qemu/hw/block/nand.c
<<
>>
Prefs
   1/*
   2 * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
   3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
   4 * Samsung Electronic.
   5 *
   6 * Copyright (c) 2006 Openedhand Ltd.
   7 * Written by Andrzej Zaborowski <balrog@zabor.org>
   8 *
   9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11 * from ST Microelectronics.
  12 *
  13 * This code is licensed under the GNU GPL v2.
  14 *
  15 * Contributions after 2012-01-13 are licensed under the terms of the
  16 * GNU GPL, version 2 or (at your option) any later version.
  17 */
  18
  19#ifndef NAND_IO
  20
  21#include "qemu/osdep.h"
  22#include "hw/hw.h"
  23#include "hw/block/flash.h"
  24#include "sysemu/block-backend.h"
  25#include "hw/qdev.h"
  26#include "qapi/error.h"
  27#include "qemu/error-report.h"
  28
  29# define NAND_CMD_READ0         0x00
  30# define NAND_CMD_READ1         0x01
  31# define NAND_CMD_READ2         0x50
  32# define NAND_CMD_LPREAD2       0x30
  33# define NAND_CMD_NOSERIALREAD2 0x35
  34# define NAND_CMD_RANDOMREAD1   0x05
  35# define NAND_CMD_RANDOMREAD2   0xe0
  36# define NAND_CMD_READID        0x90
  37# define NAND_CMD_RESET         0xff
  38# define NAND_CMD_PAGEPROGRAM1  0x80
  39# define NAND_CMD_PAGEPROGRAM2  0x10
  40# define NAND_CMD_CACHEPROGRAM2 0x15
  41# define NAND_CMD_BLOCKERASE1   0x60
  42# define NAND_CMD_BLOCKERASE2   0xd0
  43# define NAND_CMD_READSTATUS    0x70
  44# define NAND_CMD_COPYBACKPRG1  0x85
  45
  46# define NAND_IOSTATUS_ERROR    (1 << 0)
  47# define NAND_IOSTATUS_PLANE0   (1 << 1)
  48# define NAND_IOSTATUS_PLANE1   (1 << 2)
  49# define NAND_IOSTATUS_PLANE2   (1 << 3)
  50# define NAND_IOSTATUS_PLANE3   (1 << 4)
  51# define NAND_IOSTATUS_READY    (1 << 6)
  52# define NAND_IOSTATUS_UNPROTCT (1 << 7)
  53
  54# define MAX_PAGE               0x800
  55# define MAX_OOB                0x40
  56
  57typedef struct NANDFlashState NANDFlashState;
  58struct NANDFlashState {
  59    DeviceState parent_obj;
  60
  61    uint8_t manf_id, chip_id;
  62    uint8_t buswidth; /* in BYTES */
  63    int size, pages;
  64    int page_shift, oob_shift, erase_shift, addr_shift;
  65    uint8_t *storage;
  66    BlockBackend *blk;
  67    int mem_oob;
  68
  69    uint8_t cle, ale, ce, wp, gnd;
  70
  71    uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  72    uint8_t *ioaddr;
  73    int iolen;
  74
  75    uint32_t cmd;
  76    uint64_t addr;
  77    int addrlen;
  78    int status;
  79    int offset;
  80
  81    void (*blk_write)(NANDFlashState *s);
  82    void (*blk_erase)(NANDFlashState *s);
  83    void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
  84
  85    uint32_t ioaddr_vmstate;
  86};
  87
  88#define TYPE_NAND "nand"
  89
  90#define NAND(obj) \
  91    OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
  92
  93static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  94{
  95    /* Like memcpy() but we logical-AND the data into the destination */
  96    int i;
  97    for (i = 0; i < n; i++) {
  98        dest[i] &= src[i];
  99    }
 100}
 101
 102# define NAND_NO_AUTOINCR       0x00000001
 103# define NAND_BUSWIDTH_16       0x00000002
 104# define NAND_NO_PADDING        0x00000004
 105# define NAND_CACHEPRG          0x00000008
