qemu/hw/timer/arm_mptimer.c
<<
>>
Prefs
   1/*
   2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Copyright (c) 2011 Linaro Limited
   6 * Written by Paul Brook, Peter Maydell
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "hw/timer/arm_mptimer.h"
  24#include "qapi/error.h"
  25#include "qemu/timer.h"
  26#include "qom/cpu.h"
  27
  28/* This device implements the per-cpu private timer and watchdog block
  29 * which is used in both the ARM11MPCore and Cortex-A9MP.
  30 */
  31
  32static inline int get_current_cpu(ARMMPTimerState *s)
  33{
  34    if (current_cpu->cpu_index >= s->num_cpu) {
  35        hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
  36                 s->num_cpu, current_cpu->cpu_index);
  37    }
  38    return current_cpu->cpu_index;
  39}
  40
  41static inline void timerblock_update_irq(TimerBlock *tb)
  42{
  43    qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
  44}
  45
  46/* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
  47static inline uint32_t timerblock_scale(TimerBlock *tb)
  48{
  49    return (((tb->control >> 8) & 0xff) + 1) * 10;
  50}
  51
  52static void timerblock_reload(TimerBlock *tb, int restart)
  53{
  54    if (tb->count == 0) {
  55        return;
  56    }
  57    if (restart) {
  58        tb->tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  59    }
  60    tb->tick += (int64_t)tb->count * timerblock_scale(tb);
  61    timer_mod(tb->timer, tb->tick);
  62}
  63
  64static void timerblock_tick(void *opaque)
  65{
  66    TimerBlock *tb = (TimerBlock *)opaque;
  67    tb->status = 1;
  68    if (tb->control & 2) {
  69        tb->count = tb->load;
  70        timerblock_reload(tb, 0);
  71    } else {
  72        tb->count = 0;
  73    }
  74    timerblock_update_irq(tb);
  75}
  76
  77static uint64_t timerblock_read(void *opaque, hwaddr addr,
  78                                unsigned size)
  79{
  80    TimerBlock *tb = (TimerBlock *)opaque;
  81    int64_t val;
  82    switch (addr) {
  83    case 0: /* Load */
  84        return tb->load;
  85    case 4: /* Counter.  */
  86        if (((tb->control & 1) == 0) || (tb->count == 0)) {
  87            return 0;
  88        }
  89        /* Slow and ugly, but hopefully won't happen too often.  */
  90        val = tb->tick - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  91        val /= timerblock_scale(tb);
  92        if (val < 0) {
  93            val = 0;
  94        }
  95        return val;
  96    case 8: /* Control.  */
  97        return tb->control;
  98    case 12: /* Interrupt status.  */
  99        return tb->status;
 100    default:
 101        return 0;
 102    }
 103}
 104
 105static void timerblock_write(void *opaque, hwaddr addr,
 106                             uint64_t value, unsigned size)
 107{
 108    TimerBlock *tb = (TimerBlock *)opaque;
 109    int64_t old;
 110    switch (addr) {
 111    case 0: /* Load */
 112        tb->load = value;
 113        /* Fall through.  */
 114    case 4: /* Counter.  */
 115        if ((tb->control & 1) && tb->count) {
 116            /* Cancel the previous timer.  */
 117            timer_del(tb->timer);
 118        }
 119        tb->count = value;
 120        if (tb->control & 1) {
 121            timerblock_reload(tb, 1);
 122        }
 123        break;
 124    case 8: /* Control.  */
 125        old = tb->control;
 126        tb->control = value;
 127        if (value & 1) {
 128            if ((old & 1) && (tb->count != 0)) {
 129                /* Do nothing if timer is ticking right now.  */
 130                break;
 131            }
 132            if (tb->control & 2) {
 133                tb->count = tb->load;
 134            }
 135            timerblock_reload(tb, 1);
 136        } else if (old & 1) {
 137            /* Shutdown the timer.  */
 138            timer_del(tb->timer);
 139        }
 140        break;
 141    case 12: /* Interrupt status.  */
 142        tb->status &= ~value;
 143        timerblock_update_irq(tb);
 144        break;
 145    }
 146}
 147
 148/* Wrapper functions to implement the "read timer/watchdog for
 149 * the current CPU" memory regions.
