qemu/hw/intc/arm_gic.c
<<
>>
Prefs
   1/*
   2 * ARM Generic/Distributed Interrupt Controller
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10/* This file contains implementation code for the RealView EB interrupt
  11 * controller, MPCore distributed interrupt controller and ARMv7-M
  12 * Nested Vectored Interrupt Controller.
  13 * It is compiled in two ways:
  14 *  (1) as a standalone file to produce a sysbus device which is a GIC
  15 *  that can be used on the realview board and as one of the builtin
  16 *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
  17 *  (2) by being directly #included into armv7m_nvic.c to produce the
  18 *  armv7m_nvic device.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "hw/sysbus.h"
  23#include "gic_internal.h"
  24#include "qapi/error.h"
  25#include "qom/cpu.h"
  26
  27//#define DEBUG_GIC
  28
  29#ifdef DEBUG_GIC
  30#define DPRINTF(fmt, ...) \
  31do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
  32#else
  33#define DPRINTF(fmt, ...) do {} while(0)
  34#endif
  35
  36static const uint8_t gic_id_11mpcore[] = {
  37    0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  38};
  39
  40static const uint8_t gic_id_gicv1[] = {
  41    0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  42};
  43
  44static const uint8_t gic_id_gicv2[] = {
  45    0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  46};
  47
  48static inline int gic_get_current_cpu(GICState *s)
  49{
  50    if (s->num_cpu > 1) {
  51        return current_cpu->cpu_index;
  52    }
  53    return 0;
  54}
  55
  56/* Return true if this GIC config has interrupt groups, which is
  57 * true if we're a GICv2, or a GICv1 with the security extensions.
  58 */
  59static inline bool gic_has_groups(GICState *s)
  60{
  61    return s->revision == 2 || s->security_extn;
  62}
  63
  64/* TODO: Many places that call this routine could be optimized.  */
  65/* Update interrupt status after enabled or pending bits have been changed.  */
  66void gic_update(GICState *s)
  67{
  68    int best_irq;
  69    int best_prio;
  70    int irq;
  71    int irq_level, fiq_level;
  72    int cpu;
  73    int cm;
  74
  75    for (cpu = 0; cpu < s->num_cpu; cpu++) {
  76        cm = 1 << cpu;
  77        s->current_pending[cpu] = 1023;
  78        if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
  79            || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
  80            qemu_irq_lower(s->parent_irq[cpu]);
  81            qemu_irq_lower(s->parent_fiq[cpu]);
  82            continue;
  83        }
  84        best_prio = 0x100;
  85        best_irq = 1023;
  86        for (irq = 0; irq < s->num_irq; irq++) {
  87            if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
  88                (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
  89                if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
  90                    best_prio = GIC_GET_PRIORITY(irq, cpu);
  91                    best_irq = irq;
  92                }
  93            }
  94        }
  95
  96        irq_level = fiq_level = 0;
  97
  98        if (best_prio < s->priority_mask[cpu]) {
  99            s->current_pending[cpu] = best_irq;
 100            if (best_prio < s->running_priority[cpu]) {
 101                int group = GIC_TEST_GROUP(best_irq, cm);
 102
 103                if (extract32(s->ctlr, group, 1) &&
 104                    extract32(s->cpu_ctlr[cpu], group, 1)) {
 105                    if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
 106                        DPRINTF("Raised pending FIQ %d (cpu %d)\n",
 107                                best_irq, cpu);
 108                        fiq_level = 1;
 109                    } else {
 110                        DPRINTF("Raised pending IRQ %d (cpu %d)\n",
 111                                best_irq, cpu);
 112                        irq_level = 1;
 113                    }
 114                }
 115            }
 116        }
 117
 118        qemu_set_irq(s->parent_irq[cpu], irq_level);
 119        qemu_set_irq(s->parent_fiq[cpu], fiq_level);
 120    }
 121}
 122
 123void gic_set_pending_private(GICState *s, int cpu, int irq)
 124{
 125    int cm = 1 << cpu;
 126
 127    if (gic_test_pending(s, irq, cm)) {
 128        return;
 129    }
 130
 131    DPRINTF("Set %d pending cpu %d\n", irq, cpu);
 132    GIC_SET_PENDING(irq, cm);
 133    gic_update(s);
 134}
 135
 136static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
 137                                 int cm, int target)
 138{
 139    if (level) {
 140        GIC_SET_LEVEL(irq, cm);
 141        if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
 142            DPRINTF("Set %d pending mask %x\n", irq, target);
 143            GIC_SET_PENDING(irq, target);
 144        }
 145    } else {
 146        GIC_CLEAR_LEVEL(irq, cm);
 147    }
 148}
 149
 150static void gic_set_irq_generic(GICState *s, int irq, int level,
 151                                int cm, int target)
 152{
 153    if (level) {
 154        GIC_SET_LEVEL(irq, cm);
 155        DPRINTF("Set %d pending mask %x\n", irq, target);
 156        if (GIC_TEST_EDGE_TRIGGER(irq)) {
 157            GIC_SET_PENDING(irq, target);
 158        }
 159    } else {
 160        GIC_CLEAR_LEVEL(irq, cm);
 161    }
 162}
 163
 164/* Process a change in an external IRQ input.  */
 165static void gic_set_irq(void *opaque, int irq, int level)
 166{
 167    /* Meaning of the 'irq' parameter:
 168     *  [0..N-1] : external interrupts
 169     *  [N..N+31] : PPI (internal) interrupts for CPU 0
 170     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 171     *  ...
