES_ALARM:
 399        case RTC_HOURS_ALARM:
 400            s->cmos_data[s->cmos_index] = data;
 401            check_update_timer(s);
 402            break;
 403        case RTC_IBM_PS2_CENTURY_BYTE:
 404            s->cmos_index = RTC_CENTURY;
 405            /* fall through */
 406        case RTC_CENTURY:
 407        case RTC_SECONDS:
 408        case RTC_MINUTES:
 409        case RTC_HOURS:
 410        case RTC_DAY_OF_WEEK:
 411        case RTC_DAY_OF_MONTH:
 412        case RTC_MONTH:
 413        case RTC_YEAR:
 414            s->cmos_data[s->cmos_index] = data;
 415            /* if in set mode, do not update the time */
 416            if (rtc_running(s)) {
 417                rtc_set_time(s);
 418                check_update_timer(s);
 419            }
 420            break;
 421        case RTC_REG_A:
 422            if ((data & 0x60) == 0x60) {
 423                if (rtc_running(s)) {
 424                    rtc_update_time(s);
 425                }
 426                /* What happens to UIP when divider reset is enabled is
 427                 * unclear from the datasheet.  Shouldn't matter much
 428                 * though.
 429                 */
 430                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 431            } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
 432                    (data & 0x70)  <= 0x20) {
 433                /* when the divider reset is removed, the first update cycle
 434                 * begins one-half second later*/
 435                if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 436                    s->offset = 500000000;
 437                    rtc_set_time(s);
 438                }
 439                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 440            }
 441            /* UIP bit is read only */
 442            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 443                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 444            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
 445            check_update_timer(s);
 446            break;
 447        case RTC_REG_B:
 448            if (data & REG_B_SET) {
 449                /* update cmos to when the rtc was stopping */
 450                if (rtc_running(s)) {
 451                    rtc_update_time(s);
 452                }
 453                /* set mode: reset UIP mode */
 454                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 455                data &= ~REG_B_UIE;
 456            } else {
 457                /* if disabling set mode, update the time */
 458                if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 459                    (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
 460                    s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 461                    rtc_set_time(s);
 462                }
 463            }
 464            /* if an interrupt flag is already set when the interrupt
 465             * becomes enabled, raise an interrupt immediately.  */
 466            if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
 467                s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 468                qemu_irq_raise(s->irq);
 469            } else {
 470                s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
 471                qemu_irq_lower(s->irq);
 472            }
 473            s->cmos_data[RTC_REG_B] = data;
 474            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
 475            check_update_timer(s);
 476            break;
 477        case RTC_REG_C:
 478        case RTC_REG_D:
 479            /* cannot write to them */
 480            break;
 481        default:
 482            s->cmos_data[s->cmos_index] = data;
 483            break;
 484        }
 485    }
 486}
 487
 488static inline int rtc_to_bcd(RTCState *s, int a)
 489{
 490    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 491        return a;
 492    } else {
 493        return ((a / 10) << 4) | (a % 10);
 494    }
 495}
 496
 497static inline int rtc_from_bcd(RTCState *s, int a)
 498{
 499    if ((a & 0xc0) == 0xc0) {
 500        return -1;
 501    }
 502    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 503        return a;
 504    } else {
 505        return ((a >> 4) * 10) + (a & 0x0f);
 506    }
 507}
 508
 509static void rtc_get_time(RTCState *s, struct tm *tm)
 510{
 511    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 512    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 513    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
 514    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 515        tm->tm_hour %= 12;
 516        if (s->cmos_data[RTC_HOURS] & 0x80) {
 517            tm->tm_hour += 12;
 518        }
 519    }
 520    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
 521    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 522    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 523    tm->tm_year =
 524        rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
 525        rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
 526}
 527
 528static QLIST_HEAD(, RTCState) rtc_devices =
 529    QLIST_HEAD_INITIALIZER(rtc_devices);
 530
 531#ifdef TARGET_I386
 532void qmp_rtc_reset_reinjection(Error **errp)
 533{