 106# define NAND_COPYBACK          0x00000010
 107# define NAND_IS_AND            0x00000020
 108# define NAND_4PAGE_ARRAY       0x00000040
 109# define NAND_NO_READRDY        0x00000100
 110# define NAND_SAMSUNG_LP        (NAND_NO_PADDING | NAND_COPYBACK)
 111
 112# define NAND_IO
 113
 114# define PAGE(addr)             ((addr) >> ADDR_SHIFT)
 115# define PAGE_START(page)       (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
 116# define PAGE_MASK              ((1 << ADDR_SHIFT) - 1)
 117# define OOB_SHIFT              (PAGE_SHIFT - 5)
 118# define OOB_SIZE               (1 << OOB_SHIFT)
 119# define SECTOR(addr)           ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
 120# define SECTOR_OFFSET(addr)    ((addr) & ((511 >> PAGE_SHIFT) << 8))
 121
 122# define PAGE_SIZE              256
 123# define PAGE_SHIFT             8
 124# define PAGE_SECTORS           1
 125# define ADDR_SHIFT             8
 126# include "nand.c"
 127# define PAGE_SIZE              512
 128# define PAGE_SHIFT             9
 129# define PAGE_SECTORS           1
 130# define ADDR_SHIFT             8
 131# include "nand.c"
 132# define PAGE_SIZE              2048
 133# define PAGE_SHIFT             11
 134# define PAGE_SECTORS           4
 135# define ADDR_SHIFT             16
 136# include "nand.c"
 137
 138/* Information based on Linux drivers/mtd/nand/nand_ids.c */
 139static const struct {
 140    int size;
 141    int width;
 142    int page_shift;
 143    int erase_shift;
 144    uint32_t options;
 145} nand_flash_ids[0x100] = {
 146    [0 ... 0xff] = { 0 },
 147
 148    [0x6e] = { 1,       8,      8, 4, 0 },
 149    [0x64] = { 2,       8,      8, 4, 0 },
 150    [0x6b] = { 4,       8,      9, 4, 0 },
 151    [0xe8] = { 1,       8,      8, 4, 0 },
 152    [0xec] = { 1,       8,      8, 4, 0 },
 153    [0xea] = { 2,       8,      8, 4, 0 },
 154    [0xd5] = { 4,       8,      9, 4, 0 },
 155    [0xe3] = { 4,       8,      9, 4, 0 },
 156    [0xe5] = { 4,       8,      9, 4, 0 },
 157    [0xd6] = { 8,       8,      9, 4, 0 },
 158
 159    [0x39] = { 8,       8,      9, 4, 0 },
 160    [0xe6] = { 8,       8,      9, 4, 0 },
 161    [0x49] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 162    [0x59] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 163
 164    [0x33] = { 16,      8,      9, 5, 0 },
 165    [0x73] = { 16,      8,      9, 5, 0 },
 166    [0x43] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 167    [0x53] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 168
 169    [0x35] = { 32,      8,      9, 5, 0 },
 170    [0x75] = { 32,      8,      9, 5, 0 },
 171    [0x45] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 172    [0x55] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 173
 174    [0x36] = { 64,      8,      9, 5, 0 },
 175    [0x76] = { 64,      8,      9, 5, 0 },
 176    [0x46] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 177    [0x56] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 178
 179    [0x78] = { 128,     8,      9, 5, 0 },
 180    [0x39] = { 128,     8,      9, 5, 0 },
 181    [0x79] = { 128,     8,      9, 5, 0 },
