qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#define DIRTY_MEMORY_VGA       0
  20#define DIRTY_MEMORY_CODE      1
  21#define DIRTY_MEMORY_MIGRATION 2
  22#define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
  23
  24#include "exec/cpu-common.h"
  25#ifndef CONFIG_USER_ONLY
  26#include "exec/hwaddr.h"
  27#endif
  28#include "exec/memattrs.h"
  29#include "qemu/queue.h"
  30#include "qemu/int128.h"
  31#include "qemu/notify.h"
  32#include "qom/object.h"
  33#include "qemu/rcu.h"
  34
  35#define MAX_PHYS_ADDR_SPACE_BITS 62
  36#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  37
  38#define TYPE_MEMORY_REGION "qemu:memory-region"
  39#define MEMORY_REGION(obj) \
  40        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  41
  42typedef struct MemoryRegionOps MemoryRegionOps;
  43typedef struct MemoryRegionMmio MemoryRegionMmio;
  44
  45struct MemoryRegionMmio {
  46    CPUReadMemoryFunc *read[3];
  47    CPUWriteMemoryFunc *write[3];
  48};
  49
  50typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  51
  52/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  53typedef enum {
  54    IOMMU_NONE = 0,
  55    IOMMU_RO   = 1,
  56    IOMMU_WO   = 2,
  57    IOMMU_RW   = 3,
  58} IOMMUAccessFlags;
  59
  60struct IOMMUTLBEntry {
  61    AddressSpace    *target_as;
  62    hwaddr           iova;
  63    hwaddr           translated_addr;
  64    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  65    IOMMUAccessFlags perm;
  66};
  67
  68/* New-style MMIO accessors can indicate that the transaction failed.
  69 * A zero (MEMTX_OK) response means success; anything else is a failure
  70 * of some kind. The memory subsystem will bitwise-OR together results
  71 * if it is synthesizing an operation from multiple smaller accesses.
  72 */
  73#define MEMTX_OK 0
  74#define MEMTX_ERROR             (1U << 0) /* device returned an error */
  75#define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
  76typedef uint32_t MemTxResult;
  77
  78/*
  79 * Memory region callbacks
  80 */
  81struct MemoryRegionOps {
  82    /* Read from the memory region. @addr is relative to @mr; @size is
  83     * in bytes. */
  84    uint64_t (*read)(void *opaque,
  85                     hwaddr addr,
  86                     unsigned size);
  87    /* Write to the memory region. @addr is relative to @mr; @size is
  88     * in bytes. */
  89    void (*write)(void *opaque,
  90                  hwaddr addr,
  91                  uint64_t data,
  92                  unsigned size);
  93
  94    MemTxResult (*read_with_attrs)(void *opaque,
  95                                   hwaddr addr,
  96                                   uint64_t *data,
  97                                   unsigned size,
  98                                   MemTxAttrs attrs);
  99    MemTxResult (*write_with_attrs)(void *opaque,
 100                                    hwaddr addr,
 101                                    uint64_t data,
 102                                    unsigned size,
 103                                    MemTxAttrs attrs);
 104
 105    enum device_endian endianness;
 106    /* Guest-visible constraints: */
 107    struct {
 108        /* If nonzero, specify bounds on access sizes beyond which a machine
 109         * check is thrown.
 110         */
 111        unsigned min_access_size;
 112        unsigned max_access_size;
 113        /* If true, unaligned accesses are supported.  Otherwise unaligned
 114         * accesses throw machine checks.
 115         */
 116         bool unaligned;
 117        /*
 118         * If present, and returns #false, the transaction is not accepted
 119         * by the device (and results in machine dependent behaviour such
 120         * as a machine check exception).
 121         */
 122        bool (*accepts)(void *opaque, hwaddr addr,
 123                        unsigned size, bool is_write);
 124    } valid;
 125    /* Internal implementation constraints: */
 126    struct {
 127        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 128         * will be rounded upwards and a partial result will be returned.
 129         */
 130        unsigned min_access_size;
 131        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 132         * will be done as a series of accesses with smaller sizes.
 133         */
 134        unsigned max_access_size;
 135        /* If true, unaligned accesses are supported.  Otherwise all accesses
 136         * are converted to (possibly multiple) naturally aligned accesses.
 137         */
 138        bool unaligned;
 139    } impl;
 140
 141    /* If .read and .write are not present, old_mmio may be used for
 142     * backwards compatibility with old mmio registration
 143     */
 144    const MemoryRegionMmio old_mmio;
 145};
 146
 147typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
 148
 149struct MemoryRegionIOMMUOps {
 150    /* Return a TLB entry that contains a given address. */
 151    IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
 152};
 153
 154typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 155typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 156
 157struct MemoryRegion {
 158    Object parent_obj;
 159
 160    /* All fields are private - violators will be prosecuted */
 161
 162    /* The following fields should fit in a cache line */
 163    bool romd_mode;
 164    bool ram;
 165    bool subpage;
 166    bool readonly; /* For RAM regions */
 167    bool rom_device;
 168    bool flush_coalesced_mmio;
 169    bool global_locking;
 170    uint8_t dirty_log_mask;
 171    RAMBlock *ram_block;
 172    Object *owner;
 173    const MemoryRegionIOMMUOps *iommu_ops;
 174
 175    const MemoryRegionOps *ops;
 176    void *opaque;
 177    MemoryRegion *container;
 178    Int128 size;
 179    hwaddr addr;
 180    void (*destructor)(MemoryRegion *mr);
 181    uint64_t align;
 182    bool terminates;
 183    bool skip_dump;
 184    bool enabled;
 185    bool warning_printed; /* For reservations */
 186    uint8_t vga_logging_count;
 187    MemoryRegion *alias;
 188    hwaddr alias_offset;
 189    int32_t priority;
 190    bool may_overlap;
 191    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 192    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 193    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 194    const char *name;
 195    unsigned ioeventfd_nb;
 196    MemoryRegionIoeventfd *ioeventfds;
 197    NotifierList iommu_notify;
 198};
 199
 200/**
 201 * MemoryListener: callbacks structure for updates to the physical memory map
 202 *
 203 * Allows a component to adjust to changes in the guest-visible memory map.
