qemu/include/fpu/softfloat.h
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C header file is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82#ifndef SOFTFLOAT_H
  83#define SOFTFLOAT_H
  84
  85#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
  86#include <sunmath.h>
  87#endif
  88
  89
  90/* This 'flag' type must be able to hold at least 0 and 1. It should
  91 * probably be replaced with 'bool' but the uses would need to be audited
  92 * to check that they weren't accidentally relying on it being a larger type.
  93 */
  94typedef uint8_t flag;
  95
  96#define LIT64( a ) a##LL
  97
  98/*----------------------------------------------------------------------------
  99| Software IEC/IEEE floating-point ordering relations
 100*----------------------------------------------------------------------------*/
 101enum {
 102    float_relation_less      = -1,
 103    float_relation_equal     =  0,
 104    float_relation_greater   =  1,
 105    float_relation_unordered =  2
 106};
 107
 108/*----------------------------------------------------------------------------
 109| Software IEC/IEEE floating-point types.
 110*----------------------------------------------------------------------------*/
 111/* Use structures for soft-float types.  This prevents accidentally mixing
 112   them with native int/float types.  A sufficiently clever compiler and
 113   sane ABI should be able to see though these structs.  However
 114   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
 115//#define USE_SOFTFLOAT_STRUCT_TYPES
 116#ifdef USE_SOFTFLOAT_STRUCT_TYPES
 117typedef struct {
 118    uint16_t v;
 119} float16;
 120#define float16_val(x) (((float16)(x)).v)
 121#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
 122#define const_float16(x) { x }
 123typedef struct {
 124    uint32_t v;
 125} float32;
 126/* The cast ensures an error if the wrong type is passed.  */
 127#define float32_val(x) (((float32)(x)).v)
 128#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
 129#define const_float32(x) { x }
 130typedef struct {
 131    uint64_t v;
 132} float64;
 133#define float64_val(x) (((float64)(x)).v)
 134#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
 135#define const_float64(x) { x }
 136#else
 137typedef uint16_t float16;
 138typedef uint32_t float32;
 139typedef uint64_t float64;
 140#define float16_val(x) (x)
 141#define float32_val(x) (x)
 142#define float64_val(x) (x)
 143#define make_float16(x) (x)
 144#define make_float32(x) (x)
 145#define make_float64(x) (x)
 146#define const_float16(x) (x)
 147#define const_float32(x) (x)
 148#define const_float64(x) (x)
 149#endif
 150typedef struct {
 151    uint64_t low;
 152    uint16_t high;
 153} floatx80;
 154#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
 155#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
 156typedef struct {
 157#ifdef HOST_WORDS_BIGENDIAN
 158    uint64_t high, low;
 159#else
 160    uint64_t low, high;
 161#endif
 162} float128;
 163#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
 164#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
 165
 166/*----------------------------------------------------------------------------
 167| Software IEC/IEEE floating-point underflow tininess-detection mode.
 168*----------------------------------------------------------------------------*/
 169enum {
 170    float_tininess_after_rounding  = 0,
 171    float_tininess_before_rounding = 1
 172};
 173
 174/*----------------------------------------------------------------------------
 175| Software IEC/IEEE floating-point rounding mode.
 176*----------------------------------------------------------------------------*/
 177enum {
 178    float_round_nearest_even = 0,
 179    float_round_down         = 1,
 180    float_round_up           = 2,
 181    float_round_to_zero      = 3,
 182    float_round_ties_away    = 4,
 183};
 184
 185/*----------------------------------------------------------------------------
 186| Software IEC/IEEE floating-point exception flags.