 182    [0x72] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 183    [0x49] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 184    [0x74] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 185    [0x59] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 186
 187    [0x71] = { 256,     8,      9, 5, 0 },
 188
 189    /*
 190     * These are the new chips with large page size. The pagesize and the
 191     * erasesize is determined from the extended id bytes
 192     */
 193# define LP_OPTIONS     (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
 194# define LP_OPTIONS16   (LP_OPTIONS | NAND_BUSWIDTH_16)
 195
 196    /* 512 Megabit */
 197    [0xa2] = { 64,      8,      0, 0, LP_OPTIONS },
 198    [0xf2] = { 64,      8,      0, 0, LP_OPTIONS },
 199    [0xb2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 200    [0xc2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 201
 202    /* 1 Gigabit */
 203    [0xa1] = { 128,     8,      0, 0, LP_OPTIONS },
 204    [0xf1] = { 128,     8,      0, 0, LP_OPTIONS },
 205    [0xb1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 206    [0xc1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 207
 208    /* 2 Gigabit */
 209    [0xaa] = { 256,     8,      0, 0, LP_OPTIONS },
 210    [0xda] = { 256,     8,      0, 0, LP_OPTIONS },
 211    [0xba] = { 256,     16,     0, 0, LP_OPTIONS16 },
 212    [0xca] = { 256,     16,     0, 0, LP_OPTIONS16 },
 213
 214    /* 4 Gigabit */
 215    [0xac] = { 512,     8,      0, 0, LP_OPTIONS },
 216    [0xdc] = { 512,     8,      0, 0, LP_OPTIONS },
 217    [0xbc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 218    [0xcc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 219
 220    /* 8 Gigabit */
 221    [0xa3] = { 1024,    8,      0, 0, LP_OPTIONS },
 222    [0xd3] = { 1024,    8,      0, 0, LP_OPTIONS },
 223    [0xb3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 224    [0xc3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 225
 226    /* 16 Gigabit */
 227    [0xa5] = { 2048,    8,      0, 0, LP_OPTIONS },
 228    [0xd5] = { 2048,    8,      0, 0, LP_OPTIONS },
 229    [0xb5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 230    [0xc5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 231};
 232
 233static void nand_reset(DeviceState *dev)
 234{
 235    NANDFlashState *s = NAND(dev);
 236    s->cmd = NAND_CMD_READ0;
 237    s->addr = 0;
 238    s->addrlen = 0;
 239    s->iolen = 0;
 240    s->offset = 0;
 241    s->status &= NAND_IOSTATUS_UNPROTCT;
 242    s->status |= NAND_IOSTATUS_READY;
 243}
 244
 245static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
 246{
 247    s->ioaddr[s->iolen++] = value;
 248    for (value = s->buswidth; --value;) {
 249        s->ioaddr[s->iolen++] = 0;
 250    }
 251}
 252
 253static void nand_command(NANDFlashState *s)
 254{
 255    unsigned int offset;
 256    switch (s->cmd) {
 257    case NAND_CMD_READ0:
 258        s->iolen = 0;
 259        break;
 260
 261    case NAND_CMD_READID:
 262        s->ioaddr = s->io;
 263        s->iolen = 0;
 264        nand_pushio_byte(s, s->manf_id);
 265        nand_pushio_byte(s, s->chip_id);
 266        nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
 267        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 268            /* Page Size, Block Size, Spare Size; bit 6 indicates
 269             * 8 vs 16 bit width NAND.