 204 * Use with memory_listener_register() and memory_listener_unregister().
 205 */
 206struct MemoryListener {
 207    void (*begin)(MemoryListener *listener);
 208    void (*commit)(MemoryListener *listener);
 209    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 210    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 211    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 212    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 213                      int old, int new);
 214    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 215                     int old, int new);
 216    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 217    void (*log_global_start)(MemoryListener *listener);
 218    void (*log_global_stop)(MemoryListener *listener);
 219    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 220                        bool match_data, uint64_t data, EventNotifier *e);
 221    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 222                        bool match_data, uint64_t data, EventNotifier *e);
 223    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 224                               hwaddr addr, hwaddr len);
 225    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 226                               hwaddr addr, hwaddr len);
 227    /* Lower = earlier (during add), later (during del) */
 228    unsigned priority;
 229    AddressSpace *address_space_filter;
 230    QTAILQ_ENTRY(MemoryListener) link;
 231};
 232
 233/**
 234 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 235 */
 236struct AddressSpace {
 237    /* All fields are private. */
 238    struct rcu_head rcu;
 239    char *name;
 240    MemoryRegion *root;
 241    int ref_count;
 242    bool malloced;
 243
 244    /* Accessed via RCU.  */
 245    struct FlatView *current_map;
 246
 247    int ioeventfd_nb;
 248    struct MemoryRegionIoeventfd *ioeventfds;
 249    struct AddressSpaceDispatch *dispatch;
 250    struct AddressSpaceDispatch *next_dispatch;
 251    MemoryListener dispatch_listener;
 252
 253    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 254};
 255
 256/**
 257 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 258 *
 259 * @mr: the region, or %NULL if empty
 260 * @address_space: the address space the region is mapped in
 261 * @offset_within_region: the beginning of the section, relative to @mr's start
 262 * @size: the size of the section; will not exceed @mr's boundaries
 263 * @offset_within_address_space: the address of the first byte of the section
 264 *     relative to the region's address space
 265 * @readonly: writes to this section are ignored
 266 */
 267struct MemoryRegionSection {
 268    MemoryRegion *mr;
 269    AddressSpace *address_space;
 270    hwaddr offset_within_region;
 271    Int128 size;
 272    hwaddr offset_within_address_space;
 273    bool readonly;
 274};
 275
 276/**
 277 * memory_region_init: Initialize a memory region
 278 *
 279 * The region typically acts as a container for other memory regions.  Use
 280 * memory_region_add_subregion() to add subregions.
 281 *
 282 * @mr: the #MemoryRegion to be initialized
 283 * @owner: the object that tracks the region's reference count
 284 * @name: used for debugging; not visible to the user or ABI
 285 * @size: size of the region; any subregions beyond this size will be clipped
 286 */
 287void memory_region_init(MemoryRegion *mr,
 288                        struct Object *owner,
 289                        const char *name,
 290                        uint64_t size);
 291
 292/**
 293 * memory_region_ref: Add 1 to a memory region's reference count
 294 *
 295 * Whenever memory regions are accessed outside the BQL, they need to be
 296 * preserved against hot-unplug.  MemoryRegions actually do not have their
 297 * own reference count; they piggyback on a QOM object, their "owner".
 298 * This function adds a reference to the owner.
 299 *
 300 * All MemoryRegions must have an owner if they can disappear, even if the
 301 * device they belong to operates exclusively under the BQL.  This is because
 302 * the region could be returned at any time by memory_region_find, and this
 303 * is usually under guest control.
 304 *
 305 * @mr: the #MemoryRegion
 306 */
 307void memory_region_ref(MemoryRegion *mr);
 308
 309/**
 310 * memory_region_unref: Remove 1 to a memory region's reference count
 311 *
 312 * Whenever memory regions are accessed outside the BQL, they need to be
 313 * preserved against hot-unplug.  MemoryRegions actually do not have their
 314 * own reference count; they piggyback on a QOM object, their "owner".
 315 * This function removes a reference to the owner and possibly destroys it.
 316 *
 317 * @mr: the #MemoryRegion
 318 */
 319void memory_region_unref(MemoryRegion *mr);
 320
 321/**
 322 * memory_region_init_io: Initialize an I/O memory region.
 323 *
 324 * Accesses into the region will cause the callbacks in @ops to be called.
 325 * if @size is nonzero, subregions will be clipped to @size.
 326 *
 327 * @mr: the #MemoryRegion to be initialized.
 328 * @owner: the object that tracks the region's reference count
 329 * @ops: a structure containing read and write callbacks to be used when
 330 *       I/O is performed on the region.
 331 * @opaque: passed to the read and write callbacks of the @ops structure.
 332 * @name: used for debugging; not visible to the user or ABI
 333 * @size: size of the region.
 334 */
 335void memory_region_init_io(MemoryRegion *mr,
 336                           struct Object *owner,
 337                           const MemoryRegionOps *ops,
 338                           void *opaque,
 339                           const char *name,
 340                           uint64_t size);
 341
 342/**
 343 * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
 344 *                          region will modify memory directly.
 345 *
 346 * @mr: the #MemoryRegion to be initialized.
 347 * @owner: the object that tracks the region's reference count
 348 * @name: the name of the region.
 349 * @size: size of the region.
 350 * @errp: pointer to Error*, to store an error if it happens.
 351 */
 352void memory_region_init_ram(MemoryRegion *mr,
 353                            struct Object *owner,
 354                            const char *name,
 355                            uint64_t size,
 356                            Error **errp);
 357
 358/**
 359 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 360 *                                     RAM.  Accesses into the region will
 361 *                                     modify memory directly.  Only an initial
 362 *                                     portion of this RAM is actually used.
 363 *                                     The used size can change across reboots.
 364 *
 365 * @mr: the #MemoryRegion to be initialized.
 366 * @owner: the object that tracks the region's reference count
 367 * @name: the name of the region.
 368 * @size: used size of the region.
 369 * @max_size: max size of the region.
 370 * @resized: callback to notify owner about used size change.