 172     */
 173    GICState *s = (GICState *)opaque;
 174    int cm, target;
 175    if (irq < (s->num_irq - GIC_INTERNAL)) {
 176        /* The first external input line is internal interrupt 32.  */
 177        cm = ALL_CPU_MASK;
 178        irq += GIC_INTERNAL;
 179        target = GIC_TARGET(irq);
 180    } else {
 181        int cpu;
 182        irq -= (s->num_irq - GIC_INTERNAL);
 183        cpu = irq / GIC_INTERNAL;
 184        irq %= GIC_INTERNAL;
 185        cm = 1 << cpu;
 186        target = cm;
 187    }
 188
 189    assert(irq >= GIC_NR_SGIS);
 190
 191    if (level == GIC_TEST_LEVEL(irq, cm)) {
 192        return;
 193    }
 194
 195    if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 196        gic_set_irq_11mpcore(s, irq, level, cm, target);
 197    } else {
 198        gic_set_irq_generic(s, irq, level, cm, target);
 199    }
 200
 201    gic_update(s);
 202}
 203
 204static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
 205                                            MemTxAttrs attrs)
 206{
 207    uint16_t pending_irq = s->current_pending[cpu];
 208
 209    if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
 210        int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
 211        /* On a GIC without the security extensions, reading this register
 212         * behaves in the same way as a secure access to a GIC with them.
 213         */
 214        bool secure = !s->security_extn || attrs.secure;
 215
 216        if (group == 0 && !secure) {
 217            /* Group0 interrupts hidden from Non-secure access */
 218            return 1023;
 219        }
 220        if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
 221            /* Group1 interrupts only seen by Secure access if
 222             * AckCtl bit set.
 223             */
 224            return 1022;
 225        }
 226    }
 227    return pending_irq;
 228}
 229
 230static int gic_get_group_priority(GICState *s, int cpu, int irq)
 231{
 232    /* Return the group priority of the specified interrupt
 233     * (which is the top bits of its priority, with the number
 234     * of bits masked determined by the applicable binary point register).
 235     */
 236    int bpr;
 237    uint32_t mask;
 238
 239    if (gic_has_groups(s) &&
 240        !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
 241        GIC_TEST_GROUP(irq, (1 << cpu))) {
 242        bpr = s->abpr[cpu];
 243    } else {
 244        bpr = s->bpr[cpu];
 245    }
 246
 247    /* a BPR of 0 means the group priority bits are [7:1];
 248     * a BPR of 1 means they are [7:2], and so on down to
 249     * a BPR of 7 meaning no group priority bits at all.
 250     */
 251    mask = ~0U << ((bpr & 7) + 1);
 252
 253    return GIC_GET_PRIORITY(irq, cpu) & mask;
 254}
 255
 256static void gic_activate_irq(GICState *s, int cpu, int irq)
 257{
 258    /* Set the appropriate Active Priority Register bit for this IRQ,
 259     * and update the running priority.
 260     */
 261    int prio = gic_get_group_priority(s, cpu, irq);
 262    int preemption_level = prio >> (GIC_MIN_BPR + 1);
 263    int regno = preemption_level / 32;
 264    int bitno = preemption_level % 32;
 265
 266    if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
 267        s->nsapr[regno][cpu] |= (1 << bitno);
 268    } else {
 269        s->apr[regno][cpu] |= (1 << bitno);
 270    }
 271
 272    s->running_priority[cpu] = prio;
 273    GIC_SET_ACTIVE(irq, 1 << cpu);
 274}
 275
 276static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
 277{
 278    /* Recalculate the current running priority for this CPU based
 279     * on the set bits in the Active Priority Registers.
 280     */
 281    int i;
 282    for (i = 0; i < GIC_NR_APRS; i++) {
 283        uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
 284        if (!apr) {
 285            continue;
 286        }
 287        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 288    }
 289    return 0x100;
 290}
 291
 292static void gic_drop_prio(GICState *s, int cpu, int group)
 293{
 294    /* Drop the priority of the currently active interrupt in the
 295     * specified group.
 296     *
 297     * Note that we can guarantee (because of the requirement to nest
 298     * GICC_IAR reads [which activate an interrupt and raise priority]
 299     * with GICC_EOIR writes [which drop the priority for the interrupt])
 300     * that the interrupt we're being called for is the highest priority
 301     * active interrupt, meaning that it has the lowest set bit in the
 302     * APR registers.
 303     *
 304     * If the guest does not honour the ordering constraints then the
 305     * behaviour of the GIC is UNPREDICTABLE, which for us means that
 306     * the values of the APR registers might become incorrect and the
 307     * running priority will be wrong, so interrupts that should preempt
 308     * might not do so, and interrupts that should not preempt might do so.
 309     */
 310    int i;
 311
 312    for (i = 0; i < GIC_NR_APRS; i++) {
 313        uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
 314        if (!*papr) {
 315            continue;
 316        }
 317        /* Clear lowest set bit */
 318        *papr &= *papr - 1;
 319        break;
 320    }
 321
 322    s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
 323}
 324
 325uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
 326{
 327    int ret, irq, src;
 328    int cm = 1 << cpu;
 329
 330    /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
 331     * for the case where this GIC supports grouping and the pending interrupt
 332     * is in the wrong group.
 333     */
 334    irq = gic_get_current_pending_irq(s, cpu, attrs);
 335
 336    if (irq >= GIC_MAXIRQ) {
 337        DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
 338        return irq;
 339    }
 340
 341    if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
 342        DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
 343        return 1023;
 344    }
 345
 346    if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 347        /* Clear pending flags for both level and edge triggered interrupts.
 348         * Level triggered IRQs will be reasserted once they become inactive.
