1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25#include "hw/timer/stm32f2xx_timer.h"
26
27#ifndef STM_TIMER_ERR_DEBUG
28#define STM_TIMER_ERR_DEBUG 0
29#endif
30
31#define DB_PRINT_L(lvl, fmt, args...) do { \
32 if (STM_TIMER_ERR_DEBUG >= lvl) { \
33 qemu_log("%s: " fmt, __func__, ## args); \
34 } \
35} while (0);
36
37#define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
38
39static void stm32f2xx_timer_set_alarm(STM32F2XXTimerState *s, int64_t now);
40
41static void stm32f2xx_timer_interrupt(void *opaque)
42{
43 STM32F2XXTimerState *s = opaque;
44
45 DB_PRINT("Interrupt\n");
46
47 if (s->tim_dier & TIM_DIER_UIE && s->tim_cr1 & TIM_CR1_CEN) {
48 s->tim_sr |= 1;
49 qemu_irq_pulse(s->irq);
50 stm32f2xx_timer_set_alarm(s, s->hit_time);
51 }
52}
53
54static inline int64_t stm32f2xx_ns_to_ticks(STM32F2XXTimerState *s, int64_t t)
55{
56 return muldiv64(t, s->freq_hz, 1000000000ULL) / (s->tim_psc + 1);
57}
58
59static void stm32f2xx_timer_set_alarm(STM32F2XXTimerState *s, int64_t now)
60{
61 uint64_t ticks;
62 int64_t now_ticks;
63
64 if (s->tim_arr == 0) {
65 return;
66 }
67
68 DB_PRINT("Alarm set at: 0x%x\n", s->tim_cr1);
69
70 now_ticks = stm32f2xx_ns_to_ticks(s, now);
71 ticks = s->tim_arr - (now_ticks - s->tick_offset);
72
73 DB_PRINT("Alarm set in %d ticks\n", (int) ticks);
74
75 s->hit_time = muldiv64((ticks + (uint64_t) now_ticks) * (s->tim_psc + 1),
76 1000000000ULL, s->freq_hz);
77
78 timer_mod(s->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hit_time);
79 DB_PRINT("Wait Time: %" PRId64 " ticks\n", s->hit_time);
80}
81
82static void stm32f2xx_timer_reset(DeviceState *dev)
83{
84 STM32F2XXTimerState *s = STM32F2XXTIMER(dev);
85 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
86
87 s->tim_cr1 = 0;
88 s->tim_cr2 = 0;
89 s->tim_smcr = 0;
90 s->tim_dier = 0;
91 s->tim_sr = 0;
92 s->tim_egr = 0;
93 s->tim_ccmr1 = 0;
94 s->tim_ccmr2 = 0;
95 s->tim_ccer = 0;
96 s->tim_psc = 0;
97 s->tim_arr = 0;
98 s->tim_ccr1 = 0;
99 s->tim_ccr2 = 0;
100 s->tim_ccr3 = 0;
101 s->tim_ccr4 = 0;
102 s->tim_dcr = 0;
103 s->tim_dmar = 0;
104 s->tim_or = 0;
105
106 s->tick_offset = stm32f2xx_ns_to_ticks(s, now);
107}
108
109static uint64_t stm32f2xx_timer_read(void *opaque, hwaddr offset,
110 unsigned size)
111{
112 STM32F2XXTimerState *s = opaque;
113
114 DB_PRINT("Read 0x%"HWADDR_PRIx"\n", offset);
115
116 switch (offset) {
117 case TIM_CR1:
118 return s->tim_cr1;
119 case TIM_CR2:
120 return s->tim_cr2;
121 case TIM_SMCR:
122 return s->tim_smcr;
123 case TIM_DIER:
124 return s->tim_dier;
125 case TIM_SR:
126 return s->tim_sr;
127 case TIM_EGR:
128 return s->tim_egr;
129 case TIM_CCMR1:
130 return s->tim_ccmr1;
131 case TIM_CCMR2:
132 return s->tim_ccmr2;
133 case TIM_CCER:
134 return s->tim_ccer;
135 case TIM_CNT:
136 return stm32f2xx_ns_to_ticks(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) -
137 s->tick_offset;
138 case TIM_PSC:
139 return s->tim_psc;
140 case TIM_ARR:
141 return s->tim_arr;
142 case TIM_CCR1:
143 return s->tim_ccr1;
144 case TIM_CCR2:
145 return s->tim_ccr2;
146 case TIM_CCR3:
147 return s->tim_ccr3;
148 case TIM_CCR4:
149 return s->tim_ccr4;
150 case TIM_DCR:
151 return s->tim_dcr;
152 case TIM_DMAR:
153 return s->tim_dmar;
154 case TIM_OR:
155 return s->tim_or;
156 default:
157 qemu_log_mask(LOG_GUEST_ERROR,
158 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, offset);
159 }
160
161 return 0;
162}
163
164static void stm32f2xx_timer_write(void *opaque, hwaddr offset,
165 uint64_t val64, unsigned size)
166{
167 STM32F2XXTimerState *s = opaque;
168 uint32_t value = val64;
169 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
170 uint32_t timer_val = 0;
171
172 DB_PRINT("Write 0x%x, 0x%"HWADDR_PRIx"\n", value, offset);
173
174 switch (offset) {
175 case TIM_CR1:
176 s->tim_cr1 = value;
177 return;
178 case TIM_CR2:
179 s->tim_cr2 = value;
180 return;
181 case TIM_SMCR:
182 s->tim_smcr = value;
183 return;
184 case TIM_DIER:
185 s->tim_dier = value;