 371 * @errp: pointer to Error*, to store an error if it happens.
 372 */
 373void memory_region_init_resizeable_ram(MemoryRegion *mr,
 374                                       struct Object *owner,
 375                                       const char *name,
 376                                       uint64_t size,
 377                                       uint64_t max_size,
 378                                       void (*resized)(const char*,
 379                                                       uint64_t length,
 380                                                       void *host),
 381                                       Error **errp);
 382#ifdef __linux__
 383/**
 384 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 385 *                                    mmap-ed backend.
 386 *
 387 * @mr: the #MemoryRegion to be initialized.
 388 * @owner: the object that tracks the region's reference count
 389 * @name: the name of the region.
 390 * @size: size of the region.
 391 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 392 * @path: the path in which to allocate the RAM.
 393 * @errp: pointer to Error*, to store an error if it happens.
 394 */
 395void memory_region_init_ram_from_file(MemoryRegion *mr,
 396                                      struct Object *owner,
 397                                      const char *name,
 398                                      uint64_t size,
 399                                      bool share,
 400                                      const char *path,
 401                                      Error **errp);
 402#endif
 403
 404/**
 405 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 406 *                              user-provided pointer.  Accesses into the
 407 *                              region will modify memory directly.
 408 *
 409 * @mr: the #MemoryRegion to be initialized.
 410 * @owner: the object that tracks the region's reference count
 411 * @name: the name of the region.
 412 * @size: size of the region.
 413 * @ptr: memory to be mapped; must contain at least @size bytes.
 414 */
 415void memory_region_init_ram_ptr(MemoryRegion *mr,
 416                                struct Object *owner,
 417                                const char *name,
 418                                uint64_t size,
 419                                void *ptr);
 420
 421/**
 422 * memory_region_init_alias: Initialize a memory region that aliases all or a
 423 *                           part of another memory region.
 424 *
 425 * @mr: the #MemoryRegion to be initialized.
 426 * @owner: the object that tracks the region's reference count
 427 * @name: used for debugging; not visible to the user or ABI
 428 * @orig: the region to be referenced; @mr will be equivalent to
 429 *        @orig between @offset and @offset + @size - 1.
 430 * @offset: start of the section in @orig to be referenced.
 431 * @size: size of the region.
 432 */
 433void memory_region_init_alias(MemoryRegion *mr,
 434                              struct Object *owner,
 435                              const char *name,
 436                              MemoryRegion *orig,
 437                              hwaddr offset,
 438                              uint64_t size);
 439
 440/**
 441 * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
 442 *                                 handled via callbacks.
 443 *
 444 * If NULL callbacks pointer is given, then I/O space is not supposed to be
 445 * handled by QEMU itself. Any access via the memory API will cause an abort().
 446 *
 447 * @mr: the #MemoryRegion to be initialized.
 448 * @owner: the object that tracks the region's reference count
 449 * @ops: callbacks for write access handling.
 450 * @name: the name of the region.
 451 * @size: size of the region.
 452 * @errp: pointer to Error*, to store an error if it happens.
 453 */
 454void memory_region_init_rom_device(MemoryRegion *mr,
 455                                   struct Object *owner,
 456                                   const MemoryRegionOps *ops,
 457                                   void *opaque,
 458                                   const char *name,
 459                                   uint64_t size,
 460                                   Error **errp);
 461
 462/**
 463 * memory_region_init_reservation: Initialize a memory region that reserves
 464 *                                 I/O space.
 465 *
 466 * A reservation region primariy serves debugging purposes.  It claims I/O
 467 * space that is not supposed to be handled by QEMU itself.  Any access via
 468 * the memory API will cause an abort().
 469 * This function is deprecated. Use memory_region_init_io() with NULL
 470 * callbacks instead.
 471 *
 472 * @mr: the #MemoryRegion to be initialized
 473 * @owner: the object that tracks the region's reference count
 474 * @name: used for debugging; not visible to the user or ABI
 475 * @size: size of the region.
 476 */
 477static inline void memory_region_init_reservation(MemoryRegion *mr,
 478                                    Object *owner,
 479                                    const char *name,
 480                                    uint64_t size)
 481{
 482    memory_region_init_io(mr, owner, NULL, mr, name, size);
 483}
 484
 485/**
 486 * memory_region_init_iommu: Initialize a memory region that translates
 487 * addresses
 488 *
 489 * An IOMMU region translates addresses and forwards accesses to a target
 490 * memory region.
 491 *
 492 * @mr: the #MemoryRegion to be initialized
 493 * @owner: the object that tracks the region's reference count
 494 * @ops: a function that translates addresses into the @target region
 495 * @name: used for debugging; not visible to the user or ABI
 496 * @size: size of the region.
 497 */
 498void memory_region_init_iommu(MemoryRegion *mr,
 499                              struct Object *owner,
 500                              const MemoryRegionIOMMUOps *ops,
 501                              const char *name,
 502                              uint64_t size);
 503
 504/**
 505 * memory_region_owner: get a memory region's owner.
 506 *
 507 * @mr: the memory region being queried.
 508 */
 509struct Object *memory_region_owner(MemoryRegion *mr);
 510
 511/**
 512 * memory_region_size: get a memory region's size.
 513 *
 514 * @mr: the memory region being queried.
 515 */
 516uint64_t memory_region_size(MemoryRegion *mr);
 517
 518/**
 519 * memory_region_is_ram: check whether a memory region is random access
 520 *
 521 * Returns %true is a memory region is random access.
 522 *
 523 * @mr: the memory region being queried
 524 */
 525static inline bool memory_region_is_ram(MemoryRegion *mr)
 526{
 527    return mr->ram;
 528}
 529
 530/**
 531 * memory_region_is_skip_dump: check whether a memory region should not be
 532 *                             dumped
 533 *
 534 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
 535 *
 536 * @mr: the memory region being queried
 537 */
 538bool memory_region_is_skip_dump(MemoryRegion *mr);
 539
 540/**
 541 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
 542 *                              region
 543 *
 544 * @mr: the memory region being queried
 545 */
 546void memory_region_set_skip_dump(MemoryRegion *mr);
 547
 548/**
 549 * memory_region_is_romd: check whether a memory region is in ROMD mode
 550 *
 551 * Returns %true if a memory region is a ROM device and currently set to allow
 552 * direct reads.