 349         */
 350        GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
 351        ret = irq;
 352    } else {
 353        if (irq < GIC_NR_SGIS) {
 354            /* Lookup the source CPU for the SGI and clear this in the
 355             * sgi_pending map.  Return the src and clear the overall pending
 356             * state on this CPU if the SGI is not pending from any CPUs.
 357             */
 358            assert(s->sgi_pending[irq][cpu] != 0);
 359            src = ctz32(s->sgi_pending[irq][cpu]);
 360            s->sgi_pending[irq][cpu] &= ~(1 << src);
 361            if (s->sgi_pending[irq][cpu] == 0) {
 362                GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
 363            }
 364            ret = irq | ((src & 0x7) << 10);
 365        } else {
 366            /* Clear pending state for both level and edge triggered
 367             * interrupts. (level triggered interrupts with an active line
 368             * remain pending, see gic_test_pending)
 369             */
 370            GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
 371            ret = irq;
 372        }
 373    }
 374
 375    gic_activate_irq(s, cpu, irq);
 376    gic_update(s);
 377    DPRINTF("ACK %d\n", irq);
 378    return ret;
 379}
 380
 381void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
 382                      MemTxAttrs attrs)
 383{
 384    if (s->security_extn && !attrs.secure) {
 385        if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
 386            return; /* Ignore Non-secure access of Group0 IRQ */
 387        }
 388        val = 0x80 | (val >> 1); /* Non-secure view */
 389    }
 390
 391    if (irq < GIC_INTERNAL) {
 392        s->priority1[irq][cpu] = val;
 393    } else {
 394        s->priority2[(irq) - GIC_INTERNAL] = val;
 395    }
 396}
 397
 398static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
 399                                 MemTxAttrs attrs)
 400{
 401    uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
 402
 403    if (s->security_extn && !attrs.secure) {
 404        if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
 405            return 0; /* Non-secure access cannot read priority of Group0 IRQ */
 406        }
 407        prio = (prio << 1) & 0xff; /* Non-secure view */
 408    }
 409    return prio;
 410}
 411
 412static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
 413                                  MemTxAttrs attrs)
 414{
 415    if (s->security_extn && !attrs.secure) {
 416        if (s->priority_mask[cpu] & 0x80) {
 417            /* Priority Mask in upper half */
 418            pmask = 0x80 | (pmask >> 1);
 419        } else {
 420            /* Non-secure write ignored if priority mask is in lower half */
 421            return;
 422        }
 423    }
 424    s->priority_mask[cpu] = pmask;
 425}
 426
 427static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
 428{
 429    uint32_t pmask = s->priority_mask[cpu];
 430
 431    if (s->security_extn && !attrs.secure) {
 432        if (pmask & 0x80) {
 433            /* Priority Mask in upper half, return Non-secure view */
 434            pmask = (pmask << 1) & 0xff;
 435        } else {
 436            /* Priority Mask in lower half, RAZ */
 437            pmask = 0;
 438        }
 439    }
 440    return pmask;
 441}
 442
 443static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
 444{
 445    uint32_t ret = s->cpu_ctlr[cpu];
 446
 447    if (s->security_extn && !attrs.secure) {
 448        /* Construct the NS banked view of GICC_CTLR from the correct
 449         * bits of the S banked view. We don't need to move the bypass
 450         * control bits because we don't implement that (IMPDEF) part
 451         * of the GIC architecture.
 452         */
 453        ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
 454    }
 455    return ret;
 456}
 457
 458static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
 459                                MemTxAttrs attrs)
 460{
 461    uint32_t mask;
 462
 463    if (s->security_extn && !attrs.secure) {
 464        /* The NS view can only write certain bits in the register;
 465         * the rest are unchanged
 466         */
 467        mask = GICC_CTLR_EN_GRP1;
 468        if (s->revision == 2) {
 469            mask |= GICC_CTLR_EOIMODE_NS;
 470        }
 471        s->cpu_ctlr[cpu] &= ~mask;
 472        s->cpu_ctlr[cpu] |= (value << 1) & mask;
 473    } else {
 474        if (s->revision == 2) {
 475            mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
 476        } else {
 477            mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
 478        }
 479        s->cpu_ctlr[cpu] = value & mask;
 480    }
 481    DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
 482            "Group1 Interrupts %sabled\n", cpu,
 483            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
 484            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
 485}
 486
 487static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
 488{
 489    if (s->security_extn && !attrs.secure) {
 490        if (s->running_priority[cpu] & 0x80) {
 491            /* Running priority in upper half of range: return the Non-secure
 492             * view of the priority.
 493             */
 494            return s->running_priority[cpu] << 1;
 495        } else {
 496            /* Running priority in lower half of range: RAZ */
 497            return 0;
 498        }
 499    } else {
 500        return s->running_priority[cpu];
 501    }
 502}
 503
 504/* Return true if we should split priority drop and interrupt deactivation,
 505 * ie whether the relevant EOIMode bit is set.
 506 */
 507static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
 508{
 509    if (s->revision != 2) {
 510        /* Before GICv2 prio-drop and deactivate are not separable */
 511        return false;
 512    }
 513    if (s->security_extn && !attrs.secure) {
 514        return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
 515    }
 516    return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
 517}
 518
 519static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 520{
 521    int cm = 1 << cpu;
 522    int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
 523
 524    if (!gic_eoi_split(s, cpu, attrs)) {
 525        /* This is UNPREDICTABLE; we choose to ignore it */
 526        qemu_log_mask(LOG_GUEST_ERROR,
 527                      "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
 528        return;
 529    }
 530
 531    if (s->security_extn && !attrs.secure && !group) {
 532        DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
 533        return;
 534    }
 535
 536    GIC_CLEAR_ACTIVE(irq, cm);
 537}
 538
 539void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 540{
 541    int cm = 1 << cpu;
 542    int group;
 543
 544    DPRINTF("EOI %d\n", irq);
 545    if (irq >= s->num_irq) {
 546        /* This handles two cases:
 547         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 548         * to the GICC_EOIR, the GIC ignores that write.