 270             */
 271            nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
 272        } else {
 273            nand_pushio_byte(s, 0xc0); /* Multi-plane */
 274        }
 275        break;
 276
 277    case NAND_CMD_RANDOMREAD2:
 278    case NAND_CMD_NOSERIALREAD2:
 279        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
 280            break;
 281        offset = s->addr & ((1 << s->addr_shift) - 1);
 282        s->blk_load(s, s->addr, offset);
 283        if (s->gnd)
 284            s->iolen = (1 << s->page_shift) - offset;
 285        else
 286            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 287        break;
 288
 289    case NAND_CMD_RESET:
 290        nand_reset(DEVICE(s));
 291        break;
 292
 293    case NAND_CMD_PAGEPROGRAM1:
 294        s->ioaddr = s->io;
 295        s->iolen = 0;
 296        break;
 297
 298    case NAND_CMD_PAGEPROGRAM2:
 299        if (s->wp) {
 300            s->blk_write(s);
 301        }
 302        break;
 303
 304    case NAND_CMD_BLOCKERASE1:
 305        break;
 306
 307    case NAND_CMD_BLOCKERASE2:
 308        s->addr &= (1ull << s->addrlen * 8) - 1;
 309        s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
 310                                                                    16 : 8;
 311
 312        if (s->wp) {
 313            s->blk_erase(s);
 314        }
 315        break;
 316
 317    case NAND_CMD_READSTATUS:
 318        s->ioaddr = s->io;
 319        s->iolen = 0;
 320        nand_pushio_byte(s, s->status);
 321        break;
 322
 323    default:
 324        printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
 325    }
 326}
 327
 328static void nand_pre_save(void *opaque)
 329{
 330    NANDFlashState *s = NAND(opaque);
 331
 332    s->ioaddr_vmstate = s->ioaddr - s->io;
 333}
 334
 335static int nand_post_load(void *opaque, int version_id)
 336{
 337    NANDFlashState *s = NAND(opaque);
 338
 339    if (s->ioaddr_vmstate > sizeof(s->io)) {
 340        return -EINVAL;
 341    }
 342    s->ioaddr = s->io + s->ioaddr_vmstate;
 343
 344    return 0;
 345}
 346
 347static const VMStateDescription vmstate_nand = {
 348    .name = "nand",
 349    .version_id = 1,
 350    .minimum_version_id = 1,
 351    .pre_save = nand_pre_save,
 352    .post_load = nand_post_load,
 353    .fields = (VMStateField[]) {
 354        VMSTATE_UINT8(cle, NANDFlashState),
 355        VMSTATE_UINT8(ale, NANDFlashState),
 356        VMSTATE_UINT8(ce, NANDFlashState),
 357        VMSTATE_UINT8(wp, NANDFlashState),
 358        VMSTATE_UINT8(gnd, NANDFlashState),
 359        VMSTATE_BUFFER(io, NANDFlashState),
 360        VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
 361        VMSTATE_INT32(iolen, NANDFlashState),
 362        VMSTATE_UINT32(cmd, NANDFlashState),
 363        VMSTATE_UINT64(addr, NANDFlashState),
 364        VMSTATE_INT32(addrlen, NANDFlashState),
 365        VMSTATE_INT32(status, NANDFlashState),
 366        VMSTATE_INT32(offset, NANDFlashState),
 367        /* XXX: do we want to save s->storage too? */
 368        VMSTATE_END_OF_LIST()
 369    }
 370};
 371
 372static void nand_realize(DeviceState *dev, Error **errp)
 373{
 374    int pagesize;
 375    NANDFlashState *s = NAND(dev);
 376
 377    s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
 378    s->size = nand_flash_ids[s->chip_id].size << 20;
 379    if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 380        s->page_shift = 11;
 381        s->erase_shift = 6;
 382    } else {
 383        s->page_shift = nand_flash_ids[s->chip_id].page_shift;
 384        s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
 385    }
 386
 387    switch (1 << s->page_shift) {
 388    case 256:
 389        nand_init_256(s);
 390        break;
 391    case 512:
 392        nand_init_512(s);
 393        break;
 394    case 2048:
 395        nand_init_2048(s);
 396        break;
 397    default:
 398        error_setg(errp, "Unsupported NAND block size %#x",
 399                   1 << s->page_shift);
 400        return;
 401    }
 402
 403    pagesize = 1 << s->oob_shift;
 404    s->mem_oob = 1;
 405    if (s->blk) {
 406        if (blk_is_read_only(s->blk)) {
 407            error_setg(errp, "Can't use a read-only drive");
 408            return;
 409        }
 410        if (blk_getlength(s->blk) >=
 411                (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
 412            pagesize = 0;
 413            s->mem_oob = 0;
 414        }
 415    } else {
 416        pagesize += 1 << s->page_shift;
 417    }
 418    if (pagesize) {
 419        s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
 420                        0xff, s->pages * pagesize);
 421    }
 422    /* Give s->ioaddr a sane value in case we save state before it is used. */
 423    s->ioaddr = s->io;
 424}
 425
 426static Property nand_properties[] = {
 427    DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
 428    DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
 429    DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
 430    DEFINE_PROP_END_OF_LIST(),
 431};
 432
 433static void nand_class_init(ObjectClass *klass, void *data)
 434{
 435    DeviceClass *dc = DEVICE_CLASS(klass);
 436
 437    dc->realize = nand_realize;
 438    dc->reset = nand_reset;
 439    dc->vmsd = &vmstate_nand;
 440    dc->props = nand_properties;
 441}
 442
 443static const TypeInfo nand_info = {
 444    .name          = TYPE_NAND,
 445    .parent        = TYPE_DEVICE,
 446    .instance_size = sizeof(NANDFlashState),
 447    .class_init    = nand_class_init,
 448};
 449
 450static void nand_register_types(void)
 451{
 452    type_register_static(&nand_info);
 453}
 454
 455/*
 456 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
 457 * outputs are R/B and eight I/O pins.
