qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4
   5#include "cpu.h"
   6#include "exec/cpu_ldst.h"
   7
   8#undef DEBUG_REMAP
   9#ifdef DEBUG_REMAP
  10#endif /* DEBUG_REMAP */
  11
  12#include "exec/user/abitypes.h"
  13
  14#include "exec/user/thunk.h"
  15#include "syscall_defs.h"
  16#include "target_syscall.h"
  17#include "exec/gdbstub.h"
  18#include "qemu/queue.h"
  19
  20#define THREAD __thread
  21
  22/* This struct is used to hold certain information about the image.
  23 * Basically, it replicates in user space what would be certain
  24 * task_struct fields in the kernel
  25 */
  26struct image_info {
  27        abi_ulong       load_bias;
  28        abi_ulong       load_addr;
  29        abi_ulong       start_code;
  30        abi_ulong       end_code;
  31        abi_ulong       start_data;
  32        abi_ulong       end_data;
  33        abi_ulong       start_brk;
  34        abi_ulong       brk;
  35        abi_ulong       start_mmap;
  36        abi_ulong       start_stack;
  37        abi_ulong       stack_limit;
  38        abi_ulong       entry;
  39        abi_ulong       code_offset;
  40        abi_ulong       data_offset;
  41        abi_ulong       saved_auxv;
  42        abi_ulong       auxv_len;
  43        abi_ulong       arg_start;
  44        abi_ulong       arg_end;
  45        uint32_t        elf_flags;
  46        int             personality;
  47#ifdef CONFIG_USE_FDPIC
  48        abi_ulong       loadmap_addr;
  49        uint16_t        nsegs;
  50        void           *loadsegs;
  51        abi_ulong       pt_dynamic_addr;
  52        struct image_info *other_info;
  53#endif
  54};
  55
  56#ifdef TARGET_I386
  57/* Information about the current linux thread */
  58struct vm86_saved_state {
  59    uint32_t eax; /* return code */
  60    uint32_t ebx;
  61    uint32_t ecx;
  62    uint32_t edx;
  63    uint32_t esi;
  64    uint32_t edi;
  65    uint32_t ebp;
  66    uint32_t esp;
  67    uint32_t eflags;
  68    uint32_t eip;
  69    uint16_t cs, ss, ds, es, fs, gs;
  70};
  71#endif
  72
  73#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  74/* FPU emulator */
  75#include "nwfpe/fpa11.h"
  76#endif
  77
  78#define MAX_SIGQUEUE_SIZE 1024
  79
  80struct sigqueue {
  81    struct sigqueue *next;
  82    target_siginfo_t info;
  83};
  84
  85struct emulated_sigtable {
  86    int pending; /* true if signal is pending */
  87    struct sigqueue *first;
  88    struct sigqueue info; /* in order to always have memory for the
  89                             first signal, we put it here */
  90};
  91
  92/* NOTE: we force a big alignment so that the stack stored after is
  93   aligned too */
  94typedef struct TaskState {
  95    pid_t ts_tid;     /* tid (or pid) of this task */
  96#ifdef TARGET_ARM
  97# ifdef TARGET_ABI32
  98    /* FPA state */
  99    FPA11 fpa;
 100# endif
 101    int swi_errno;
 102#endif
 103#ifdef TARGET_UNICORE32
 104    int swi_errno;
 105#endif
 106#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 107    abi_ulong target_v86;
 108    struct vm86_saved_state vm86_saved_regs;
 109    struct target_vm86plus_struct vm86plus;
 110    uint32_t v86flags;
 111    uint32_t v86mask;
 112#endif
 113    abi_ulong child_tidptr;
 114#ifdef TARGET_M68K
 115    int sim_syscalls;
 116    abi_ulong tp_value;
 117#endif
 118#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
 119    /* Extra fields for semihosted binaries.  */
 120    uint32_t heap_base;
 121    uint32_t heap_limit;
 122#endif
 123    uint32_t stack_base;
 124    int used; /* non zero if used */
 125    bool sigsegv_blocked; /* SIGSEGV blocked by guest */
 126    struct image_info *info;
 127    struct linux_binprm *bprm;
 128
 129    struct emulated_sigtable sigtab[TARGET_NSIG];
 130    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
 131    struct sigqueue *first_free; /* first free siginfo queue entry */
 132    int signal_pending; /* non zero if a signal may be pending */
 133} __attribute__((aligned(16))) TaskState;
 134
 135extern char *exec_path;
 136void init_task_state(TaskState *ts);
 137void task_settid(TaskState *);
 138void stop_all_tasks(void);
 139extern const char *qemu_uname_release;
 140extern unsigned long mmap_min_addr;
 141
 142/* ??? See if we can avoid exposing so much of the loader internals.  */
 143
 144/* Read a good amount of data initially, to hopefully get all the
 145   program headers loaded.  */
 146#define BPRM_BUF_SIZE  1024
 147
 148/*
 149 * This structure is used to hold the arguments that are
 150 * used when loading binaries.