 549         * 2. If software writes the number of a non-existent interrupt
 550         * this must be a subcase of "value written does not match the last
 551         * valid interrupt value read from the Interrupt Acknowledge
 552         * register" and so this is UNPREDICTABLE. We choose to ignore it.
 553         */
 554        return;
 555    }
 556    if (s->running_priority[cpu] == 0x100) {
 557        return; /* No active IRQ.  */
 558    }
 559
 560    if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 561        /* Mark level triggered interrupts as pending if they are still
 562           raised.  */
 563        if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
 564            && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
 565            DPRINTF("Set %d pending mask %x\n", irq, cm);
 566            GIC_SET_PENDING(irq, cm);
 567        }
 568    }
 569
 570    group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
 571
 572    if (s->security_extn && !attrs.secure && !group) {
 573        DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
 574        return;
 575    }
 576
 577    /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
 578     * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
 579     * i.e. go ahead and complete the irq anyway.
 580     */
 581
 582    gic_drop_prio(s, cpu, group);
 583
 584    /* In GICv2 the guest can choose to split priority-drop and deactivate */
 585    if (!gic_eoi_split(s, cpu, attrs)) {
 586        GIC_CLEAR_ACTIVE(irq, cm);
 587    }
 588    gic_update(s);
 589}
 590
 591static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
 592{
 593    GICState *s = (GICState *)opaque;
 594    uint32_t res;
 595    int irq;
 596    int i;
 597    int cpu;
 598    int cm;
 599    int mask;
 600
 601    cpu = gic_get_current_cpu(s);
 602    cm = 1 << cpu;
 603    if (offset < 0x100) {
 604        if (offset == 0) {      /* GICD_CTLR */
 605            if (s->security_extn && !attrs.secure) {
 606                /* The NS bank of this register is just an alias of the
 607                 * EnableGrp1 bit in the S bank version.
 608                 */
 609                return extract32(s->ctlr, 1, 1);
 610            } else {
 611                return s->ctlr;
 612            }
 613        }
 614        if (offset == 4)
 615            /* Interrupt Controller Type Register */
 616            return ((s->num_irq / 32) - 1)
 617                    | ((s->num_cpu - 1) << 5)
 618                    | (s->security_extn << 10);
 619        if (offset < 0x08)
 620            return 0;
 621        if (offset >= 0x80) {
 622            /* Interrupt Group Registers: these RAZ/WI if this is an NS
 623             * access to a GIC with the security extensions, or if the GIC
 624             * doesn't have groups at all.
 625             */
 626            res = 0;
 627            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 628                /* Every byte offset holds 8 group status bits */
 629                irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
 630                if (irq >= s->num_irq) {
 631                    goto bad_reg;
 632                }
 633                for (i = 0; i < 8; i++) {
 634                    if (GIC_TEST_GROUP(irq + i, cm)) {
 635                        res |= (1 << i);
 636                    }
 637                }
 638            }
 639            return res;
 640        }
 641        goto bad_reg;
 642    } else if (offset < 0x200) {
 643        /* Interrupt Set/Clear Enable.  */
 644        if (offset < 0x180)
 645            irq = (offset - 0x100) * 8;
 646        else
 647            irq = (offset - 0x180) * 8;
 648        irq += GIC_BASE_IRQ;
 649        if (irq >= s->num_irq)
 650            goto bad_reg;
 651        res = 0;
 652        for (i = 0; i < 8; i++) {
 653            if (GIC_TEST_ENABLED(irq + i, cm)) {
 654                res |= (1 << i);
 655            }
 656        }
 657    } else if (offset < 0x300) {
 658        /* Interrupt Set/Clear Pending.  */
 659        if (offset < 0x280)
 660            irq = (offset - 0x200) * 8;
 661        else
 662            irq = (offset - 0x280) * 8;
 663        irq += GIC_BASE_IRQ;
 664        if (irq >= s->num_irq)
 665            goto bad_reg;
 666        res = 0;
 667        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
 668        for (i = 0; i < 8; i++) {
 669            if (gic_test_pending(s, irq + i, mask)) {
 670                res |= (1 << i);
 671            }
 672        }
 673    } else if (offset < 0x400) {
 674        /* Interrupt Active.  */
 675        irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
 676        if (irq >= s->num_irq)
 677            goto bad_reg;
 678        res = 0;
 679        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
 680        for (i = 0; i < 8; i++) {
 681            if (GIC_TEST_ACTIVE(irq + i, mask)) {
 682                res |= (1 << i);
 683            }
 684        }
 685    } else if (offset < 0x800) {
 686        /* Interrupt Priority.  */
 687        irq = (offset - 0x400) + GIC_BASE_IRQ;
 688        if (irq >= s->num_irq)
 689            goto bad_reg;
 690        res = gic_get_priority(s, cpu, irq, attrs);
 691    } else if (offset < 0xc00) {
 692        /* Interrupt CPU Target.  */
 693        if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
 694            /* For uniprocessor GICs these RAZ/WI */
 695            res = 0;
 696        } else {
 697            irq = (offset - 0x800) + GIC_BASE_IRQ;
 698            if (irq >= s->num_irq) {
 699                goto bad_reg;
 700            }
 701            if (irq >= 29 && irq <= 31) {
 702                res = cm;
 703            } else {
 704                res = GIC_TARGET(irq);
 705            }
 706        }
 707    } else if (offset < 0xf00) {
 708        /* Interrupt Configuration.  */
 709        irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
 710        if (irq >= s->num_irq)
 711            goto bad_reg;
 712        res = 0;
 713        for (i = 0; i < 4; i++) {
 714            if (GIC_TEST_MODEL(irq + i))
 715                res |= (1 << (i * 2));
 716            if (GIC_TEST_EDGE_TRIGGER(irq + i))
 717                res |= (2 << (i * 2));
 718        }
 719    } else if (offset < 0xf10) {