 534    RTCState *s;
 535
 536    QLIST_FOREACH(s, &rtc_devices, link) {
 537        s->irq_coalesced = 0;
 538    }
 539}
 540#endif
 541
 542static void rtc_set_time(RTCState *s)
 543{
 544    struct tm tm;
 545
 546    rtc_get_time(s, &tm);
 547    s->base_rtc = mktimegm(&tm);
 548    s->last_update = qemu_clock_get_ns(rtc_clock);
 549
 550    qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
 551}
 552
 553static void rtc_set_cmos(RTCState *s, const struct tm *tm)
 554{
 555    int year;
 556
 557    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
 558    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
 559    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
 560        /* 24 hour format */
 561        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
 562    } else {
 563        /* 12 hour format */
 564        int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
 565        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
 566        if (tm->tm_hour >= 12)
 567            s->cmos_data[RTC_HOURS] |= 0x80;
 568    }
 569    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
 570    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
 571    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
 572    year = tm->tm_year + 1900 - s->base_year;
 573    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
 574    s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
 575}
 576
 577static void rtc_update_time(RTCState *s)
 578{
 579    struct tm ret;
 580    time_t guest_sec;
 581    int64_t guest_nsec;
 582
 583    guest_nsec = get_guest_rtc_ns(s);
 584    guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
 585    gmtime_r(&guest_sec, &ret);
 586
 587    /* Is SET flag of Register B disabled? */
 588    if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
 589        rtc_set_cmos(s, &ret);
 590    }
 591}
 592
 593static int update_in_progress(RTCState *s)
 594{
 595    int64_t guest_nsec;
 596
 597    if (!rtc_running(s)) {
 598        return 0;
 599    }
 600    if (timer_pending(s->update_timer)) {
 601        int64_t next_update_time = timer_expire_time_ns(s->update_timer);
 602        /* Latch UIP until the timer expires.  */
 603        if (qemu_clock_get_ns(rtc_clock) >=
 604            (next_update_time - UIP_HOLD_LENGTH)) {
 605            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 606            return 1;
 607        }
 608    }
 609
 610    guest_nsec = get_guest_rtc_ns(s);
 611    /* UIP bit will be set at last 244us of every second. */
 612    if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
 613        (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
 614        return 1;
 615    }
 616    return 0;
 617}
 618
 619static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
 620                                 unsigned size)
 621{
 622    RTCState *s = opaque;
 623    int ret;
 624    if ((addr & 1) == 0) {
 625        return 0xff;
 626    } else {
 627        switch(s->cmos_index) {
 628        case RTC_IBM_PS2_CENTURY_BYTE:
 629            s->cmos_index = RTC_CENTURY;
 630            /* fall through */
 631        case RTC_CENTURY:
 632        case RTC_SECONDS:
 633        case RTC_MINUTES:
 634        case RTC_HOURS:
 635        case RTC_DAY_OF_WEEK:
 636        case RTC_DAY_OF_MONTH:
 637        case RTC_MONTH:
 638        case RTC_YEAR:
 639            /* if not in set mode, calibrate cmos before
 640             * reading*/
 641            if (rtc_running(s)) {
 642                rtc_update_time(s);
 643            }
 644            ret = s->cmos_data[s->cmos_index];
 645            break;
 646        case RTC_REG_A:
 647            if (update_in_progress(s)) {
 648                s->cmos_data[s->cmos_index] |= REG_A_UIP;
 649            } else {
 650                s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
 651            }
 652            ret = s->cmos_data[s->cmos_index];
 653            break;
 654        case RTC_REG_C:
 655            ret = s->cmos_data[s->cmos_index];
 656            qemu_irq_lower(s->irq);
 657            s->cmos_data[RTC_REG_C] = 0x00;
 658            if (ret & (REG_C_UF | REG_C_AF)) {
 659                check_update_timer(s);
 660            }
 661#ifdef TARGET_I386
 662            if(s->irq_coalesced &&
 663                    (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
 664                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
 665                s->irq_reinject_on_ack_count++;
 666                s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
 667                apic_reset_irq_delivered();
 668                DPRINTF_C("cmos: injecting on ack\n");
 669                qemu_irq_raise(s->irq);
 670                if (apic_get_irq_delivered()) {
 671                    s->irq_coalesced--;
 672                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 673                              s->irq_coalesced);
 674                }
 675            }
 676#endif
 677            break;
 678        default:
 679            ret = s->cmos_data[s->cmos_index];
 680            break;
 681        }
 682        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
 683                     s->cmos_index, ret);
 684        return ret;
 685    }
 686}
 687
 688void rtc_set_memory(ISADevice *dev, int addr, int val)