 458 *
 459 * CE, WP and R/B are active low.
 460 */
 461void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
 462                  uint8_t ce, uint8_t wp, uint8_t gnd)
 463{
 464    NANDFlashState *s = NAND(dev);
 465
 466    s->cle = cle;
 467    s->ale = ale;
 468    s->ce = ce;
 469    s->wp = wp;
 470    s->gnd = gnd;
 471    if (wp) {
 472        s->status |= NAND_IOSTATUS_UNPROTCT;
 473    } else {
 474        s->status &= ~NAND_IOSTATUS_UNPROTCT;
 475    }
 476}
 477
 478void nand_getpins(DeviceState *dev, int *rb)
 479{
 480    *rb = 1;
 481}
 482
 483void nand_setio(DeviceState *dev, uint32_t value)
 484{
 485    int i;
 486    NANDFlashState *s = NAND(dev);
 487
 488    if (!s->ce && s->cle) {
 489        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 490            if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
 491                return;
 492            if (value == NAND_CMD_RANDOMREAD1) {
 493                s->addr &= ~((1 << s->addr_shift) - 1);
 494                s->addrlen = 0;
 495                return;
 496            }
 497        }
 498        if (value == NAND_CMD_READ0) {
 499            s->offset = 0;
 500        } else if (value == NAND_CMD_READ1) {
 501            s->offset = 0x100;
 502            value = NAND_CMD_READ0;
 503        } else if (value == NAND_CMD_READ2) {
 504            s->offset = 1 << s->page_shift;
 505            value = NAND_CMD_READ0;
 506        }
 507
 508        s->cmd = value;
 509
 510        if (s->cmd == NAND_CMD_READSTATUS ||
 511                s->cmd == NAND_CMD_PAGEPROGRAM2 ||
 512                s->cmd == NAND_CMD_BLOCKERASE1 ||
 513                s->cmd == NAND_CMD_BLOCKERASE2 ||
 514                s->cmd == NAND_CMD_NOSERIALREAD2 ||
 515                s->cmd == NAND_CMD_RANDOMREAD2 ||
 516                s->cmd == NAND_CMD_RESET) {
 517            nand_command(s);
 518        }
 519
 520        if (s->cmd != NAND_CMD_RANDOMREAD2) {
 521            s->addrlen = 0;
 522        }
 523    }
 524
 525    if (s->ale) {
 526        unsigned int shift = s->addrlen * 8;
 527        uint64_t mask = ~(0xffull << shift);
 528        uint64_t v = (uint64_t)value << shift;
 529
 530        s->addr = (s->addr & mask) | v;
 531        s->addrlen ++;
 532
 533        switch (s->addrlen) {
 534        case 1:
 535            if (s->cmd == NAND_CMD_READID) {
 536                nand_command(s);
 537            }
 538            break;
 539        case 2: /* fix cache address as a byte address */
 540            s->addr <<= (s->buswidth - 1);
 541            break;
 542        case 3:
 543            if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 544                    (s->cmd == NAND_CMD_READ0 ||
 545                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 546                nand_command(s);
 547            }
 548            break;
 549        case 4:
 550            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 551                    nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
 552                    (s->cmd == NAND_CMD_READ0 ||
 553                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 554                nand_command(s);
 555            }
 556            break;
 557        case 5:
 558            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 559                    nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
 560                    (s->cmd == NAND_CMD_READ0 ||
 561                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 562                nand_command(s);
 563            }
 564            break;
 565        default:
 566            break;
 567        }
 568    }
 569
 570    if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
 571        if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
 572            for (i = s->buswidth; i--; value >>= 8) {
 573                s->io[s->iolen ++] = (uint8_t) (value & 0xff);
 574            }
 575        }
 576    } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