 187*----------------------------------------------------------------------------*/
 188enum {
 189    float_flag_invalid   =  1,
 190    float_flag_divbyzero =  4,
 191    float_flag_overflow  =  8,
 192    float_flag_underflow = 16,
 193    float_flag_inexact   = 32,
 194    float_flag_input_denormal = 64,
 195    float_flag_output_denormal = 128
 196};
 197
 198typedef struct float_status {
 199    signed char float_detect_tininess;
 200    signed char float_rounding_mode;
 201    signed char float_exception_flags;
 202    signed char floatx80_rounding_precision;
 203    /* should denormalised results go to zero and set the inexact flag? */
 204    flag flush_to_zero;
 205    /* should denormalised inputs go to zero and set the input_denormal flag? */
 206    flag flush_inputs_to_zero;
 207    flag default_nan_mode;
 208} float_status;
 209
 210static inline void set_float_detect_tininess(int val, float_status *status)
 211{
 212    status->float_detect_tininess = val;
 213}
 214static inline void set_float_rounding_mode(int val, float_status *status)
 215{
 216    status->float_rounding_mode = val;
 217}
 218static inline void set_float_exception_flags(int val, float_status *status)
 219{
 220    status->float_exception_flags = val;
 221}
 222static inline void set_floatx80_rounding_precision(int val,
 223                                                   float_status *status)
 224{
 225    status->floatx80_rounding_precision = val;
 226}
 227static inline void set_flush_to_zero(flag val, float_status *status)
 228{
 229    status->flush_to_zero = val;
 230}
 231static inline void set_flush_inputs_to_zero(flag val, float_status *status)
 232{
 233    status->flush_inputs_to_zero = val;
 234}
 235static inline void set_default_nan_mode(flag val, float_status *status)
 236{
 237    status->default_nan_mode = val;
 238}
 239static inline int get_float_detect_tininess(float_status *status)
 240{
 241    return status->float_detect_tininess;
 242}
 243static inline int get_float_rounding_mode(float_status *status)
 244{
 245    return status->float_rounding_mode;
 246}
 247static inline int get_float_exception_flags(float_status *status)
 248{
 249    return status->float_exception_flags;
 250}
 251static inline int get_floatx80_rounding_precision(float_status *status)
 252{
 253    return status->floatx80_rounding_precision;
 254}
 255static inline flag get_flush_to_zero(float_status *status)
 256{
 257    return status->flush_to_zero;
 258}
 259static inline flag get_flush_inputs_to_zero(float_status *status)
 260{
 261    return status->flush_inputs_to_zero;
 262}
 263static inline flag get_default_nan_mode(float_status *status)
 264{
 265    return status->default_nan_mode;
 266}
 267
 268/*----------------------------------------------------------------------------
 269| Routine to raise any or all of the software IEC/IEEE floating-point
 270| exception flags.
 271*----------------------------------------------------------------------------*/
 272void float_raise(int8_t flags, float_status *status);
 273
 274/*----------------------------------------------------------------------------
 275| If `a' is denormal and we are in flush-to-zero mode then set the
 276| input-denormal exception and return zero. Otherwise just return the value.
 277*----------------------------------------------------------------------------*/
 278float32 float32_squash_input_denormal(float32 a, float_status *status);
 279float64 float64_squash_input_denormal(float64 a, float_status *status);
 280
 281/*----------------------------------------------------------------------------
 282| Options to indicate which negations to perform in float*_muladd()
 283| Using these differs from negating an input or output before calling
 284| the muladd function in that this means that a NaN doesn't have its
 285| sign bit inverted before it is propagated.
 286| We also support halving the result before rounding, as a special
 287| case to support the ARM fused-sqrt-step instruction FRSQRTS.
 288*----------------------------------------------------------------------------*/
 289enum {
 290    float_muladd_negate_c = 1,
 291    float_muladd_negate_product = 2,
 292    float_muladd_negate_result = 4,
 293    float_muladd_halve_result = 8,
 294};
 295
 296/*----------------------------------------------------------------------------
 297| Software IEC/IEEE integer-to-floating-point conversion routines.
 298*----------------------------------------------------------------------------*/
 299float32 int32_to_float32(int32_t, float_status *status);
 300float64 int32_to_float64(int32_t, float_status *status);
 301float32 uint32_to_float32(uint32_t, float_status *status);
 302float64 uint32_to_float64(uint32_t, float_status *status);
 303floatx80 int32_to_floatx80(int32_t, float_status *status);
 304float128 int32_to_float128(int32_t, float_status *status);
 305float32 int64_to_float32(int64_t, float_status *status);
 306float64 int64_to_float64(int64_t, float_status *status);
 307floatx80 int64_to_floatx80(int64_t, float_status *status);
 308float128 int64_to_float128(int64_t, float_status *status);
 309float32 uint64_to_float32(uint64_t, float_status *status);
 310float64 uint64_to_float64(uint64_t, float_status *status);
 311float128 uint64_to_float128(uint64_t, float_status *status);
 312
 313/* We provide the int16 versions for symmetry of API with float-to-int */
 314static inline float32 int16_to_float32(int16_t v, float_status *status)
 315{
 316    return int32_to_float32(v, status);
 317}
 318
 319static inline float32 uint16_to_float32(uint16_t v, float_status *status)
 320{
 321    return uint32_to_float32(v, status);
 322}
 323
 324static inline float64 int16_to_float64(int16_t v, float_status *status)
 325{
 326    return int32_to_float64(v, status);
 327}
 328
 329static inline float64 uint16_to_float64(uint16_t v, float_status *status)
 330{
 331    return uint32_to_float64(v, status);
 332}
 333
 334/*----------------------------------------------------------------------------
 335| Software half-precision conversion routines.