 720        goto bad_reg;
 721    } else if (offset < 0xf30) {
 722        if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 723            goto bad_reg;
 724        }
 725
 726        if (offset < 0xf20) {
 727            /* GICD_CPENDSGIRn */
 728            irq = (offset - 0xf10);
 729        } else {
 730            irq = (offset - 0xf20);
 731            /* GICD_SPENDSGIRn */
 732        }
 733
 734        res = s->sgi_pending[irq][cpu];
 735    } else if (offset < 0xfd0) {
 736        goto bad_reg;
 737    } else if (offset < 0x1000) {
 738        if (offset & 3) {
 739            res = 0;
 740        } else {
 741            switch (s->revision) {
 742            case REV_11MPCORE:
 743                res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
 744                break;
 745            case 1:
 746                res = gic_id_gicv1[(offset - 0xfd0) >> 2];
 747                break;
 748            case 2:
 749                res = gic_id_gicv2[(offset - 0xfd0) >> 2];
 750                break;
 751            case REV_NVIC:
 752                /* Shouldn't be able to get here */
 753                abort();
 754            default:
 755                res = 0;
 756            }
 757        }
 758    } else {
 759        g_assert_not_reached();
 760    }
 761    return res;
 762bad_reg:
 763    qemu_log_mask(LOG_GUEST_ERROR,
 764                  "gic_dist_readb: Bad offset %x\n", (int)offset);
 765    return 0;
 766}
 767
 768static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
 769                                 unsigned size, MemTxAttrs attrs)
 770{
 771    switch (size) {
 772    case 1:
 773        *data = gic_dist_readb(opaque, offset, attrs);
 774        return MEMTX_OK;
 775    case 2:
 776        *data = gic_dist_readb(opaque, offset, attrs);
 777        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
 778        return MEMTX_OK;
 779    case 4:
 780        *data = gic_dist_readb(opaque, offset, attrs);
 781        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
 782        *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
 783        *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
 784        return MEMTX_OK;
 785    default:
 786        return MEMTX_ERROR;
 787    }
 788}
 789
 790static void gic_dist_writeb(void *opaque, hwaddr offset,
 791                            uint32_t value, MemTxAttrs attrs)
 792{
 793    GICState *s = (GICState *)opaque;
 794    int irq;
 795    int i;
 796    int cpu;
 797
 798    cpu = gic_get_current_cpu(s);
 799    if (offset < 0x100) {
 800        if (offset == 0) {
 801            if (s->security_extn && !attrs.secure) {
 802                /* NS version is just an alias of the S version's bit 1 */
 803                s->ctlr = deposit32(s->ctlr, 1, 1, value);
 804            } else if (gic_has_groups(s)) {
 805                s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
 806            } else {
 807                s->ctlr = value & GICD_CTLR_EN_GRP0;
 808            }
 809            DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
 810                    s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
 811                    s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
 812        } else if (offset < 4) {
 813            /* ignored.  */
 814        } else if (offset >= 0x80) {
 815            /* Interrupt Group Registers: RAZ/WI for NS access to secure
 816             * GIC, or for GICs without groups.
 817             */
 818            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 819                /* Every byte offset holds 8 group status bits */
 820                irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
 821                if (irq >= s->num_irq) {
 822                    goto bad_reg;
 823                }
 824                for (i = 0; i < 8; i++) {
 825                    /* Group bits are banked for private interrupts */
 826                    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
 827                    if (value & (1 << i)) {
 828                        /* Group1 (Non-secure) */
 829                        GIC_SET_GROUP(irq + i, cm);
 830                    } else {
 831                        /* Group0 (Secure) */
 832                        GIC_CLEAR_GROUP(irq + i, cm);
 833                    }
 834                }
 835            }
 836        } else {
 837            goto bad_reg;
 838        }
 839    } else if (offset < 0x180) {
 840        /* Interrupt Set Enable.  */
 841        irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
 842        if (irq >= s->num_irq)
 843            goto bad_reg;
 844        if (irq < GIC_NR_SGIS) {
 845            value = 0xff;
 846        }
 847
 848        for (i = 0; i < 8; i++) {
 849            if (value & (1 << i)) {
 850                int mask =
 851                    (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
 852                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
 853
 854                if (!GIC_TEST_ENABLED(irq + i, cm)) {
 855                    DPRINTF("Enabled IRQ %d\n", irq + i);
 856                }
 857                GIC_SET_ENABLED(irq + i, cm);
 858                /* If a raised level triggered IRQ enabled then mark
 859                   is as pending.  */
 860                if (GIC_TEST_LEVEL(irq + i, mask)
 861                        && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
 862                    DPRINTF("Set %d pending mask %x\n", irq + i, mask);
 863                    GIC_SET_PENDING(irq + i, mask);
 864                }
 865            }
 866        }
 867    } else if (offset < 0x200) {
 868        /* Interrupt Clear Enable.  */
 869        irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
 870        if (irq >= s->num_irq)
 871            goto bad_reg;
 872        if (irq < GIC_NR_SGIS) {
 873            value = 0;
 874        }
 875
 876        for (i = 0; i < 8; i++) {
 877            if (value & (1 << i)) {
 878                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
 879
 880                if (GIC_TEST_ENABLED(irq + i, cm)) {
 881                    DPRINTF("Disabled IRQ %d\n", irq + i);
 882                }
 883                GIC_CLEAR_ENABLED(irq + i, cm);
 884            }