 689{
 690    RTCState *s = MC146818_RTC(dev);
 691    if (addr >= 0 && addr <= 127)
 692        s->cmos_data[addr] = val;
 693}
 694
 695int rtc_get_memory(ISADevice *dev, int addr)
 696{
 697    RTCState *s = MC146818_RTC(dev);
 698    assert(addr >= 0 && addr <= 127);
 699    return s->cmos_data[addr];
 700}
 701
 702static void rtc_set_date_from_host(ISADevice *dev)
 703{
 704    RTCState *s = MC146818_RTC(dev);
 705    struct tm tm;
 706
 707    qemu_get_timedate(&tm, 0);
 708
 709    s->base_rtc = mktimegm(&tm);
 710    s->last_update = qemu_clock_get_ns(rtc_clock);
 711    s->offset = 0;
 712
 713    /* set the CMOS date */
 714    rtc_set_cmos(s, &tm);
 715}
 716
 717static int rtc_post_load(void *opaque, int version_id)
 718{
 719    RTCState *s = opaque;
 720
 721    if (version_id <= 2) {
 722        rtc_set_time(s);
 723        s->offset = 0;
 724        check_update_timer(s);
 725    }
 726
 727    uint64_t now = qemu_clock_get_ns(rtc_clock);
 728    if (now < s->next_periodic_time ||
 729        now > (s->next_periodic_time + get_max_clock_jump())) {
 730        periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
 731    }
 732
 733#ifdef TARGET_I386
 734    if (version_id >= 2) {
 735        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 736            rtc_coalesced_timer_update(s);
 737        }
 738    }
 739#endif
 740    return 0;
 741}
 742
 743static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
 744{
 745    RTCState *s = (RTCState *)opaque;
 746    return s->irq_reinject_on_ack_count != 0;
 747}
 748
 749static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
 750    .name = "mc146818rtc/irq_reinject_on_ack_count",
 751    .version_id = 1,
 752    .minimum_version_id = 1,
 753    .needed = rtc_irq_reinject_on_ack_count_needed,
 754    .fields = (VMStateField[]) {
 755        VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
 756        VMSTATE_END_OF_LIST()
 757    }
 758};
 759
 760static const VMStateDescription vmstate_rtc = {
 761    .name = "mc146818rtc",
 762    .version_id = 3,
 763    .minimum_version_id = 1,
 764    .post_load = rtc_post_load,
 765    .fields = (VMStateField[]) {
 766        VMSTATE_BUFFER(cmos_data, RTCState),
 767        VMSTATE_UINT8(cmos_index, RTCState),
 768        VMSTATE_UNUSED(7*4),
 769        VMSTATE_TIMER_PTR(periodic_timer, RTCState),
 770        VMSTATE_INT64(next_periodic_time, RTCState),
 771        VMSTATE_UNUSED(3*8),
 772        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
 773        VMSTATE_UINT32_V(period, RTCState, 2),
 774        VMSTATE_UINT64_V(base_rtc, RTCState, 3),
 775        VMSTATE_UINT64_V(last_update, RTCState, 3),
 776        VMSTATE_INT64_V(offset, RTCState, 3),
 777        VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
 778        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
 779        VMSTATE_END_OF_LIST()
 780    },
 781    .subsections = (const VMStateDescription*[]) {
 782        &vmstate_rtc_irq_reinject_on_ack_count,
 783        NULL
 784    }
 785};
 786
 787static void rtc_notify_clock_reset(Notifier *notifier, void *data)
 788{
 789    RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
 790    int64_t now = *(int64_t *)data;
 791
 792    rtc_set_date_from_host(ISA_DEVICE(s));
 793    periodic_timer_update(s, now);
 794    check_update_timer(s);
 795#ifdef TARGET_I386
 796    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 797        rtc_coalesced_timer_update(s);
 798    }
 799#endif
 800}
 801
 802/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
 803   BIOS will read it and start S3 resume at POST Entry */
 804static void rtc_notify_suspend(Notifier *notifier, void *data)
 805{
 806    RTCState *s = container_of(notifier, RTCState, suspend_notifier);
 807    rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
 808}
 809
 810static void rtc_reset(void *opaque)
 811{
 812    RTCState *s = opaque;
 813
 814    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
 815    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
 816    check_update_timer(s);
 817
 818    qemu_irq_lower(s->irq);
 819
 820#ifdef TARGET_I386
 821    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 822        s->irq_coalesced = 0;
 823        s->irq_reinject_on_ack_count = 0;               
 824    }
 825#endif
 826}
 827
 828static const MemoryRegionOps cmos_ops = {
 829    .read = cmos_ioport_read,
 830    .write = cmos_ioport_write,
 831    .impl = {
 832        .min_access_size = 1,
 833        .max_access_size = 1,
 834    },
 835    .endianness = DEVICE_LITTLE_ENDIAN,
 836};
 837
 838static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
 839{
 840    RTCState *s = MC146818_RTC(obj);
 841
 842    rtc_update_time(s);
 843    rtc_get_time(s, current_tm);
 844}
 845
 846static void rtc_realizefn(DeviceState *dev, Error **errp)
 847{
 848    ISADevice *isadev = ISA_DEVICE(dev);
 849    RTCState *s = MC146818_RTC(dev);
 850    int base = 0x70;
 851
 852    s->cmos_data[RTC_REG_A] = 0x26;
 853    s->cmos_data[RTC_REG_B] = 0x02;
 854    s->cmos_data[RTC_REG_C] = 0x00;
 855    s->cmos_data[RTC_REG_D] = 0x80;
 856
 857    /* This is for historical reasons.  The default base year qdev property
 858     * was set to 2000 for most machine types before the century byte was
 859     * implemented.