 336*----------------------------------------------------------------------------*/
 337float16 float32_to_float16(float32, flag, float_status *status);
 338float32 float16_to_float32(float16, flag, float_status *status);
 339float16 float64_to_float16(float64 a, flag ieee, float_status *status);
 340float64 float16_to_float64(float16 a, flag ieee, float_status *status);
 341
 342/*----------------------------------------------------------------------------
 343| Software half-precision operations.
 344*----------------------------------------------------------------------------*/
 345int float16_is_quiet_nan( float16 );
 346int float16_is_signaling_nan( float16 );
 347float16 float16_maybe_silence_nan( float16 );
 348
 349static inline int float16_is_any_nan(float16 a)
 350{
 351    return ((float16_val(a) & ~0x8000) > 0x7c00);
 352}
 353
 354/*----------------------------------------------------------------------------
 355| The pattern for a default generated half-precision NaN.
 356*----------------------------------------------------------------------------*/
 357extern const float16 float16_default_nan;
 358
 359/*----------------------------------------------------------------------------
 360| Software IEC/IEEE single-precision conversion routines.
 361*----------------------------------------------------------------------------*/
 362int16_t float32_to_int16(float32, float_status *status);
 363uint16_t float32_to_uint16(float32, float_status *status);
 364int16_t float32_to_int16_round_to_zero(float32, float_status *status);
 365uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
 366int32_t float32_to_int32(float32, float_status *status);
 367int32_t float32_to_int32_round_to_zero(float32, float_status *status);
 368uint32_t float32_to_uint32(float32, float_status *status);
 369uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
 370int64_t float32_to_int64(float32, float_status *status);
 371uint64_t float32_to_uint64(float32, float_status *status);
 372uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
 373int64_t float32_to_int64_round_to_zero(float32, float_status *status);
 374float64 float32_to_float64(float32, float_status *status);
 375floatx80 float32_to_floatx80(float32, float_status *status);
 376float128 float32_to_float128(float32, float_status *status);
 377
 378/*----------------------------------------------------------------------------
 379| Software IEC/IEEE single-precision operations.
 380*----------------------------------------------------------------------------*/
 381float32 float32_round_to_int(float32, float_status *status);
 382float32 float32_add(float32, float32, float_status *status);
 383float32 float32_sub(float32, float32, float_status *status);
 384float32 float32_mul(float32, float32, float_status *status);
 385float32 float32_div(float32, float32, float_status *status);
 386float32 float32_rem(float32, float32, float_status *status);
 387float32 float32_muladd(float32, float32, float32, int, float_status *status);
 388float32 float32_sqrt(float32, float_status *status);
 389float32 float32_exp2(float32, float_status *status);
 390float32 float32_log2(float32, float_status *status);
 391int float32_eq(float32, float32, float_status *status);
 392int float32_le(float32, float32, float_status *status);
 393int float32_lt(float32, float32, float_status *status);
 394int float32_unordered(float32, float32, float_status *status);
 395int float32_eq_quiet(float32, float32, float_status *status);
 396int float32_le_quiet(float32, float32, float_status *status);
 397int float32_lt_quiet(float32, float32, float_status *status);
 398int float32_unordered_quiet(float32, float32, float_status *status);
 399int float32_compare(float32, float32, float_status *status);
 400int float32_compare_quiet(float32, float32, float_status *status);
 401float32 float32_min(float32, float32, float_status *status);
 402float32 float32_max(float32, float32, float_status *status);
 403float32 float32_minnum(float32, float32, float_status *status);
 404float32 float32_maxnum(float32, float32, float_status *status);
 405float32 float32_minnummag(float32, float32, float_status *status);
 406float32 float32_maxnummag(float32, float32, float_status *status);
 407int float32_is_quiet_nan( float32 );
 408int float32_is_signaling_nan( float32 );
 409float32 float32_maybe_silence_nan( float32 );
 410float32 float32_scalbn(float32, int, float_status *status);
 411
 412static inline float32 float32_abs(float32 a)
 413{
 414    /* Note that abs does *not* handle NaN specially, nor does
 415     * it flush denormal inputs to zero.