 553 *
 554 * @mr: the memory region being queried
 555 */
 556static inline bool memory_region_is_romd(MemoryRegion *mr)
 557{
 558    return mr->rom_device && mr->romd_mode;
 559}
 560
 561/**
 562 * memory_region_is_iommu: check whether a memory region is an iommu
 563 *
 564 * Returns %true is a memory region is an iommu.
 565 *
 566 * @mr: the memory region being queried
 567 */
 568static inline bool memory_region_is_iommu(MemoryRegion *mr)
 569{
 570    return mr->iommu_ops;
 571}
 572
 573
 574/**
 575 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 576 *
 577 * @mr: the memory region that was changed
 578 * @entry: the new entry in the IOMMU translation table.  The entry
 579 *         replaces all old entries for the same virtual I/O address range.
 580 *         Deleted entries have .@perm == 0.
 581 */
 582void memory_region_notify_iommu(MemoryRegion *mr,
 583                                IOMMUTLBEntry entry);
 584
 585/**
 586 * memory_region_register_iommu_notifier: register a notifier for changes to
 587 * IOMMU translation entries.
 588 *
 589 * @mr: the memory region to observe
 590 * @n: the notifier to be added; the notifier receives a pointer to an
 591 *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
 592 *     valid on exit from the notifier.
 593 */
 594void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
 595
 596/**
 597 * memory_region_iommu_replay: replay existing IOMMU translations to
 598 * a notifier
 599 *
 600 * @mr: the memory region to observe
 601 * @n: the notifier to which to replay iommu mappings
 602 * @granularity: Minimum page granularity to replay notifications for
 603 * @is_write: Whether to treat the replay as a translate "write"
 604 *     through the iommu
 605 */
 606void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
 607                                hwaddr granularity, bool is_write);
 608
 609/**
 610 * memory_region_unregister_iommu_notifier: unregister a notifier for
 611 * changes to IOMMU translation entries.
 612 *
 613 * @n: the notifier to be removed.
 614 */
 615void memory_region_unregister_iommu_notifier(Notifier *n);
 616
 617/**
 618 * memory_region_name: get a memory region's name
 619 *
 620 * Returns the string that was used to initialize the memory region.
 621 *
 622 * @mr: the memory region being queried
 623 */
 624const char *memory_region_name(const MemoryRegion *mr);
 625
 626/**
 627 * memory_region_is_logging: return whether a memory region is logging writes
 628 *
 629 * Returns %true if the memory region is logging writes for the given client
 630 *
 631 * @mr: the memory region being queried
 632 * @client: the client being queried
 633 */
 634bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
 635
 636/**
 637 * memory_region_get_dirty_log_mask: return the clients for which a
 638 * memory region is logging writes.
 639 *
 640 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
 641 * are the bit indices.
 642 *
 643 * @mr: the memory region being queried
 644 */
 645uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
 646
 647/**
 648 * memory_region_is_rom: check whether a memory region is ROM
 649 *
 650 * Returns %true is a memory region is read-only memory.
 651 *
 652 * @mr: the memory region being queried
 653 */
 654static inline bool memory_region_is_rom(MemoryRegion *mr)
 655{
 656    return mr->ram && mr->readonly;
 657}
 658
 659
 660/**
 661 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
 662 *
 663 * Returns a file descriptor backing a file-based RAM memory region,
 664 * or -1 if the region is not a file-based RAM memory region.
 665 *
 666 * @mr: the RAM or alias memory region being queried.
 667 */
 668int memory_region_get_fd(MemoryRegion *mr);
 669
 670/**
 671 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
 672 *
 673 * Returns a host pointer to a RAM memory region (created with
 674 * memory_region_init_ram() or memory_region_init_ram_ptr()).
 675 *
 676 * Use with care; by the time this function returns, the returned pointer is
 677 * not protected by RCU anymore.  If the caller is not within an RCU critical
 678 * section and does not hold the iothread lock, it must have other means of
 679 * protecting the pointer, such as a reference to the region that includes
 680 * the incoming ram_addr_t.
 681 *
 682 * @mr: the memory region being queried.
 683 */
 684void *memory_region_get_ram_ptr(MemoryRegion *mr);
 685
 686/* memory_region_ram_resize: Resize a RAM region.
 687 *
 688 * Only legal before guest might have detected the memory size: e.g. on
 689 * incoming migration, or right after reset.
 690 *
 691 * @mr: a memory region created with @memory_region_init_resizeable_ram.
 692 * @newsize: the new size the region
 693 * @errp: pointer to Error*, to store an error if it happens.
 694 */
 695void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
 696                              Error **errp);
 697
 698/**
 699 * memory_region_set_log: Turn dirty logging on or off for a region.
 700 *
 701 * Turns dirty logging on or off for a specified client (display, migration).
 702 * Only meaningful for RAM regions.
 703 *
 704 * @mr: the memory region being updated.
 705 * @log: whether dirty logging is to be enabled or disabled.
 706 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
 707 */
 708void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
 709
 710/**
 711 * memory_region_get_dirty: Check whether a range of bytes is dirty
 712 *                          for a specified client.
 713 *
 714 * Checks whether a range of bytes has been written to since the last
 715 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 716 * must be enabled.
 717 *
 718 * @mr: the memory region being queried.
 719 * @addr: the address (relative to the start of the region) being queried.
 720 * @size: the size of the range being queried.
 721 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 722 *          %DIRTY_MEMORY_VGA.
 723 */
 724bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
 725                             hwaddr size, unsigned client);
 726
 727/**
 728 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
 729 *
 730 * Marks a range of bytes as dirty, after it has been dirtied outside
 731 * guest code.
 732 *
 733 * @mr: the memory region being dirtied.
 734 * @addr: the address (relative to the start of the region) being dirtied.
 735 * @size: size of the range being dirtied.