 151 */
 152struct linux_binprm {
 153        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 154        abi_ulong p;
 155        int fd;
 156        int e_uid, e_gid;
 157        int argc, envc;
 158        char **argv;
 159        char **envp;
 160        char * filename;        /* Name of binary */
 161        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 162};
 163
 164void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 165abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 166                              abi_ulong stringp, int push_ptr);
 167int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 168             struct target_pt_regs * regs, struct image_info *infop,
 169             struct linux_binprm *);
 170
 171int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 172int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 173
 174abi_long memcpy_to_target(abi_ulong dest, const void *src,
 175                          unsigned long len);
 176void target_set_brk(abi_ulong new_brk);
 177abi_long do_brk(abi_ulong new_brk);
 178void syscall_init(void);
 179abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 180                    abi_long arg2, abi_long arg3, abi_long arg4,
 181                    abi_long arg5, abi_long arg6, abi_long arg7,
 182                    abi_long arg8);
 183void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 184extern THREAD CPUState *thread_cpu;
 185void cpu_loop(CPUArchState *env);
 186char *target_strerror(int err);
 187int get_osversion(void);
 188void init_qemu_uname_release(void);
 189void fork_start(void);
 190void fork_end(int child);
 191
 192/* Creates the initial guest address space in the host memory space using
 193 * the given host start address hint and size.  The guest_start parameter
 194 * specifies the start address of the guest space.  guest_base will be the
 195 * difference between the host start address computed by this function and
 196 * guest_start.  If fixed is specified, then the mapped address space must
 197 * start at host_start.  The real start address of the mapped memory space is
 198 * returned or -1 if there was an error.
 199 */
 200unsigned long init_guest_space(unsigned long host_start,
 201                               unsigned long host_size,
 202                               unsigned long guest_start,
 203                               bool fixed);
 204
 205#include "qemu/log.h"
 206
 207/* syscall.c */
 208int host_to_target_waitstatus(int status);
 209
 210/* strace.c */
 211void print_syscall(int num,
 212                   abi_long arg1, abi_long arg2, abi_long arg3,
 213                   abi_long arg4, abi_long arg5, abi_long arg6);
 214void print_syscall_ret(int num, abi_long arg1);
 215extern int do_strace;
 216
 217/* signal.c */
 218void process_pending_signals(CPUArchState *cpu_env);
 219void signal_init(void);
 220int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
 221void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 222void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 223int target_to_host_signal(int sig);
 224int host_to_target_signal(int sig);
 225long do_sigreturn(CPUArchState *env);
 226long do_rt_sigreturn(CPUArchState *env);
 227abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 228int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 229
 230#ifdef TARGET_I386
 231/* vm86.c */
 232void save_v86_state(CPUX86State *env);
 233void handle_vm86_trap(CPUX86State *env, int trapno);
 234void handle_vm86_fault(CPUX86State *env);
 235int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 236#elif defined(TARGET_SPARC64)
 237void sparc64_set_context(CPUSPARCState *env);
 238void sparc64_get_context(CPUSPARCState *env);
 239#endif
 240
 241/* mmap.c */
 242int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 243abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 244                     int flags, int fd, abi_ulong offset);
 245int target_munmap(abi_ulong start, abi_ulong len);
 246abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 247                       abi_ulong new_size, unsigned long flags,
 248                       abi_ulong new_addr);
 249int target_msync(abi_ulong start, abi_ulong len, int flags);
 250extern unsigned long last_brk;
 251extern abi_ulong mmap_next_start;
 252abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
 253void cpu_list_lock(void);
 254void cpu_list_unlock(void);
 255void mmap_fork_start(void);
 256void mmap_fork_end(int child);
 257
 258/* main.c */
 259extern unsigned long guest_stack_size;
 260
 261/* user access */
 262
 263#define VERIFY_READ 0
 264#define VERIFY_WRITE 1 /* implies read access */
 265
 266static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 267{
 268    return page_check_range((target_ulong)addr, size,
 269                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 270}
 271
 272/* NOTE __get_user and __put_user use host pointers and don't check access.
 273   These are usually used to access struct data members once the struct has
 274   been locked - usually with lock_user_struct.  */
 275
 276/* Tricky points:
 277   - Use __builtin_choose_expr to avoid type promotion from ?:,
 278   - Invalid sizes result in a compile time error stemming from
 279     the fact that abort has no parameters.