 416     */
 417    return make_float32(float32_val(a) & 0x7fffffff);
 418}
 419
 420static inline float32 float32_chs(float32 a)
 421{
 422    /* Note that chs does *not* handle NaN specially, nor does
 423     * it flush denormal inputs to zero.
 424     */
 425    return make_float32(float32_val(a) ^ 0x80000000);
 426}
 427
 428static inline int float32_is_infinity(float32 a)
 429{
 430    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
 431}
 432
 433static inline int float32_is_neg(float32 a)
 434{
 435    return float32_val(a) >> 31;
 436}
 437
 438static inline int float32_is_zero(float32 a)
 439{
 440    return (float32_val(a) & 0x7fffffff) == 0;
 441}
 442
 443static inline int float32_is_any_nan(float32 a)
 444{
 445    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
 446}
 447
 448static inline int float32_is_zero_or_denormal(float32 a)
 449{
 450    return (float32_val(a) & 0x7f800000) == 0;
 451}
 452
 453static inline float32 float32_set_sign(float32 a, int sign)
 454{
 455    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
 456}
 457
 458#define float32_zero make_float32(0)
 459#define float32_one make_float32(0x3f800000)
 460#define float32_ln2 make_float32(0x3f317218)
 461#define float32_pi make_float32(0x40490fdb)
 462#define float32_half make_float32(0x3f000000)
 463#define float32_infinity make_float32(0x7f800000)
 464
 465
 466/*----------------------------------------------------------------------------
 467| The pattern for a default generated single-precision NaN.
 468*----------------------------------------------------------------------------*/
 469extern const float32 float32_default_nan;
 470
 471/*----------------------------------------------------------------------------
 472| Software IEC/IEEE double-precision conversion routines.
 473*----------------------------------------------------------------------------*/
 474int16_t float64_to_int16(float64, float_status *status);
 475uint16_t float64_to_uint16(float64, float_status *status);
 476int16_t float64_to_int16_round_to_zero(float64, float_status *status);
 477uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
 478int32_t float64_to_int32(float64, float_status *status);
 479int32_t float64_to_int32_round_to_zero(float64, float_status *status);
 480uint32_t float64_to_uint32(float64, float_status *status);
 481uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
 482int64_t float64_to_int64(float64, float_status *status);
 483int64_t float64_to_int64_round_to_zero(float64, float_status *status);
 484uint64_t float64_to_uint64(float64 a, float_status *status);
 485uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
 486float32 float64_to_float32(float64, float_status *status);
 487floatx80 float64_to_floatx80(float64, float_status *status);
 488float128 float64_to_float128(float64, float_status *status);
 489
 490/*----------------------------------------------------------------------------
 491| Software IEC/IEEE double-precision operations.
 492*----------------------------------------------------------------------------*/
 493float64 float64_round_to_int(float64, float_status *status);
 494float64 float64_trunc_to_int(float64, float_status *status);
 495float64 float64_add(float64, float64, float_status *status);
 496float64 float64_sub(float64, float64, float_status *status);
 497float64 float64_mul(float64, float64, float_status *status);
 498float64 float64_div(float64, float64, float_status *status);
 499float64 float64_rem(float64, float64, float_status *status);
 500float64 float64_muladd(float64, float64, float64, int, float_status *status);
 501float64 float64_sqrt(float64, float_status *status);
 502float64 float64_log2(float64, float_status *status);
 503int float64_eq(float64, float64, float_status *status);
 504int float64_le(float64, float64, float_status *status);
 505int float64_lt(float64, float64, float_status *status);
 506int float64_unordered(float64, float64, float_status *status);
 507int float64_eq_quiet(float64, float64, float_status *status);
 508int float64_le_quiet(float64, float64, float_status *status);
 509int float64_lt_quiet(float64, float64, float_status *status);
 510int float64_unordered_quiet(float64, float64, float_status *status);
 511int float64_compare(float64, float64, float_status *status);
 512int float64_compare_quiet(float64, float64, float_status *status);
 513float64 float64_min(float64, float64, float_status *status);
 514float64 float64_max(float64, float64, float_status *status);
 515float64 float64_minnum(float64, float64, float_status *status);
 516float64 float64_maxnum(float64, float64, float_status *status);
 517float64 float64_minnummag(float64, float64, float_status *status);
 518float64 float64_maxnummag(float64, float64, float_status *status);
 519int float64_is_quiet_nan( float64 a );
 520int float64_is_signaling_nan( float64 );
 521float64 float64_maybe_silence_nan( float64 );
 522float64 float64_scalbn(float64, int, float_status *status);
 523
 524static inline float64 float64_abs(float64 a)
 525{
 526    /* Note that abs does *not* handle NaN specially, nor does
 527     * it flush denormal inputs to zero.