186 return;
187 case TIM_SR:
188
189 s->tim_sr &= value;
190 return;
191 case TIM_EGR:
192 s->tim_egr = value;
193 if (s->tim_egr & TIM_EGR_UG) {
194 timer_val = 0;
195 break;
196 }
197 return;
198 case TIM_CCMR1:
199 s->tim_ccmr1 = value;
200 return;
201 case TIM_CCMR2:
202 s->tim_ccmr2 = value;
203 return;
204 case TIM_CCER:
205 s->tim_ccer = value;
206 return;
207 case TIM_PSC:
208 timer_val = stm32f2xx_ns_to_ticks(s, now) - s->tick_offset;
209 s->tim_psc = value;
210 value = timer_val;
211 break;
212 case TIM_CNT:
213 timer_val = value;
214 break;
215 case TIM_ARR:
216 s->tim_arr = value;
217 stm32f2xx_timer_set_alarm(s, now);
218 return;
219 case TIM_CCR1:
220 s->tim_ccr1 = value;
221 return;
222 case TIM_CCR2:
223 s->tim_ccr2 = value;
224 return;
225 case TIM_CCR3:
226 s->tim_ccr3 = value;
227 return;
228 case TIM_CCR4:
229 s->tim_ccr4 = value;
230 return;
231 case TIM_DCR:
232 s->tim_dcr = value;
233 return;
234 case TIM_DMAR:
235 s->tim_dmar = value;
236 return;
237 case TIM_OR:
238 s->tim_or = value;
239 return;
240 default:
241 qemu_log_mask(LOG_GUEST_ERROR,
242 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, offset);
243 return;
244 }
245
246
247
248
249 s->tick_offset = stm32f2xx_ns_to_ticks(s, now) - timer_val;
250 stm32f2xx_timer_set_alarm(s, now);
251}
252
253static const MemoryRegionOps stm32f2xx_timer_ops = {
254 .read = stm32f2xx_timer_read,
255 .write = stm32f2xx_timer_write,
256 .endianness = DEVICE_NATIVE_ENDIAN,
257};
258
259static const VMStateDescription vmstate_stm32f2xx_timer = {
260 .name = TYPE_STM32F2XX_TIMER,
261 .version_id = 1,
262 .minimum_version_id = 1,
263 .fields = (VMStateField[]) {
264 VMSTATE_INT64(tick_offset, STM32F2XXTimerState),
265 VMSTATE_UINT32(tim_cr1, STM32F2XXTimerState),
266 VMSTATE_UINT32(tim_cr2, STM32F2XXTimerState),
267 VMSTATE_UINT32(tim_smcr, STM32F2XXTimerState),
268 VMSTATE_UINT32(tim_dier, STM32F2XXTimerState),
269 VMSTATE_UINT32(tim_sr, STM32F2XXTimerState),
270 VMSTATE_UINT32(tim_egr, STM32F2XXTimerState),
271 VMSTATE_UINT32(tim_ccmr1, STM32F2XXTimerState),
272 VMSTATE_UINT32(tim_ccmr2, STM32F2XXTimerState),
273 VMSTATE_UINT32(tim_ccer, STM32F2XXTimerState),
274 VMSTATE_UINT32(tim_psc, STM32F2XXTimerState),
275 VMSTATE_UINT32(tim_arr, STM32F2XXTimerState),
276 VMSTATE_UINT32(tim_ccr1, STM32F2XXTimerState),
277 VMSTATE_UINT32(tim_ccr2, STM32F2XXTimerState),
278 VMSTATE_UINT32(tim_ccr3, STM32F2XXTimerState),
279 VMSTATE_UINT32(tim_ccr4, STM32F2XXTimerState),
280 VMSTATE_UINT32(tim_dcr, STM32F2XXTimerState),
281 VMSTATE_UINT32(tim_dmar, STM32F2XXTimerState),
282 VMSTATE_UINT32(tim_or, STM32F2XXTimerState),
283 VMSTATE_END_OF_LIST()
284 }
285};
286
287static Property stm32f2xx_timer_properties[] = {
288 DEFINE_PROP_UINT64("clock-frequency", struct STM32F2XXTimerState,
289 freq_hz, 1000000000),
290 DEFINE_PROP_END_OF_LIST(),
291};
292
293static void stm32f2xx_timer_init(Object *obj)
294{
295 STM32F2XXTimerState *s = STM32F2XXTIMER(obj);
296
297 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
298
299 memory_region_init_io(&s->iomem, obj, &stm32f2xx_timer_ops, s,
300 "stm32f2xx_timer", 0x4000);
301 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
302
303 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, stm32f2xx_timer_interrupt, s);
304}
305
306static void stm32f2xx_timer_class_init(ObjectClass *klass, void *data)
307{
308 DeviceClass *dc = DEVICE_CLASS(klass);
309
310 dc->reset = stm32f2xx_timer_reset;
311 dc->props = stm32f2xx_timer_properties;
312 dc->vmsd = &vmstate_stm32f2xx_timer;
313}
314
315static const TypeInfo stm32f2xx_timer_info = {
316 .name = TYPE_STM32F2XX_TIMER,
317 .parent = TYPE_SYS_BUS_DEVICE,
318 .instance_size = sizeof(STM32F2XXTimerState),
319 .instance_init = stm32f2xx_timer_init,
320 .class_init = stm32f2xx_timer_class_init,
321};
322
323static void stm32f2xx_timer_register_types(void)
324{
325 type_register_static(&stm32f2xx_timer_info);
326}
327
328type_init(stm32f2xx_timer_register_types)
329