 885        }
 886    } else if (offset < 0x280) {
 887        /* Interrupt Set Pending.  */
 888        irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
 889        if (irq >= s->num_irq)
 890            goto bad_reg;
 891        if (irq < GIC_NR_SGIS) {
 892            value = 0;
 893        }
 894
 895        for (i = 0; i < 8; i++) {
 896            if (value & (1 << i)) {
 897                GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
 898            }
 899        }
 900    } else if (offset < 0x300) {
 901        /* Interrupt Clear Pending.  */
 902        irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
 903        if (irq >= s->num_irq)
 904            goto bad_reg;
 905        if (irq < GIC_NR_SGIS) {
 906            value = 0;
 907        }
 908
 909        for (i = 0; i < 8; i++) {
 910            /* ??? This currently clears the pending bit for all CPUs, even
 911               for per-CPU interrupts.  It's unclear whether this is the
 912               corect behavior.  */
 913            if (value & (1 << i)) {
 914                GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
 915            }
 916        }
 917    } else if (offset < 0x400) {
 918        /* Interrupt Active.  */
 919        goto bad_reg;
 920    } else if (offset < 0x800) {
 921        /* Interrupt Priority.  */
 922        irq = (offset - 0x400) + GIC_BASE_IRQ;
 923        if (irq >= s->num_irq)
 924            goto bad_reg;
 925        gic_set_priority(s, cpu, irq, value, attrs);
 926    } else if (offset < 0xc00) {
 927        /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
 928         * annoying exception of the 11MPCore's GIC.
 929         */
 930        if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
 931            irq = (offset - 0x800) + GIC_BASE_IRQ;
 932            if (irq >= s->num_irq) {
 933                goto bad_reg;
 934            }
 935            if (irq < 29) {
 936                value = 0;
 937            } else if (irq < GIC_INTERNAL) {
 938                value = ALL_CPU_MASK;
 939            }
 940            s->irq_target[irq] = value & ALL_CPU_MASK;
 941        }
 942    } else if (offset < 0xf00) {
 943        /* Interrupt Configuration.  */
 944        irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
 945        if (irq >= s->num_irq)
 946            goto bad_reg;
 947        if (irq < GIC_NR_SGIS)
 948            value |= 0xaa;
 949        for (i = 0; i < 4; i++) {
 950            if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 951                if (value & (1 << (i * 2))) {
 952                    GIC_SET_MODEL(irq + i);
 953                } else {
 954                    GIC_CLEAR_MODEL(irq + i);
 955                }
 956            }
 957            if (value & (2 << (i * 2))) {
 958                GIC_SET_EDGE_TRIGGER(irq + i);
 959            } else {
 960                GIC_CLEAR_EDGE_TRIGGER(irq + i);
 961            }
 962        }
 963    } else if (offset < 0xf10) {
 964        /* 0xf00 is only handled for 32-bit writes.  */
 965        goto bad_reg;
 966    } else if (offset < 0xf20) {
 967        /* GICD_CPENDSGIRn */
 968        if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 969            goto bad_reg;
 970        }
 971        irq = (offset - 0xf10);
 972
 973        s->sgi_pending[irq][cpu] &= ~value;
 974        if (s->sgi_pending[irq][cpu] == 0) {
 975            GIC_CLEAR_PENDING(irq, 1 << cpu);
 976        }
 977    } else if (offset < 0xf30) {
 978        /* GICD_SPENDSGIRn */
 979        if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 980            goto bad_reg;
 981        }
 982        irq = (offset - 0xf20);
 983
 984        GIC_SET_PENDING(irq, 1 << cpu);
 985        s->sgi_pending[irq][cpu] |= value;
 986    } else {
 987        goto bad_reg;
 988    }
 989    gic_update(s);
 990    return;
 991bad_reg:
 992    qemu_log_mask(LOG_GUEST_ERROR,
 993                  "gic_dist_writeb: Bad offset %x\n", (int)offset);
 994}
 995
 996static void gic_dist_writew(void *opaque, hwaddr offset,
 997                            uint32_t value, MemTxAttrs attrs)
 998{
 999    gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1000    gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1001}
1002
1003static void gic_dist_writel(void *opaque, hwaddr offset,
1004                            uint32_t value, MemTxAttrs attrs)
1005{
1006    GICState *s = (GICState *)opaque;
1007    if (offset == 0xf00) {
1008        int cpu;
1009        int irq;
1010        int mask;
1011        int target_cpu;
1012
1013        cpu = gic_get_current_cpu(s);
1014        irq = value & 0x3ff;
1015        switch ((value >> 24) & 3) {
1016        case 0:
1017            mask = (value >> 16) & ALL_CPU_MASK;
1018            break;
1019        case 1:
1020            mask = ALL_CPU_MASK ^ (1 << cpu);
1021            break;
1022        case 2:
1023            mask = 1 << cpu;
1024            break;
1025        default:
1026            DPRINTF("Bad Soft Int target filter\n");
1027            mask = ALL_CPU_MASK;
1028            break;
1029        }
1030        GIC_SET_PENDING(irq, mask);
1031        target_cpu = ctz32(mask);
1032        while (target_cpu < GIC_NCPU) {
1033            s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1034            mask &= ~(1 << target_cpu);
1035            target_cpu = ctz32(mask);
1036        }
1037        gic_update(s);
1038        return;
1039    }
1040    gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1041    gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1042}
1043
1044static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1045                                  unsigned size, MemTxAttrs attrs)
1046{
1047    switch (size) {
1048    case 1:
1049        gic_dist_writeb(opaque, offset, data, attrs);
1050        return MEMTX_OK;
1051    case 2:
1052        gic_dist_writew(opaque, offset, data, attrs);
1053        return MEMTX_OK;
1054    case 4:
1055        gic_dist_writel(opaque, offset, data, attrs);
1056        return MEMTX_OK;
1057    default:
1058        return MEMTX_ERROR;
1059    }
1060}
1061
1062static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1063{
1064    /* Return the Nonsecure view of GICC_APR<regno>. This is the
1065     * second half of GICC_NSAPR.