 736 */
 737void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
 738                             hwaddr size);
 739
 740/**
 741 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
 742 *                                     for a specified client. It clears them.
 743 *
 744 * Checks whether a range of bytes has been written to since the last
 745 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 746 * must be enabled.
 747 *
 748 * @mr: the memory region being queried.
 749 * @addr: the address (relative to the start of the region) being queried.
 750 * @size: the size of the range being queried.
 751 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 752 *          %DIRTY_MEMORY_VGA.
 753 */
 754bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
 755                                        hwaddr size, unsigned client);
 756/**
 757 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
 758 *                                  any external TLBs (e.g. kvm)
 759 *
 760 * Flushes dirty information from accelerators such as kvm and vhost-net
 761 * and makes it available to users of the memory API.
 762 *
 763 * @mr: the region being flushed.
 764 */
 765void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
 766
 767/**
 768 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
 769 *                            client.
 770 *
 771 * Marks a range of pages as no longer dirty.
 772 *
 773 * @mr: the region being updated.
 774 * @addr: the start of the subrange being cleaned.
 775 * @size: the size of the subrange being cleaned.
 776 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 777 *          %DIRTY_MEMORY_VGA.
 778 */
 779void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
 780                               hwaddr size, unsigned client);
 781
 782/**
 783 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
 784 *
 785 * Allows a memory region to be marked as read-only (turning it into a ROM).
 786 * only useful on RAM regions.
 787 *
 788 * @mr: the region being updated.
 789 * @readonly: whether rhe region is to be ROM or RAM.
 790 */
 791void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
 792
 793/**
 794 * memory_region_rom_device_set_romd: enable/disable ROMD mode
 795 *
 796 * Allows a ROM device (initialized with memory_region_init_rom_device() to
 797 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
 798 * device is mapped to guest memory and satisfies read access directly.
 799 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
 800 * Writes are always handled by the #MemoryRegion.write function.
 801 *
 802 * @mr: the memory region to be updated
 803 * @romd_mode: %true to put the region into ROMD mode
 804 */
 805void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
 806
 807/**
 808 * memory_region_set_coalescing: Enable memory coalescing for the region.
 809 *
 810 * Enabled writes to a region to be queued for later processing. MMIO ->write
 811 * callbacks may be delayed until a non-coalesced MMIO is issued.
 812 * Only useful for IO regions.  Roughly similar to write-combining hardware.
 813 *
 814 * @mr: the memory region to be write coalesced
 815 */
 816void memory_region_set_coalescing(MemoryRegion *mr);
 817
 818/**
 819 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
 820 *                               a region.
 821 *
 822 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
 823 * Multiple calls can be issued coalesced disjoint ranges.
 824 *
 825 * @mr: the memory region to be updated.
 826 * @offset: the start of the range within the region to be coalesced.
 827 * @size: the size of the subrange to be coalesced.
 828 */
 829void memory_region_add_coalescing(MemoryRegion *mr,
 830                                  hwaddr offset,
 831                                  uint64_t size);
 832
 833/**
 834 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
 835 *
 836 * Disables any coalescing caused by memory_region_set_coalescing() or
 837 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
 838 * hardware.
 839 *
 840 * @mr: the memory region to be updated.
 841 */
 842void memory_region_clear_coalescing(MemoryRegion *mr);
 843
 844/**
 845 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
 846 *                                    accesses.
 847 *
 848 * Ensure that pending coalesced MMIO request are flushed before the memory
 849 * region is accessed. This property is automatically enabled for all regions
 850 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
 851 *
 852 * @mr: the memory region to be updated.
 853 */
 854void memory_region_set_flush_coalesced(MemoryRegion *mr);
 855
 856/**
 857 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
 858 *                                      accesses.
 859 *
 860 * Clear the automatic coalesced MMIO flushing enabled via
 861 * memory_region_set_flush_coalesced. Note that this service has no effect on
 862 * memory regions that have MMIO coalescing enabled for themselves. For them,
 863 * automatic flushing will stop once coalescing is disabled.
 864 *
 865 * @mr: the memory region to be updated.
 866 */
 867void memory_region_clear_flush_coalesced(MemoryRegion *mr);
 868
 869/**
 870 * memory_region_set_global_locking: Declares the access processing requires
 871 *                                   QEMU's global lock.
 872 *
 873 * When this is invoked, accesses to the memory region will be processed while
 874 * holding the global lock of QEMU. This is the default behavior of memory
 875 * regions.
 876 *
 877 * @mr: the memory region to be updated.
 878 */
 879void memory_region_set_global_locking(MemoryRegion *mr);
 880
 881/**
 882 * memory_region_clear_global_locking: Declares that access processing does
 883 *                                     not depend on the QEMU global lock.
 884 *
 885 * By clearing this property, accesses to the memory region will be processed
 886 * outside of QEMU's global lock (unless the lock is held on when issuing the
 887 * access request). In this case, the device model implementing the access
 888 * handlers is responsible for synchronization of concurrency.
 889 *
 890 * @mr: the memory region to be updated.
 891 */
 892void memory_region_clear_global_locking(MemoryRegion *mr);
 893
 894/**
 895 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
 896 *                            is written to a location.
 897 *
 898 * Marks a word in an IO region (initialized with memory_region_init_io())
 899 * as a trigger for an eventfd event.  The I/O callback will not be called.
 900 * The caller must be prepared to handle failure (that is, take the required
 901 * action if the callback _is_ called).
 902 *
 903 * @mr: the memory region being updated.
 904 * @addr: the address within @mr that is to be monitored
 905 * @size: the size of the access to trigger the eventfd
 906 * @match_data: whether to match against @data, instead of just @addr
 907 * @data: the data to match against the guest write
 908 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 909 **/
 910void memory_region_add_eventfd(MemoryRegion *mr,
 911                               hwaddr addr,
 912                               unsigned size,
 913                               bool match_data,
 914                               uint64_t data,
 915                               EventNotifier *e);
 916
 917/**
 918 * memory_region_del_eventfd: Cancel an eventfd.
 919 *
 920 * Cancels an eventfd trigger requested by a previous
 921 * memory_region_add_eventfd() call.