 860     *
 861     * This if statement means that the century byte will be always 0
 862     * (at least until 2079...) for base_year = 1980, but will be set
 863     * correctly for base_year = 2000.
 864     */
 865    if (s->base_year == 2000) {
 866        s->base_year = 0;
 867    }
 868
 869    rtc_set_date_from_host(isadev);
 870
 871#ifdef TARGET_I386
 872    switch (s->lost_tick_policy) {
 873    case LOST_TICK_POLICY_SLEW:
 874        s->coalesced_timer =
 875            timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
 876        break;
 877    case LOST_TICK_POLICY_DISCARD:
 878        break;
 879    default:
 880        error_setg(errp, "Invalid lost tick policy.");
 881        return;
 882    }
 883#endif
 884
 885    s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
 886    s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
 887    check_update_timer(s);
 888
 889    s->clock_reset_notifier.notify = rtc_notify_clock_reset;
 890    qemu_clock_register_reset_notifier(rtc_clock,
 891                                       &s->clock_reset_notifier);
 892
 893    s->suspend_notifier.notify = rtc_notify_suspend;
 894    qemu_register_suspend_notifier(&s->suspend_notifier);
 895
 896    memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
 897    isa_register_ioport(isadev, &s->io, base);
 898
 899    qdev_set_legacy_instance_id(dev, base, 3);
 900    qemu_register_reset(rtc_reset, s);
 901
 902    object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
 903
 904    object_property_add_alias(qdev_get_machine(), "rtc-time",
 905                              OBJECT(s), "date", NULL);
 906}
 907
 908ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
 909{
 910    DeviceState *dev;
 911    ISADevice *isadev;
 912    RTCState *s;
 913
 914    isadev = isa_create(bus, TYPE_MC146818_RTC);
 915    dev = DEVICE(isadev);
 916    s = MC146818_RTC(isadev);
 917    qdev_prop_set_int32(dev, "base_year", base_year);
 918    qdev_init_nofail(dev);
 919    if (intercept_irq) {
 920        s->irq = intercept_irq;
 921    } else {
 922        isa_init_irq(isadev, &s->irq, RTC_ISA_IRQ);
 923    }
 924    QLIST_INSERT_HEAD(&rtc_devices, s, link);
 925
 926    return isadev;
 927}
 928
 929static Property mc146818rtc_properties[] = {
 930    DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
 931    DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
 932                               lost_tick_policy, LOST_TICK_POLICY_DISCARD),
 933    DEFINE_PROP_END_OF_LIST(),
 934};
 935
 936static void rtc_class_initfn(ObjectClass *klass, void *data)
 937{
 938    DeviceClass *dc = DEVICE_CLASS(klass);
 939
 940    dc->realize = rtc_realizefn;
 941    dc->vmsd = &vmstate_rtc;
 942    dc->props = mc146818rtc_properties;
 943    /* Reason: needs to be wired up by rtc_init() */
 944    dc->cannot_instantiate_with_device_add_yet = true;
 945}
 946
 947static void rtc_finalize(Object *obj)
 948{
 949    object_property_del(qdev_get_machine(), "rtc", NULL);
 950}
 951
 952static const TypeInfo mc146818rtc_info = {
 953    .name          = TYPE_MC146818_RTC,
 954    .parent        = TYPE_ISA_DEVICE,
 955    .instance_size = sizeof(RTCState),
 956    .class_init    = rtc_class_initfn,
 957    .instance_finalize = rtc_finalize,
 958};
 959
 960static void mc146818rtc_register_types(void)
 961{
 962    type_register_static(&mc146818rtc_info);
 963}
 964
 965type_init(mc146818rtc_register_types)
 966