qemu/target-arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target-arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28/* register banks for CPU modes */
  29#define BANK_USRSYS 0
  30#define BANK_SVC    1
  31#define BANK_ABT    2
  32#define BANK_UND    3
  33#define BANK_IRQ    4
  34#define BANK_FIQ    5
  35#define BANK_HYP    6
  36#define BANK_MON    7
  37
  38static inline bool excp_is_internal(int excp)
  39{
  40    /* Return true if this exception number represents a QEMU-internal
  41     * exception that will not be passed to the guest.
  42     */
  43    return excp == EXCP_INTERRUPT
  44        || excp == EXCP_HLT
  45        || excp == EXCP_DEBUG
  46        || excp == EXCP_HALTED
  47        || excp == EXCP_EXCEPTION_EXIT
  48        || excp == EXCP_KERNEL_TRAP
  49        || excp == EXCP_SEMIHOST
  50        || excp == EXCP_STREX;
  51}
  52
  53/* Exception names for debug logging; note that not all of these
  54 * precisely correspond to architectural exceptions.
  55 */
  56static const char * const excnames[] = {
  57    [EXCP_UDEF] = "Undefined Instruction",
  58    [EXCP_SWI] = "SVC",
  59    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
  60    [EXCP_DATA_ABORT] = "Data Abort",
  61    [EXCP_IRQ] = "IRQ",
  62    [EXCP_FIQ] = "FIQ",
  63    [EXCP_BKPT] = "Breakpoint",
  64    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
  65    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
  66    [EXCP_STREX] = "QEMU intercept of STREX",
  67    [EXCP_HVC] = "Hypervisor Call",
  68    [EXCP_HYP_TRAP] = "Hypervisor Trap",
  69    [EXCP_SMC] = "Secure Monitor Call",
  70    [EXCP_VIRQ] = "Virtual IRQ",
  71    [EXCP_VFIQ] = "Virtual FIQ",
  72    [EXCP_SEMIHOST] = "Semihosting call",
  73};
  74
  75static inline void arm_log_exception(int idx)
  76{
  77    if (qemu_loglevel_mask(CPU_LOG_INT)) {
  78        const char *exc = NULL;
  79
  80        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
  81            exc = excnames[idx];
  82        }
  83        if (!exc) {
  84            exc = "unknown";
  85        }
  86        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
  87    }
  88}
  89
  90/* Scale factor for generic timers, ie number of ns per tick.
  91 * This gives a 62.5MHz timer.
  92 */
  93#define GTIMER_SCALE 16
  94
  95/*
  96 * For AArch64, map a given EL to an index in the banked_spsr array.
  97 * Note that this mapping and the AArch32 mapping defined in bank_number()
  98 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
  99 * mandated mapping between each other.
 100 */
 101static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 102{
 103    static const unsigned int map[4] = {
 104        [1] = BANK_SVC, /* EL1.  */
 105        [2] = BANK_HYP, /* EL2.  */
 106        [3] = BANK_MON, /* EL3.  */
 107    };
 108    assert(el >= 1 && el <= 3);
 109    return map[el];
 110}
 111
 112/* Map CPU modes onto saved register banks.  */
 113static inline int bank_number(int mode)
 114{
 115    switch (mode) {
 116    case ARM_CPU_MODE_USR:
 117    case ARM_CPU_MODE_SYS:
 118        return BANK_USRSYS;
 119    case ARM_CPU_MODE_SVC:
 120        return BANK_SVC;
 121    case ARM_CPU_MODE_ABT:
 122        return BANK_ABT;
 123    case ARM_CPU_MODE_UND:
 124        return BANK_UND;
 125    case ARM_CPU_MODE_IRQ:
 126        return BANK_IRQ;
 127    case ARM_CPU_MODE_FIQ:
 128        return BANK_FIQ;
 129    case ARM_CPU_MODE_HYP:
 130        return BANK_HYP;
 131    case ARM_CPU_MODE_MON:
 132        return BANK_MON;
 133    }
 134    g_assert_not_reached();
 135}
 136
 137void switch_mode(CPUARMState *, int);
 138void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 139void arm_translate_init(void);
 140
 141enum arm_fprounding {
 142    FPROUNDING_TIEEVEN,
 143    FPROUNDING_POSINF,
 144    FPROUNDING_NEGINF,
 145    FPROUNDING_ZERO,
 146    FPROUNDING_TIEAWAY,
 147    FPROUNDING_ODD
 148};
 149
 150int arm_rmode_to_sf(int rmode);
 151
 152static inline void aarch64_save_sp(CPUARMState *env, int el)
 153{
 154    if (env->pstate & PSTATE_SP) {
 155        env->sp_el[el] = env->xregs[31];
 156    } else {
 157        env->sp_el[0] = env->xregs[31];
 158    }
 159}
 160
 161static inline void aarch64_restore_sp(CPUARMState *env, int el)
 162{
 163    if (env->pstate & PSTATE_SP) {
 164        env->xregs[31] = env->sp_el[el];
 165    } else {
 166        env->xregs[31] = env->sp_el[0];
 167    }
 168}
 169
 170static inline void update_spsel(CPUARMState *env, uint32_t imm)
 171{
 172    unsigned int cur_el = arm_current_el(env);
 173    /* Update PSTATE SPSel bit; this requires us to update the
 174     * working stack pointer in xregs[31].