 922 *
 923 * @mr: the memory region being updated.
 924 * @addr: the address within @mr that is to be monitored
 925 * @size: the size of the access to trigger the eventfd
 926 * @match_data: whether to match against @data, instead of just @addr
 927 * @data: the data to match against the guest write
 928 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 929 */
 930void memory_region_del_eventfd(MemoryRegion *mr,
 931                               hwaddr addr,
 932                               unsigned size,
 933                               bool match_data,
 934                               uint64_t data,
 935                               EventNotifier *e);
 936
 937/**
 938 * memory_region_add_subregion: Add a subregion to a container.
 939 *
 940 * Adds a subregion at @offset.  The subregion may not overlap with other
 941 * subregions (except for those explicitly marked as overlapping).  A region
 942 * may only be added once as a subregion (unless removed with
 943 * memory_region_del_subregion()); use memory_region_init_alias() if you
 944 * want a region to be a subregion in multiple locations.
 945 *
 946 * @mr: the region to contain the new subregion; must be a container
 947 *      initialized with memory_region_init().
 948 * @offset: the offset relative to @mr where @subregion is added.
 949 * @subregion: the subregion to be added.
 950 */
 951void memory_region_add_subregion(MemoryRegion *mr,
 952                                 hwaddr offset,
 953                                 MemoryRegion *subregion);
 954/**
 955 * memory_region_add_subregion_overlap: Add a subregion to a container
 956 *                                      with overlap.
 957 *
 958 * Adds a subregion at @offset.  The subregion may overlap with other
 959 * subregions.  Conflicts are resolved by having a higher @priority hide a
 960 * lower @priority. Subregions without priority are taken as @priority 0.
 961 * A region may only be added once as a subregion (unless removed with
 962 * memory_region_del_subregion()); use memory_region_init_alias() if you
 963 * want a region to be a subregion in multiple locations.
 964 *
 965 * @mr: the region to contain the new subregion; must be a container
 966 *      initialized with memory_region_init().
 967 * @offset: the offset relative to @mr where @subregion is added.
 968 * @subregion: the subregion to be added.
 969 * @priority: used for resolving overlaps; highest priority wins.
 970 */
 971void memory_region_add_subregion_overlap(MemoryRegion *mr,
 972                                         hwaddr offset,
 973                                         MemoryRegion *subregion,
 974                                         int priority);
 975
 976/**
 977 * memory_region_get_ram_addr: Get the ram address associated with a memory
 978 *                             region
 979 */
 980ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
 981
 982uint64_t memory_region_get_alignment(const MemoryRegion *mr);
 983/**
 984 * memory_region_del_subregion: Remove a subregion.
 985 *
 986 * Removes a subregion from its container.
 987 *
 988 * @mr: the container to be updated.
 989 * @subregion: the region being removed; must be a current subregion of @mr.
 990 */
 991void memory_region_del_subregion(MemoryRegion *mr,
 992                                 MemoryRegion *subregion);
 993
 994/*
 995 * memory_region_set_enabled: dynamically enable or disable a region
 996 *
 997 * Enables or disables a memory region.  A disabled memory region
 998 * ignores all accesses to itself and its subregions.  It does not
 999 * obscure sibling subregions with lower priority - it simply behaves as
1000 * if it was removed from the hierarchy.
1001 *
1002 * Regions default to being enabled.
1003 *
1004 * @mr: the region to be updated
1005 * @enabled: whether to enable or disable the region
1006 */
1007void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1008
1009/*
1010 * memory_region_set_address: dynamically update the address of a region
1011 *
1012 * Dynamically updates the address of a region, relative to its container.
1013 * May be used on regions are currently part of a memory hierarchy.
1014 *
1015 * @mr: the region to be updated
1016 * @addr: new address, relative to container region
1017 */
1018void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1019
1020/*
1021 * memory_region_set_size: dynamically update the size of a region.
1022 *
1023 * Dynamically updates the size of a region.
1024 *
1025 * @mr: the region to be updated
1026 * @size: used size of the region.
1027 */
1028void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1029
1030/*
1031 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1032 *
1033 * Dynamically updates the offset into the target region that an alias points
1034 * to, as if the fourth argument to memory_region_init_alias() has changed.
1035 *
1036 * @mr: the #MemoryRegion to be updated; should be an alias.
1037 * @offset: the new offset into the target memory region
1038 */
1039void memory_region_set_alias_offset(MemoryRegion *mr,
1040                                    hwaddr offset);
1041
1042/**
1043 * memory_region_present: checks if an address relative to a @container
1044 * translates into #MemoryRegion within @container
1045 *
1046 * Answer whether a #MemoryRegion within @container covers the address
1047 * @addr.
1048 *
1049 * @container: a #MemoryRegion within which @addr is a relative address
1050 * @addr: the area within @container to be searched
1051 */
1052bool memory_region_present(MemoryRegion *container, hwaddr addr);
1053
1054/**
1055 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1056 * into any address space.
1057 *
1058 * @mr: a #MemoryRegion which should be checked if it's mapped
1059 */
1060bool memory_region_is_mapped(MemoryRegion *mr);
1061
1062/**
1063 * memory_region_find: translate an address/size relative to a
1064 * MemoryRegion into a #MemoryRegionSection.
1065 *
1066 * Locates the first #MemoryRegion within @mr that overlaps the range
1067 * given by @addr and @size.
1068 *
1069 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1070 * It will have the following characteristics:
1071 *    .@size = 0 iff no overlap was found
1072 *    .@mr is non-%NULL iff an overlap was found
1073 *
1074 * Remember that in the return value the @offset_within_region is
1075 * relative to the returned region (in the .@mr field), not to the
1076 * @mr argument.