 577        if ((s->addr & ((1 << s->addr_shift) - 1)) <
 578                (1 << s->page_shift) + (1 << s->oob_shift)) {
 579            for (i = s->buswidth; i--; s->addr++, value >>= 8) {
 580                s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
 581                    (uint8_t) (value & 0xff);
 582            }
 583        }
 584    }
 585}
 586
 587uint32_t nand_getio(DeviceState *dev)
 588{
 589    int offset;
 590    uint32_t x = 0;
 591    NANDFlashState *s = NAND(dev);
 592
 593    /* Allow sequential reading */
 594    if (!s->iolen && s->cmd == NAND_CMD_READ0) {
 595        offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
 596        s->offset = 0;
 597
 598        s->blk_load(s, s->addr, offset);
 599        if (s->gnd)
 600            s->iolen = (1 << s->page_shift) - offset;
 601        else
 602            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 603    }
 604
 605    if (s->ce || s->iolen <= 0) {
 606        return 0;
 607    }
 608
 609    for (offset = s->buswidth; offset--;) {
 610        x |= s->ioaddr[offset] << (offset << 3);
 611    }
 612    /* after receiving READ STATUS command all subsequent reads will
 613     * return the status register value until another command is issued
 614     */
 615    if (s->cmd != NAND_CMD_READSTATUS) {
 616        s->addr   += s->buswidth;
 617        s->ioaddr += s->buswidth;
 618        s->iolen  -= s->buswidth;
 619    }
 620    return x;
 621}
 622
 623uint32_t nand_getbuswidth(DeviceState *dev)
 624{
 625    NANDFlashState *s = (NANDFlashState *) dev;
 626    return s->buswidth << 3;
 627}
 628
 629DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
 630{
 631    DeviceState *dev;
 632
 633    if (nand_flash_ids[chip_id].size == 0) {
 634        hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
 635    }
 636    dev = DEVICE(object_new(TYPE_NAND));
 637    qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
 638    qdev_prop_set_uint8(dev, "chip_id", chip_id);
 639    if (blk) {
 640        qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
 641    }
 642
 643    qdev_init_nofail(dev);
 644    return dev;
 645}
 646
 647type_init(nand_register_types)
 648
 649#else
 650
 651/* Program a single page */
 652static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
 653{
 654    uint64_t off, page, sector, soff;
 655    uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
 656    if (PAGE(s->addr) >= s->pages)
 657        return;
 658
 659    if (!s->blk) {
 660        mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
 661                        s->offset, s->io, s->iolen);
 662    } else if (s->mem_oob) {
 663        sector = SECTOR(s->addr);
 664        off = (s->addr & PAGE_MASK) + s->offset;
 665        soff = SECTOR_OFFSET(s->addr);
 666        if (blk_read(s->blk, sector, iobuf, PAGE_SECTORS) < 0) {
 667            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 668            return;
 669        }
 670
 671        mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
 672        if (off + s->iolen > PAGE_SIZE) {
 673            page = PAGE(s->addr);
 674            mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
 675                            MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
 676        }
 677
 678        if (blk_write(s->blk, sector, iobuf, PAGE_SECTORS) < 0) {
 679            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 680        }
 681    } else {
 682        off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
 683        sector = off >> 9;
 684        soff = off & 0x1ff;
 685        if (blk_read(s->blk, sector, iobuf, PAGE_SECTORS + 2) < 0) {
 686            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 687            return;
 688        }
 689
 690        mem_and(iobuf + soff, s->io, s->iolen);
 691
 692        if (blk_write(s->blk, sector, iobuf, PAGE_SECTORS + 2) < 0) {
 693            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 694        }
 695    }
 696    s->offset = 0;