 280   - It's easier to use the endian-specific unaligned load/store
 281     functions than host-endian unaligned load/store plus tswapN.  */
 282
 283#define __put_user_e(x, hptr, e)                                        \
 284  (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
 285   __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
 286   __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
 287   __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
 288     ((hptr), (x)), (void)0)
 289
 290#define __get_user_e(x, hptr, e)                                        \
 291  ((x) = (typeof(*hptr))(                                               \
 292   __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
 293   __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
 294   __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
 295   __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
 296     (hptr)), (void)0)
 297
 298#ifdef TARGET_WORDS_BIGENDIAN
 299# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 300# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 301#else
 302# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 303# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 304#endif
 305
 306/* put_user()/get_user() take a guest address and check access */
 307/* These are usually used to access an atomic data type, such as an int,
 308 * that has been passed by address.  These internally perform locking
 309 * and unlocking on the data type.
 310 */
 311#define put_user(x, gaddr, target_type)                                 \
 312({                                                                      \
 313    abi_ulong __gaddr = (gaddr);                                        \
 314    target_type *__hptr;                                                \
 315    abi_long __ret = 0;                                                 \
 316    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 317        __put_user((x), __hptr);                                \
 318        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 319    } else                                                              \
 320        __ret = -TARGET_EFAULT;                                         \
 321    __ret;                                                              \
 322})
 323
 324#define get_user(x, gaddr, target_type)                                 \
 325({                                                                      \
 326    abi_ulong __gaddr = (gaddr);                                        \
 327    target_type *__hptr;                                                \
 328    abi_long __ret = 0;                                                 \
 329    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 330        __get_user((x), __hptr);                                \
 331        unlock_user(__hptr, __gaddr, 0);                                \
 332    } else {                                                            \
 333        /* avoid warning */                                             \
 334        (x) = 0;                                                        \
 335        __ret = -TARGET_EFAULT;                                         \
 336    }                                                                   \
 337    __ret;                                                              \
 338})
 339
 340#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 341#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 342#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 343#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 344#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 345#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 346#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 347#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 348#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 349#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 350
 351#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 352#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 353#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 354#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 355#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 356#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 357#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 358#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 359#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 360#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 361
 362/* copy_from_user() and copy_to_user() are usually used to copy data
 363 * buffers between the target and host.  These internally perform
 364 * locking/unlocking of the memory.
 365 */
 366abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 367abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 368
 369/* Functions for accessing guest memory.  The tget and tput functions
 370   read/write single values, byteswapping as necessary.  The lock_user function
 371   gets a pointer to a contiguous area of guest memory, but does not perform
 372   any byteswapping.  lock_user may return either a pointer to the guest
 373   memory, or a temporary buffer.  */
 374
 375/* Lock an area of guest memory into the host.  If copy is true then the
 376   host area will have the same contents as the guest.  */
 377static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 378{
 379    if (!access_ok(type, guest_addr, len))
 380        return NULL;
 381#ifdef DEBUG_REMAP
 382    {
 383        void *addr;
 384        addr = malloc(len);
 385        if (copy)
 386            memcpy(addr, g2h(guest_addr), len);
 387        else
 388            memset(addr, 0, len);
 389        return addr;
 390    }
 391#else
 392    return g2h(guest_addr);
 393#endif
 394}
 395
 396/* Unlock an area of guest memory.  The first LEN bytes must be
 397   flushed back to guest memory. host_ptr = NULL is explicitly
 398   allowed and does nothing. */
 399static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 400                               long len)
 401{
 402
 403#ifdef DEBUG_REMAP
 404    if (!host_ptr)
 405        return;
 406    if (host_ptr == g2h(guest_addr))
 407        return;
 408    if (len > 0)
 409        memcpy(g2h(guest_addr), host_ptr, len);
 410    free(host_ptr);
 411#endif
 412}
 413
 414/* Return the length of a string in target memory or -TARGET_EFAULT if
 415   access error. */
 416abi_long target_strlen(abi_ulong gaddr);
 417
 418/* Like lock_user but for null terminated strings.  */
 419static inline void *lock_user_string(abi_ulong guest_addr)
 420{
 421    abi_long len;
 422    len = target_strlen(guest_addr);
 423    if (len < 0)
 424        return NULL;
 425    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 426}
 427
 428/* Helper macros for locking/unlocking a target struct.  */
 429#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 430    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 431#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 432    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 433
 434#include <pthread.h>
 435
 436/* Include target-specific struct and function definitions;
 437 * they may need access to the target-independent structures
 438 * above, so include them last.
 439 */
 440#include "target_cpu.h"
 441#include "target_signal.h"
 442#include "target_structs.h"
 443
 444#endif /* QEMU_H */
 445