1077 *
1078 * Similarly, the .@offset_within_address_space is relative to the
1079 * address space that contains both regions, the passed and the
1080 * returned one.  However, in the special case where the @mr argument
1081 * has no container (and thus is the root of the address space), the
1082 * following will hold:
1083 *    .@offset_within_address_space >= @addr
1084 *    .@offset_within_address_space + .@size <= @addr + @size
1085 *
1086 * @mr: a MemoryRegion within which @addr is a relative address
1087 * @addr: start of the area within @as to be searched
1088 * @size: size of the area to be searched
1089 */
1090MemoryRegionSection memory_region_find(MemoryRegion *mr,
1091                                       hwaddr addr, uint64_t size);
1092
1093/**
1094 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1095 *
1096 * Synchronizes the dirty page log for an entire address space.
1097 * @as: the address space that contains the memory being synchronized
1098 */
1099void address_space_sync_dirty_bitmap(AddressSpace *as);
1100
1101/**
1102 * memory_region_transaction_begin: Start a transaction.
1103 *
1104 * During a transaction, changes will be accumulated and made visible
1105 * only when the transaction ends (is committed).
1106 */
1107void memory_region_transaction_begin(void);
1108
1109/**
1110 * memory_region_transaction_commit: Commit a transaction and make changes
1111 *                                   visible to the guest.
1112 */
1113void memory_region_transaction_commit(void);
1114
1115/**
1116 * memory_listener_register: register callbacks to be called when memory
1117 *                           sections are mapped or unmapped into an address
1118 *                           space
1119 *
1120 * @listener: an object containing the callbacks to be called
1121 * @filter: if non-%NULL, only regions in this address space will be observed
1122 */
1123void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1124
1125/**
1126 * memory_listener_unregister: undo the effect of memory_listener_register()
1127 *
1128 * @listener: an object containing the callbacks to be removed
1129 */
1130void memory_listener_unregister(MemoryListener *listener);
1131
1132/**
1133 * memory_global_dirty_log_start: begin dirty logging for all regions
1134 */
1135void memory_global_dirty_log_start(void);
1136
1137/**
1138 * memory_global_dirty_log_stop: end dirty logging for all regions
1139 */
1140void memory_global_dirty_log_stop(void);
1141
1142void mtree_info(fprintf_function mon_printf, void *f);
1143
1144/**
1145 * memory_region_dispatch_read: perform a read directly to the specified
1146 * MemoryRegion.
1147 *
1148 * @mr: #MemoryRegion to access
1149 * @addr: address within that region
1150 * @pval: pointer to uint64_t which the data is written to
1151 * @size: size of the access in bytes
1152 * @attrs: memory transaction attributes to use for the access
1153 */
1154MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1155                                        hwaddr addr,
1156                                        uint64_t *pval,
1157                                        unsigned size,
1158                                        MemTxAttrs attrs);
1159/**
1160 * memory_region_dispatch_write: perform a write directly to the specified
1161 * MemoryRegion.
1162 *
1163 * @mr: #MemoryRegion to access
1164 * @addr: address within that region
1165 * @data: data to write
1166 * @size: size of the access in bytes
1167 * @attrs: memory transaction attributes to use for the access
1168 */
1169MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1170                                         hwaddr addr,
1171                                         uint64_t data,
1172                                         unsigned size,
1173                                         MemTxAttrs attrs);
1174
1175/**
1176 * address_space_init: initializes an address space
1177 *
1178 * @as: an uninitialized #AddressSpace
1179 * @root: a #MemoryRegion that routes addresses for the address space
1180 * @name: an address space name.  The name is only used for debugging
1181 *        output.
1182 */
1183void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1184
1185/**
1186 * address_space_init_shareable: return an address space for a memory region,
1187 *                               creating it if it does not already exist
1188 *
1189 * @root: a #MemoryRegion that routes addresses for the address space
1190 * @name: an address space name.  The name is only used for debugging
1191 *        output.
1192 *
1193 * This function will return a pointer to an existing AddressSpace
1194 * which was initialized with the specified MemoryRegion, or it will
1195 * create and initialize one if it does not already exist. The ASes
1196 * are reference-counted, so the memory will be freed automatically
1197 * when the AddressSpace is destroyed via address_space_destroy.
1198 */
1199AddressSpace *address_space_init_shareable(MemoryRegion *root,
1200                                           const char *name);
1201
1202/**
1203 * address_space_destroy: destroy an address space
1204 *
1205 * Releases all resources associated with an address space.  After an address space
1206 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1207 * as well.
1208 *
1209 * @as: address space to be destroyed
1210 */
1211void address_space_destroy(AddressSpace *as);
1212
1213/**
1214 * address_space_rw: read from or write to an address space.
1215 *
1216 * Return a MemTxResult indicating whether the operation succeeded
1217 * or failed (eg unassigned memory, device rejected the transaction,
1218 * IOMMU fault).
1219 *
1220 * @as: #AddressSpace to be accessed
1221 * @addr: address within that address space
1222 * @attrs: memory transaction attributes
1223 * @buf: buffer with the data transferred
1224 * @is_write: indicates the transfer direction
1225 */
1226MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1227                             MemTxAttrs attrs, uint8_t *buf,
1228                             int len, bool is_write);
1229
1230/**
1231 * address_space_write: write to address space.
1232 *
1233 * Return a MemTxResult indicating whether the operation succeeded
1234 * or failed (eg unassigned memory, device rejected the transaction,
1235 * IOMMU fault).
1236 *
1237 * @as: #AddressSpace to be accessed
1238 * @addr: address within that address space
1239 * @attrs: memory transaction attributes
1240 * @buf: buffer with the data transferred
1241 */
1242MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1243                                MemTxAttrs attrs,
1244                                const uint8_t *buf, int len);
1245
1246/* address_space_ld*: load from an address space
1247 * address_space_st*: store to an address space
1248 *
1249 * These functions perform a load or store of the byte, word,
1250 * longword or quad to the specified address within the AddressSpace.
1251 * The _le suffixed functions treat the data as little endian;
1252 * _be indicates big endian; no suffix indicates "same endianness
1253 * as guest CPU".
1254 *
1255 * The "guest CPU endianness" accessors are deprecated for use outside
1256 * target-* code; devices should be CPU-agnostic and use either the LE
1257 * or the BE accessors.