 697}
 698
 699/* Erase a single block */
 700static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
 701{
 702    uint64_t i, page, addr;
 703    uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
 704    addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
 705
 706    if (PAGE(addr) >= s->pages) {
 707        return;
 708    }
 709
 710    if (!s->blk) {
 711        memset(s->storage + PAGE_START(addr),
 712                        0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
 713    } else if (s->mem_oob) {
 714        memset(s->storage + (PAGE(addr) << OOB_SHIFT),
 715                        0xff, OOB_SIZE << s->erase_shift);
 716        i = SECTOR(addr);
 717        page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
 718        for (; i < page; i ++)
 719            if (blk_write(s->blk, i, iobuf, 1) < 0) {
 720                printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
 721            }
 722    } else {
 723        addr = PAGE_START(addr);
 724        page = addr >> 9;
 725        if (blk_read(s->blk, page, iobuf, 1) < 0) {
 726            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 727        }
 728        memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
 729        if (blk_write(s->blk, page, iobuf, 1) < 0) {
 730            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 731        }
 732
 733        memset(iobuf, 0xff, 0x200);
 734        i = (addr & ~0x1ff) + 0x200;
 735        for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
 736                        i < addr; i += 0x200) {
 737            if (blk_write(s->blk, i >> 9, iobuf, 1) < 0) {
 738                printf("%s: write error in sector %" PRIu64 "\n",
 739                       __func__, i >> 9);
 740            }
 741        }
 742
 743        page = i >> 9;
 744        if (blk_read(s->blk, page, iobuf, 1) < 0) {
 745            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 746        }
 747        memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
 748        if (blk_write(s->blk, page, iobuf, 1) < 0) {
 749            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 750        }
 751    }
 752}
 753
 754static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
 755                uint64_t addr, int offset)
 756{
 757    if (PAGE(addr) >= s->pages) {
 758        return;
 759    }
 760
 761    if (s->blk) {
 762        if (s->mem_oob) {
 763            if (blk_read(s->blk, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
 764                printf("%s: read error in sector %" PRIu64 "\n",
 765                                __func__, SECTOR(addr));
 766            }
 767            memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
 768                            s->storage + (PAGE(s->addr) << OOB_SHIFT),
 769                            OOB_SIZE);
 770            s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
 771        } else {
 772            if (blk_read(s->blk, PAGE_START(addr) >> 9,
 773                         s->io, (PAGE_SECTORS + 2)) < 0) {
 774                printf("%s: read error in sector %" PRIu64 "\n",
 775                                __func__, PAGE_START(addr) >> 9);
 776            }
 777            s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
 778        }
 779    } else {
 780        memcpy(s->io, s->storage + PAGE_START(s->addr) +
 781                        offset, PAGE_SIZE + OOB_SIZE - offset);
 782        s->ioaddr = s->io;
 783    }
 784}
 785
 786static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
 787{
 788    s->oob_shift = PAGE_SHIFT - 5;
 789    s->pages = s->size >> PAGE_SHIFT;
 790    s->addr_shift = ADDR_SHIFT;
 791
 792    s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
 793    s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
 794    s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
 795}
 796
 797# undef PAGE_SIZE
 798# undef PAGE_SHIFT
 799# undef PAGE_SECTORS
 800# undef ADDR_SHIFT
 801#endif  /* NAND_IO */
 802