 175     */
 176    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 177        return;
 178    }
 179    aarch64_save_sp(env, cur_el);
 180    env->pstate = deposit32(env->pstate, 0, 1, imm);
 181
 182    /* We rely on illegal updates to SPsel from EL0 to get trapped
 183     * at translation time.
 184     */
 185    assert(cur_el >= 1 && cur_el <= 3);
 186    aarch64_restore_sp(env, cur_el);
 187}
 188
 189/*
 190 * arm_pamax
 191 * @cpu: ARMCPU
 192 *
 193 * Returns the implementation defined bit-width of physical addresses.
 194 * The ARMv8 reference manuals refer to this as PAMax().
 195 */
 196static inline unsigned int arm_pamax(ARMCPU *cpu)
 197{
 198    static const unsigned int pamax_map[] = {
 199        [0] = 32,
 200        [1] = 36,
 201        [2] = 40,
 202        [3] = 42,
 203        [4] = 44,
 204        [5] = 48,
 205    };
 206    unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 207
 208    /* id_aa64mmfr0 is a read-only register so values outside of the
 209     * supported mappings can be considered an implementation error.  */
 210    assert(parange < ARRAY_SIZE(pamax_map));
 211    return pamax_map[parange];
 212}
 213
 214/* Return true if extended addresses are enabled.
 215 * This is always the case if our translation regime is 64 bit,
 216 * but depends on TTBCR.EAE for 32 bit.
 217 */
 218static inline bool extended_addresses_enabled(CPUARMState *env)
 219{
 220    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 221    return arm_el_is_aa64(env, 1) ||
 222           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 223}
 224
 225/* Valid Syndrome Register EC field values */
 226enum arm_exception_class {
 227    EC_UNCATEGORIZED          = 0x00,
 228    EC_WFX_TRAP               = 0x01,
 229    EC_CP15RTTRAP             = 0x03,
 230    EC_CP15RRTTRAP            = 0x04,
 231    EC_CP14RTTRAP             = 0x05,
 232    EC_CP14DTTRAP             = 0x06,
 233    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 234    EC_FPIDTRAP               = 0x08,
 235    EC_CP14RRTTRAP            = 0x0c,
 236    EC_ILLEGALSTATE           = 0x0e,
 237    EC_AA32_SVC               = 0x11,
 238    EC_AA32_HVC               = 0x12,
 239    EC_AA32_SMC               = 0x13,
 240    EC_AA64_SVC               = 0x15,
 241    EC_AA64_HVC               = 0x16,
 242    EC_AA64_SMC               = 0x17,
 243    EC_SYSTEMREGISTERTRAP     = 0x18,
 244    EC_INSNABORT              = 0x20,
 245    EC_INSNABORT_SAME_EL      = 0x21,
 246    EC_PCALIGNMENT            = 0x22,
 247    EC_DATAABORT              = 0x24,
 248    EC_DATAABORT_SAME_EL      = 0x25,
 249    EC_SPALIGNMENT            = 0x26,
 250    EC_AA32_FPTRAP            = 0x28,
 251    EC_AA64_FPTRAP            = 0x2c,
 252    EC_SERROR                 = 0x2f,
 253    EC_BREAKPOINT             = 0x30,
 254    EC_BREAKPOINT_SAME_EL     = 0x31,
 255    EC_SOFTWARESTEP           = 0x32,
 256    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 257    EC_WATCHPOINT             = 0x34,
 258    EC_WATCHPOINT_SAME_EL     = 0x35,
 259    EC_AA32_BKPT              = 0x38,
 260    EC_VECTORCATCH            = 0x3a,
 261    EC_AA64_BKPT              = 0x3c,
 262};
 263
 264#define ARM_EL_EC_SHIFT 26
 265#define ARM_EL_IL_SHIFT 25
 266#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 267
 268/* Utility functions for constructing various kinds of syndrome value.
 269 * Note that in general we follow the AArch64 syndrome values; in a
 270 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 271 * mode differs slightly, so if we ever implemented Hyp mode then the
 272 * syndrome value would need some massaging on exception entry.