 528     */
 529    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
 530}
 531
 532static inline float64 float64_chs(float64 a)
 533{
 534    /* Note that chs does *not* handle NaN specially, nor does
 535     * it flush denormal inputs to zero.
 536     */
 537    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
 538}
 539
 540static inline int float64_is_infinity(float64 a)
 541{
 542    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
 543}
 544
 545static inline int float64_is_neg(float64 a)
 546{
 547    return float64_val(a) >> 63;
 548}
 549
 550static inline int float64_is_zero(float64 a)
 551{
 552    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
 553}
 554
 555static inline int float64_is_any_nan(float64 a)
 556{
 557    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
 558}
 559
 560static inline int float64_is_zero_or_denormal(float64 a)
 561{
 562    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
 563}
 564
 565static inline float64 float64_set_sign(float64 a, int sign)
 566{
 567    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
 568                        | ((int64_t)sign << 63));
 569}
 570
 571#define float64_zero make_float64(0)
 572#define float64_one make_float64(0x3ff0000000000000LL)
 573#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
 574#define float64_pi make_float64(0x400921fb54442d18LL)
 575#define float64_half make_float64(0x3fe0000000000000LL)
 576#define float64_infinity make_float64(0x7ff0000000000000LL)
 577
 578/*----------------------------------------------------------------------------
 579| The pattern for a default generated double-precision NaN.
 580*----------------------------------------------------------------------------*/
 581extern const float64 float64_default_nan;
 582
 583/*----------------------------------------------------------------------------
 584| Software IEC/IEEE extended double-precision conversion routines.
 585*----------------------------------------------------------------------------*/
 586int32_t floatx80_to_int32(floatx80, float_status *status);
 587int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
 588int64_t floatx80_to_int64(floatx80, float_status *status);
 589int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
 590float32 floatx80_to_float32(floatx80, float_status *status);
 591float64 floatx80_to_float64(floatx80, float_status *status);
 592float128 floatx80_to_float128(floatx80, float_status *status);
 593
 594/*----------------------------------------------------------------------------
 595| Software IEC/IEEE extended double-precision operations.
 596*----------------------------------------------------------------------------*/
 597floatx80 floatx80_round_to_int(floatx80, float_status *status);
 598floatx80 floatx80_add(floatx80, floatx80, float_status *status);
 599floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
 600floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
 601floatx80 floatx80_div(floatx80, floatx80, float_status *status);
 602floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
 603floatx80 floatx80_sqrt(floatx80, float_status *status);
 604int floatx80_eq(floatx80, floatx80, float_status *status);
 605int floatx80_le(floatx80, floatx80, float_status *status);
 606int floatx80_lt(floatx80, floatx80, float_status *status);
 607int floatx80_unordered(floatx80, floatx80, float_status *status);
 608int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
 609int floatx80_le_quiet(floatx80, floatx80, float_status *status);
 610int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
 611int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
 612int floatx80_compare(floatx80, floatx80, float_status *status);
 613int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
 614int floatx80_is_quiet_nan( floatx80 );
 615int floatx80_is_signaling_nan( floatx80 );
 616floatx80 floatx80_maybe_silence_nan( floatx80 );
 617floatx80 floatx80_scalbn(floatx80, int, float_status *status);
 618
 619static inline floatx80 floatx80_abs(floatx80 a)
 620{
 621    a.high &= 0x7fff;
 622    return a;
 623}
 624
 625static inline floatx80 floatx80_chs(floatx80 a)
 626{
 627    a.high ^= 0x8000;
 628    return a;
 629}
 630
 631static inline int floatx80_is_infinity(floatx80 a)
 632{
 633    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
 634}
 635
 636static inline int floatx80_is_neg(floatx80 a)
 637{
 638    return a.high >> 15;
 639}
 640
 641static inline int floatx80_is_zero(floatx80 a)
 642{
 643    return (a.high & 0x7fff) == 0 && a.low == 0;
 644}
 645
 646static inline int floatx80_is_zero_or_denormal(floatx80 a)
 647{
 648    return (a.high & 0x7fff) == 0;
 649}
 650
 651static inline int floatx80_is_any_nan(floatx80 a)
 652{
 653    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
 654}
 655
 656#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
 657#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
 658#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
 659#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
 660#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
 661#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
 662
 663/*----------------------------------------------------------------------------
 664| The pattern for a default generated extended double-precision NaN.