1066     */
1067    switch (GIC_MIN_BPR) {
1068    case 0:
1069        if (regno < 2) {
1070            return s->nsapr[regno + 2][cpu];
1071        }
1072        break;
1073    case 1:
1074        if (regno == 0) {
1075            return s->nsapr[regno + 1][cpu];
1076        }
1077        break;
1078    case 2:
1079        if (regno == 0) {
1080            return extract32(s->nsapr[0][cpu], 16, 16);
1081        }
1082        break;
1083    case 3:
1084        if (regno == 0) {
1085            return extract32(s->nsapr[0][cpu], 8, 8);
1086        }
1087        break;
1088    default:
1089        g_assert_not_reached();
1090    }
1091    return 0;
1092}
1093
1094static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1095                                         uint32_t value)
1096{
1097    /* Write the Nonsecure view of GICC_APR<regno>. */
1098    switch (GIC_MIN_BPR) {
1099    case 0:
1100        if (regno < 2) {
1101            s->nsapr[regno + 2][cpu] = value;
1102        }
1103        break;
1104    case 1:
1105        if (regno == 0) {
1106            s->nsapr[regno + 1][cpu] = value;
1107        }
1108        break;
1109    case 2:
1110        if (regno == 0) {
1111            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1112        }
1113        break;
1114    case 3:
1115        if (regno == 0) {
1116            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1117        }
1118        break;
1119    default:
1120        g_assert_not_reached();
1121    }
1122}
1123
1124static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1125                                uint64_t *data, MemTxAttrs attrs)
1126{
1127    switch (offset) {
1128    case 0x00: /* Control */
1129        *data = gic_get_cpu_control(s, cpu, attrs);
1130        break;
1131    case 0x04: /* Priority mask */
1132        *data = gic_get_priority_mask(s, cpu, attrs);
1133        break;
1134    case 0x08: /* Binary Point */
1135        if (s->security_extn && !attrs.secure) {
1136            /* BPR is banked. Non-secure copy stored in ABPR. */
1137            *data = s->abpr[cpu];
1138        } else {
1139            *data = s->bpr[cpu];
1140        }
1141        break;
1142    case 0x0c: /* Acknowledge */
1143        *data = gic_acknowledge_irq(s, cpu, attrs);
1144        break;
1145    case 0x14: /* Running Priority */
1146        *data = gic_get_running_priority(s, cpu, attrs);
1147        break;
1148    case 0x18: /* Highest Pending Interrupt */
1149        *data = gic_get_current_pending_irq(s, cpu, attrs);
1150        break;
1151    case 0x1c: /* Aliased Binary Point */
1152        /* GIC v2, no security: ABPR
1153         * GIC v1, no security: not implemented (RAZ/WI)
1154         * With security extensions, secure access: ABPR (alias of NS BPR)
1155         * With security extensions, nonsecure access: RAZ/WI
1156         */
1157        if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1158            *data = 0;
1159        } else {
1160            *data = s->abpr[cpu];
1161        }
1162        break;
1163    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1164    {
1165        int regno = (offset - 0xd0) / 4;
1166
1167        if (regno >= GIC_NR_APRS || s->revision != 2) {
1168            *data = 0;
1169        } else if (s->security_extn && !attrs.secure) {
1170            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1171            *data = gic_apr_ns_view(s, regno, cpu);
1172        } else {
1173            *data = s->apr[regno][cpu];
1174        }
1175        break;
1176    }
1177    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1178    {
1179        int regno = (offset - 0xe0) / 4;
1180
1181        if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1182            (s->security_extn && !attrs.secure)) {
1183            *data = 0;
1184        } else {
1185            *data = s->nsapr[regno][cpu];
1186        }
1187        break;
1188    }
1189    default:
1190        qemu_log_mask(LOG_GUEST_ERROR,
1191                      "gic_cpu_read: Bad offset %x\n", (int)offset);
1192        return MEMTX_ERROR;
1193    }
1194    return MEMTX_OK;
1195}
1196
1197static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1198                                 uint32_t value, MemTxAttrs attrs)
1199{
1200    switch (offset) {
1201    case 0x00: /* Control */
1202        gic_set_cpu_control(s, cpu, value, attrs);
1203        break;
1204    case 0x04: /* Priority mask */
1205        gic_set_priority_mask(s, cpu, value, attrs);
1206        break;
1207    case 0x08: /* Binary Point */
1208        if (s->security_extn && !attrs.secure) {
1209            s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1210        } else {
1211            s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1212        }
1213        break;
1214    case 0x10: /* End Of Interrupt */
1215        gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1216        return MEMTX_OK;
1217    case 0x1c: /* Aliased Binary Point */
1218        if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1219            /* unimplemented, or NS access: RAZ/WI */
1220            return MEMTX_OK;
1221        } else {
1222            s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1223        }
1224        break;
1225    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1226    {
1227        int regno = (offset - 0xd0) / 4;
1228
1229        if (regno >= GIC_NR_APRS || s->revision != 2) {