 150 */
 151static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
 152                                   unsigned size)
 153{
 154    ARMMPTimerState *s = (ARMMPTimerState *)opaque;
 155    int id = get_current_cpu(s);
 156    return timerblock_read(&s->timerblock[id], addr, size);
 157}
 158
 159static void arm_thistimer_write(void *opaque, hwaddr addr,
 160                                uint64_t value, unsigned size)
 161{
 162    ARMMPTimerState *s = (ARMMPTimerState *)opaque;
 163    int id = get_current_cpu(s);
 164    timerblock_write(&s->timerblock[id], addr, value, size);
 165}
 166
 167static const MemoryRegionOps arm_thistimer_ops = {
 168    .read = arm_thistimer_read,
 169    .write = arm_thistimer_write,
 170    .valid = {
 171        .min_access_size = 4,
 172        .max_access_size = 4,
 173    },
 174    .endianness = DEVICE_NATIVE_ENDIAN,
 175};
 176
 177static const MemoryRegionOps timerblock_ops = {
 178    .read = timerblock_read,
 179    .write = timerblock_write,
 180    .valid = {
 181        .min_access_size = 4,
 182        .max_access_size = 4,
 183    },
 184    .endianness = DEVICE_NATIVE_ENDIAN,
 185};
 186
 187static void timerblock_reset(TimerBlock *tb)
 188{
 189    tb->count = 0;
 190    tb->load = 0;
 191    tb->control = 0;
 192    tb->status = 0;
 193    tb->tick = 0;
 194    if (tb->timer) {
 195        timer_del(tb->timer);
 196    }
 197}
 198
 199static void arm_mptimer_reset(DeviceState *dev)
 200{
 201    ARMMPTimerState *s = ARM_MPTIMER(dev);
 202    int i;
 203
 204    for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
 205        timerblock_reset(&s->timerblock[i]);
 206    }
 207}
 208
 209static void arm_mptimer_init(Object *obj)
 210{
 211    ARMMPTimerState *s = ARM_MPTIMER(obj);
 212
 213    memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
 214                          "arm_mptimer_timer", 0x20);
 215    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
 216}
 217
 218static void arm_mptimer_realize(DeviceState *dev, Error **errp)
 219{
 220    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 221    ARMMPTimerState *s = ARM_MPTIMER(dev);
 222    int i;
 223
 224    if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
 225        error_setg(errp, "num-cpu must be between 1 and %d",
 226                   ARM_MPTIMER_MAX_CPUS);
 227        return;
 228    }
 229    /* We implement one timer block per CPU, and expose multiple MMIO regions:
 230     *  * region 0 is "timer for this core"
 231     *  * region 1 is "timer for core 0"
 232     *  * region 2 is "timer for core 1"
 233     * and so on.
 234     * The outgoing interrupt lines are
 235     *  * timer for core 0
 236     *  * timer for core 1
 237     * and so on.
 238     */
 239    for (i = 0; i < s->num_cpu; i++) {
 240        TimerBlock *tb = &s->timerblock[i];
 241        tb->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, timerblock_tick, tb);
 242        sysbus_init_irq(sbd, &tb->irq);
 243        memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
 244                              "arm_mptimer_timerblock", 0x20);
 245        sysbus_init_mmio(sbd, &tb->iomem);
 246    }
 247}
 248
 249static const VMStateDescription vmstate_timerblock = {
 250    .name = "arm_mptimer_timerblock",
 251    .version_id = 2,
 252    .minimum_version_id = 2,
 253    .fields = (VMStateField[]) {
 254        VMSTATE_UINT32(count, TimerBlock),
 255        VMSTATE_UINT32(load, TimerBlock),
 256        VMSTATE_UINT32(control, TimerBlock),
 257        VMSTATE_UINT32(status, TimerBlock),
 258        VMSTATE_INT64(tick, TimerBlock),
 259        VMSTATE_TIMER_PTR(timer, TimerBlock),
 260        VMSTATE_END_OF_LIST()
 261    }
 262};
 263
 264static const VMStateDescription vmstate_arm_mptimer = {
 265    .name = "arm_mptimer",
 266    .version_id = 2,
 267    .minimum_version_id = 2,
 268    .fields = (VMStateField[]) {
 269        VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
 270                                     2, vmstate_timerblock, TimerBlock),
 271        VMSTATE_END_OF_LIST()
 272    }
 273};
 274
 275static Property arm_mptimer_properties[] = {
 276    DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
 277    DEFINE_PROP_END_OF_LIST()
 278};
 279
 280static void arm_mptimer_class_init(ObjectClass *klass, void *data)
 281{
 282    DeviceClass *dc = DEVICE_CLASS(klass);
 283
 284    dc->realize = arm_mptimer_realize;
 285    dc->vmsd = &vmstate_arm_mptimer;
 286    dc->reset = arm_mptimer_reset;
 287    dc->props = arm_mptimer_properties;
 288}
 289
 290static const TypeInfo arm_mptimer_info = {
 291    .name          = TYPE_ARM_MPTIMER,
 292    .parent        = TYPE_SYS_BUS_DEVICE,
 293    .instance_size = sizeof(ARMMPTimerState),
 294    .instance_init = arm_mptimer_init,
 295    .class_init    = arm_mptimer_class_init,
 296};
 297
 298static void arm_mptimer_register_types(void)
 299{
 300    type_register_static(&arm_mptimer_info);
 301}
 302
 303type_init(arm_mptimer_register_types)
 304