 665*----------------------------------------------------------------------------*/
 666extern const floatx80 floatx80_default_nan;
 667
 668/*----------------------------------------------------------------------------
 669| Software IEC/IEEE quadruple-precision conversion routines.
 670*----------------------------------------------------------------------------*/
 671int32_t float128_to_int32(float128, float_status *status);
 672int32_t float128_to_int32_round_to_zero(float128, float_status *status);
 673int64_t float128_to_int64(float128, float_status *status);
 674int64_t float128_to_int64_round_to_zero(float128, float_status *status);
 675float32 float128_to_float32(float128, float_status *status);
 676float64 float128_to_float64(float128, float_status *status);
 677floatx80 float128_to_floatx80(float128, float_status *status);
 678
 679/*----------------------------------------------------------------------------
 680| Software IEC/IEEE quadruple-precision operations.
 681*----------------------------------------------------------------------------*/
 682float128 float128_round_to_int(float128, float_status *status);
 683float128 float128_add(float128, float128, float_status *status);
 684float128 float128_sub(float128, float128, float_status *status);
 685float128 float128_mul(float128, float128, float_status *status);
 686float128 float128_div(float128, float128, float_status *status);
 687float128 float128_rem(float128, float128, float_status *status);
 688float128 float128_sqrt(float128, float_status *status);
 689int float128_eq(float128, float128, float_status *status);
 690int float128_le(float128, float128, float_status *status);
 691int float128_lt(float128, float128, float_status *status);
 692int float128_unordered(float128, float128, float_status *status);
 693int float128_eq_quiet(float128, float128, float_status *status);
 694int float128_le_quiet(float128, float128, float_status *status);
 695int float128_lt_quiet(float128, float128, float_status *status);
 696int float128_unordered_quiet(float128, float128, float_status *status);
 697int float128_compare(float128, float128, float_status *status);
 698int float128_compare_quiet(float128, float128, float_status *status);
 699int float128_is_quiet_nan( float128 );
 700int float128_is_signaling_nan( float128 );
 701float128 float128_maybe_silence_nan( float128 );
 702float128 float128_scalbn(float128, int, float_status *status);
 703
 704static inline float128 float128_abs(float128 a)
 705{
 706    a.high &= 0x7fffffffffffffffLL;
 707    return a;
 708}
 709
 710static inline float128 float128_chs(float128 a)
 711{
 712    a.high ^= 0x8000000000000000LL;
 713    return a;
 714}
 715
 716static inline int float128_is_infinity(float128 a)
 717{
 718    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
 719}
 720
 721static inline int float128_is_neg(float128 a)
 722{
 723    return a.high >> 63;
 724}
 725
 726static inline int float128_is_zero(float128 a)
 727{
 728    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
 729}
 730
 731static inline int float128_is_zero_or_denormal(float128 a)
 732{
 733    return (a.high & 0x7fff000000000000LL) == 0;
 734}
 735
 736static inline int float128_is_any_nan(float128 a)
 737{
 738    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
 739        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
 740}
 741
 742#define float128_zero make_float128(0, 0)
 743
 744/*----------------------------------------------------------------------------
 745| The pattern for a default generated quadruple-precision NaN.
 746*----------------------------------------------------------------------------*/
 747extern const float128 float128_default_nan;
 748
 749#endif /* !SOFTFLOAT_H */
 750