1258 *
1259 * @as #AddressSpace to be accessed
1260 * @addr: address within that address space
1261 * @val: data value, for stores
1262 * @attrs: memory transaction attributes
1263 * @result: location to write the success/failure of the transaction;
1264 *   if NULL, this information is discarded
1265 */
1266uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1267                            MemTxAttrs attrs, MemTxResult *result);
1268uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1269                            MemTxAttrs attrs, MemTxResult *result);
1270uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1271                            MemTxAttrs attrs, MemTxResult *result);
1272uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1273                            MemTxAttrs attrs, MemTxResult *result);
1274uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1275                            MemTxAttrs attrs, MemTxResult *result);
1276uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1277                            MemTxAttrs attrs, MemTxResult *result);
1278uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1279                            MemTxAttrs attrs, MemTxResult *result);
1280void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1281                            MemTxAttrs attrs, MemTxResult *result);
1282void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1283                            MemTxAttrs attrs, MemTxResult *result);
1284void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1285                            MemTxAttrs attrs, MemTxResult *result);
1286void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1287                            MemTxAttrs attrs, MemTxResult *result);
1288void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1289                            MemTxAttrs attrs, MemTxResult *result);
1290void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1291                            MemTxAttrs attrs, MemTxResult *result);
1292void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1293                            MemTxAttrs attrs, MemTxResult *result);
1294
1295#ifdef NEED_CPU_H
1296uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1297                            MemTxAttrs attrs, MemTxResult *result);
1298uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1299                            MemTxAttrs attrs, MemTxResult *result);
1300uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1301                            MemTxAttrs attrs, MemTxResult *result);
1302void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1303                            MemTxAttrs attrs, MemTxResult *result);
1304void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1305                            MemTxAttrs attrs, MemTxResult *result);
1306void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1307                            MemTxAttrs attrs, MemTxResult *result);
1308void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1309                            MemTxAttrs attrs, MemTxResult *result);
1310#endif
1311
1312/* address_space_translate: translate an address range into an address space
1313 * into a MemoryRegion and an address range into that section.  Should be
1314 * called from an RCU critical section, to avoid that the last reference
1315 * to the returned region disappears after address_space_translate returns.
1316 *
1317 * @as: #AddressSpace to be accessed
1318 * @addr: address within that address space
1319 * @xlat: pointer to address within the returned memory region section's
1320 * #MemoryRegion.
1321 * @len: pointer to length
1322 * @is_write: indicates the transfer direction
1323 */
1324MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1325                                      hwaddr *xlat, hwaddr *len,
1326                                      bool is_write);
1327
1328/* address_space_access_valid: check for validity of accessing an address
1329 * space range
1330 *
1331 * Check whether memory is assigned to the given address space range, and
1332 * access is permitted by any IOMMU regions that are active for the address
1333 * space.
1334 *
1335 * For now, addr and len should be aligned to a page size.  This limitation
1336 * will be lifted in the future.
1337 *
1338 * @as: #AddressSpace to be accessed
1339 * @addr: address within that address space
1340 * @len: length of the area to be checked
1341 * @is_write: indicates the transfer direction
1342 */
1343bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1344
1345/* address_space_map: map a physical memory region into a host virtual address
1346 *
1347 * May map a subset of the requested range, given by and returned in @plen.
1348 * May return %NULL if resources needed to perform the mapping are exhausted.
1349 * Use only for reads OR writes - not for read-modify-write operations.
1350 * Use cpu_register_map_client() to know when retrying the map operation is
1351 * likely to succeed.
1352 *
1353 * @as: #AddressSpace to be accessed
1354 * @addr: address within that address space
1355 * @plen: pointer to length of buffer; updated on return
1356 * @is_write: indicates the transfer direction
1357 */
1358void *address_space_map(AddressSpace *as, hwaddr addr,
1359                        hwaddr *plen, bool is_write);
1360
1361/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1362 *
1363 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1364 * the amount of memory that was actually read or written by the caller.
1365 *
1366 * @as: #AddressSpace used
1367 * @addr: address within that address space
1368 * @len: buffer length as returned by address_space_map()
1369 * @access_len: amount of data actually transferred
1370 * @is_write: indicates the transfer direction
1371 */
1372void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1373                         int is_write, hwaddr access_len);
1374
1375
1376/* Internal functions, part of the implementation of address_space_read.  */
1377MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1378                                        MemTxAttrs attrs, uint8_t *buf,
1379                                        int len, hwaddr addr1, hwaddr l,
1380                                        MemoryRegion *mr);
1381MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1382                                    MemTxAttrs attrs, uint8_t *buf, int len);
1383void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1384
1385static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1386{
1387    if (is_write) {
1388        return memory_region_is_ram(mr) && !mr->readonly;
1389    } else {
1390        return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1391    }
1392}
1393
1394/**
1395 * address_space_read: read from an address space.
1396 *
1397 * Return a MemTxResult indicating whether the operation succeeded
1398 * or failed (eg unassigned memory, device rejected the transaction,
1399 * IOMMU fault).
1400 *
1401 * @as: #AddressSpace to be accessed
1402 * @addr: address within that address space
1403 * @attrs: memory transaction attributes
1404 * @buf: buffer with the data transferred
1405 */
1406static inline __attribute__((__always_inline__))
1407MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1408                               uint8_t *buf, int len)
1409{
1410    MemTxResult result = MEMTX_OK;
1411    hwaddr l, addr1;
1412    void *ptr;
1413    MemoryRegion *mr;
1414
1415    if (__builtin_constant_p(len)) {
1416        if (len) {
1417            rcu_read_lock();
1418            l = len;
1419            mr = address_space_translate(as, addr, &addr1, &l, false);
1420            if (len == l && memory_access_is_direct(mr, false)) {
1421                addr1 += memory_region_get_ram_addr(mr);
1422                ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1423                memcpy(buf, ptr, len);
1424            } else {
1425                result = address_space_read_continue(as, addr, attrs, buf, len,
1426                                                     addr1, l, mr);
1427            }
1428            rcu_read_unlock();
1429        }
1430    } else {
1431        result = address_space_read_full(as, addr, attrs, buf, len);
1432    }
1433    return result;
1434}
1435
1436#endif
1437
1438#endif
1439