1230            return MEMTX_OK;
1231        }
1232        if (s->security_extn && !attrs.secure) {
1233            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1234            gic_apr_write_ns_view(s, regno, cpu, value);
1235        } else {
1236            s->apr[regno][cpu] = value;
1237        }
1238        break;
1239    }
1240    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1241    {
1242        int regno = (offset - 0xe0) / 4;
1243
1244        if (regno >= GIC_NR_APRS || s->revision != 2) {
1245            return MEMTX_OK;
1246        }
1247        if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1248            return MEMTX_OK;
1249        }
1250        s->nsapr[regno][cpu] = value;
1251        break;
1252    }
1253    case 0x1000:
1254        /* GICC_DIR */
1255        gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1256        break;
1257    default:
1258        qemu_log_mask(LOG_GUEST_ERROR,
1259                      "gic_cpu_write: Bad offset %x\n", (int)offset);
1260        return MEMTX_ERROR;
1261    }
1262    gic_update(s);
1263    return MEMTX_OK;
1264}
1265
1266/* Wrappers to read/write the GIC CPU interface for the current CPU */
1267static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1268                                    unsigned size, MemTxAttrs attrs)
1269{
1270    GICState *s = (GICState *)opaque;
1271    return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1272}
1273
1274static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1275                                     uint64_t value, unsigned size,
1276                                     MemTxAttrs attrs)
1277{
1278    GICState *s = (GICState *)opaque;
1279    return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1280}
1281
1282/* Wrappers to read/write the GIC CPU interface for a specific CPU.
1283 * These just decode the opaque pointer into GICState* + cpu id.
1284 */
1285static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1286                                   unsigned size, MemTxAttrs attrs)
1287{
1288    GICState **backref = (GICState **)opaque;
1289    GICState *s = *backref;
1290    int id = (backref - s->backref);
1291    return gic_cpu_read(s, id, addr, data, attrs);
1292}
1293
1294static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1295                                    uint64_t value, unsigned size,
1296                                    MemTxAttrs attrs)
1297{
1298    GICState **backref = (GICState **)opaque;
1299    GICState *s = *backref;
1300    int id = (backref - s->backref);
1301    return gic_cpu_write(s, id, addr, value, attrs);
1302}
1303
1304static const MemoryRegionOps gic_ops[2] = {
1305    {
1306        .read_with_attrs = gic_dist_read,
1307        .write_with_attrs = gic_dist_write,
1308        .endianness = DEVICE_NATIVE_ENDIAN,
1309    },
1310    {
1311        .read_with_attrs = gic_thiscpu_read,
1312        .write_with_attrs = gic_thiscpu_write,
1313        .endianness = DEVICE_NATIVE_ENDIAN,
1314    }
1315};
1316
1317static const MemoryRegionOps gic_cpu_ops = {
1318    .read_with_attrs = gic_do_cpu_read,
1319    .write_with_attrs = gic_do_cpu_write,
1320    .endianness = DEVICE_NATIVE_ENDIAN,
1321};
1322
1323/* This function is used by nvic model */
1324void gic_init_irqs_and_distributor(GICState *s)
1325{
1326    gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1327}
1328
1329static void arm_gic_realize(DeviceState *dev, Error **errp)
1330{
1331    /* Device instance realize function for the GIC sysbus device */
1332    int i;
1333    GICState *s = ARM_GIC(dev);
1334    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1335    ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1336    Error *local_err = NULL;
1337
1338    agc->parent_realize(dev, &local_err);
1339    if (local_err) {
1340        error_propagate(errp, local_err);
1341        return;
1342    }
1343
1344    /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1345    gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1346
1347    /* Extra core-specific regions for the CPU interfaces. This is
1348     * necessary for "franken-GIC" implementations, for example on
1349     * Exynos 4.
1350     * NB that the memory region size of 0x100 applies for the 11MPCore
1351     * and also cores following the GIC v1 spec (ie A9).
1352     * GIC v2 defines a larger memory region (0x1000) so this will need
1353     * to be extended when we implement A15.
1354     */
1355    for (i = 0; i < s->num_cpu; i++) {
1356        s->backref[i] = s;
1357        memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1358                              &s->backref[i], "gic_cpu", 0x100);
1359        sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1360    }
1361}
1362
1363static void arm_gic_class_init(ObjectClass *klass, void *data)
1364{
1365    DeviceClass *dc = DEVICE_CLASS(klass);
1366    ARMGICClass *agc = ARM_GIC_CLASS(klass);
1367
1368    agc->parent_realize = dc->realize;
1369    dc->realize = arm_gic_realize;
1370}
1371
1372static const TypeInfo arm_gic_info = {
1373    .name = TYPE_ARM_GIC,
1374    .parent = TYPE_ARM_GIC_COMMON,
1375    .instance_size = sizeof(GICState),
1376    .class_init = arm_gic_class_init,
1377    .class_size = sizeof(ARMGICClass),
1378};
1379
1380static void arm_gic_register_types(void)
1381{
1382    type_register_static(&arm_gic_info);
1383}
1384
1385type_init(arm_gic_register_types)
1386