 273 * (One example of this is that AArch64 defaults to IL bit set for
 274 * exceptions which don't specifically indicate information about the
 275 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
 276 */
 277static inline uint32_t syn_uncategorized(void)
 278{
 279    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 280}
 281
 282static inline uint32_t syn_aa64_svc(uint32_t imm16)
 283{
 284    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 285}
 286
 287static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 288{
 289    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 290}
 291
 292static inline uint32_t syn_aa64_smc(uint32_t imm16)
 293{
 294    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 295}
 296
 297static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 298{
 299    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 300        | (is_16bit ? 0 : ARM_EL_IL);
 301}
 302
 303static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 304{
 305    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 306}
 307
 308static inline uint32_t syn_aa32_smc(void)
 309{
 310    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 311}
 312
 313static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 314{
 315    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 316}
 317
 318static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 319{
 320    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 321        | (is_16bit ? 0 : ARM_EL_IL);
 322}
 323
 324static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 325                                           int crn, int crm, int rt,
 326                                           int isread)
 327{
 328    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 329        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 330        | (crm << 1) | isread;
 331}
 332
 333static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 334                                        int crn, int crm, int rt, int isread,
 335                                        bool is_16bit)
 336{
 337    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 338        | (is_16bit ? 0 : ARM_EL_IL)
 339        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 340        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 341}
 342
 343static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 344                                        int crn, int crm, int rt, int isread,
 345                                        bool is_16bit)
 346{
 347    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 348        | (is_16bit ? 0 : ARM_EL_IL)
 349        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 350        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 351}
 352
 353static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 354                                         int rt, int rt2, int isread,
 355                                         bool is_16bit)
 356{
 357    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 358        | (is_16bit ? 0 : ARM_EL_IL)
 359        | (cv << 24) | (cond << 20) | (opc1 << 16)
 360        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 361}
 362
 363static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 364                                         int rt, int rt2, int isread,
 365                                         bool is_16bit)
 366{
 367    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 368        | (is_16bit ? 0 : ARM_EL_IL)
 369        | (cv << 24) | (cond << 20) | (opc1 << 16)
 370        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 371}
 372
 373static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 374{
 375    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 376        | (is_16bit ? 0 : ARM_EL_IL)
 377        | (cv << 24) | (cond << 20);
 378}
 379
 380static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 381{
 382    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 383        | (ea << 9) | (s1ptw << 7) | fsc;
 384}
 385
 386static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw,
 387                                      int wnr, int fsc)
 388{
 389    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 390        | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 391}
 392
 393static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 394{
 395    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 396        | (isv << 24) | (ex << 6) | 0x22;
 397}
 398
 399static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 400{
 401    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 402        | (cm << 8) | (wnr << 6) | 0x22;
 403}
 404
 405static inline uint32_t syn_breakpoint(int same_el)
 406{
 407    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 408        | ARM_EL_IL | 0x22;
 409}
 410
 411static inline uint32_t syn_wfx(int cv, int cond, int ti)
 412{
 413    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 414           (cv << 24) | (cond << 20) | ti;
 415}
 416
 417/* Update a QEMU watchpoint based on the information the guest has set in the
 418 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 419 */
 420void hw_watchpoint_update(ARMCPU *cpu, int n);
 421/* Update the QEMU watchpoints for every guest watchpoint. This does a
 422 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 423 * suitable for use after migration or on reset.
 424 */
 425void hw_watchpoint_update_all(ARMCPU *cpu);
 426/* Update a QEMU breakpoint based on the information the guest has set in the
 427 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 428 */
 429void hw_breakpoint_update(ARMCPU *cpu, int n);
 430/* Update the QEMU breakpoints for every guest breakpoint. This does a
 431 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 432 * suitable for use after migration or on reset.
 433 */
 434void hw_breakpoint_update_all(ARMCPU *cpu);
 435
 436/* Callback function for checking if a watchpoint should trigger. */
 437bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 438
 439/* Callback function for when a watchpoint or breakpoint triggers. */
 440void arm_debug_excp_handler(CPUState *cs);
 441
 442#ifdef CONFIG_USER_ONLY
 443static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 444{
 445    return false;
 446}
 447#else
 448/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 449bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 450/* Actually handle a PSCI call */
 451void arm_handle_psci_call(ARMCPU *cpu);
 452#endif
 453
 454/**
 455 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 456 * @s2addr: Address that caused a fault at stage 2
 457 * @stage2: True if we faulted at stage 2
 458 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 459 */
 460typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 461struct ARMMMUFaultInfo {
 462    target_ulong s2addr;
 463    bool stage2;
 464    bool s1ptw;
 465};
 466
 467/* Do a page table walk and add page to TLB if possible */
 468bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
 469                  uint32_t *fsr, ARMMMUFaultInfo *fi);
 470
 471/* Return true if the stage 1 translation regime is using LPAE format page
 472 * tables */
 473bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 474
 475/* Raise a data fault alignment exception for the specified virtual address */
 476void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
 477                                 int is_user, uintptr_t retaddr);
 478
 479#endif
 480