qemu/target-arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13#include <sys/mman.h>
  14
  15#include <linux/kvm.h>
  16
  17#include "qemu-common.h"
  18#include "qemu/timer.h"
  19#include "qemu/error-report.h"
  20#include "sysemu/sysemu.h"
  21#include "sysemu/kvm.h"
  22#include "kvm_arm.h"
  23#include "cpu.h"
  24#include "internals.h"
  25#include "hw/arm/arm.h"
  26#include "exec/memattrs.h"
  27#include "hw/boards.h"
  28
  29const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  30    KVM_CAP_LAST_INFO
  31};
  32
  33static bool cap_has_mp_state;
  34
  35int kvm_arm_vcpu_init(CPUState *cs)
  36{
  37    ARMCPU *cpu = ARM_CPU(cs);
  38    struct kvm_vcpu_init init;
  39
  40    init.target = cpu->kvm_target;
  41    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  42
  43    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  44}
  45
  46bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  47                                      int *fdarray,
  48                                      struct kvm_vcpu_init *init)
  49{
  50    int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
  51
  52    kvmfd = qemu_open("/dev/kvm", O_RDWR);
  53    if (kvmfd < 0) {
  54        goto err;
  55    }
  56    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
  57    if (vmfd < 0) {
  58        goto err;
  59    }
  60    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  61    if (cpufd < 0) {
  62        goto err;
  63    }
  64
  65    if (!init) {
  66        /* Caller doesn't want the VCPU to be initialized, so skip it */
  67        goto finish;
  68    }
  69
  70    ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
  71    if (ret >= 0) {
  72        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  73        if (ret < 0) {
  74            goto err;
  75        }
  76    } else if (cpus_to_try) {
  77        /* Old kernel which doesn't know about the
  78         * PREFERRED_TARGET ioctl: we know it will only support
  79         * creating one kind of guest CPU which is its preferred
  80         * CPU type.
  81         */
  82        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
  83            init->target = *cpus_to_try++;
  84            memset(init->features, 0, sizeof(init->features));
  85            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  86            if (ret >= 0) {
  87                break;
  88            }
  89        }
  90        if (ret < 0) {
  91            goto err;
  92        }
  93    } else {
  94        /* Treat a NULL cpus_to_try argument the same as an empty
  95         * list, which means we will fail the call since this must
  96         * be an old kernel which doesn't support PREFERRED_TARGET.
  97         */
  98        goto err;
  99    }
 100
 101finish:
 102    fdarray[0] = kvmfd;
 103    fdarray[1] = vmfd;
 104    fdarray[2] = cpufd;
 105
 106    return true;
 107
 108err:
 109    if (cpufd >= 0) {
 110        close(cpufd);
 111    }
 112    if (vmfd >= 0) {
 113        close(vmfd);
 114    }
 115    if (kvmfd >= 0) {
 116        close(kvmfd);
 117    }
 118
 119    return false;
 120}
 121
 122void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 123{
 124    int i;
 125
 126    for (i = 2; i >= 0; i--) {
 127        close(fdarray[i]);
 128    }
 129}
 130
 131static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
 132{
 133    ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
 134
 135    /* All we really need to set up for the 'host' CPU
 136     * is the feature bits -- we rely on the fact that the
 137     * various ID register values in ARMCPU are only used for
 138     * TCG CPUs.
 139     */
 140    if (!kvm_arm_get_host_cpu_features(ahcc)) {
 141        fprintf(stderr, "Failed to retrieve host CPU features!\n");
 142        abort();
 143    }
 144}
 145
 146static void kvm_arm_host_cpu_initfn(Object *obj)
 147{
 148    ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
 149    ARMCPU *cpu = ARM_CPU(obj);
 150    CPUARMState *env = &cpu->env;
 151
 152    cpu->kvm_target = ahcc->target;
 153    cpu->dtb_compatible = ahcc->dtb_compatible;
 154    env->features = ahcc->features;
 155}
 156
 157static const TypeInfo host_arm_cpu_type_info = {
 158    .name = TYPE_ARM_HOST_CPU,
 159#ifdef TARGET_AARCH64
 160    .parent = TYPE_AARCH64_CPU,
 161#else
 162    .parent = TYPE_ARM_CPU,
 163#endif
 164    .instance_init = kvm_arm_host_cpu_initfn,
 165    .class_init = kvm_arm_host_cpu_class_init,
 166    .class_size = sizeof(ARMHostCPUClass),
 167};
 168
 169int kvm_arch_init(MachineState *ms, KVMState *s)
 170{
 171    /* For ARM interrupt delivery is always asynchronous,
 172     * whether we are using an in-kernel VGIC or not.
 173     */
 174    kvm_async_interrupts_allowed = true;
 175
 176    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 177
 178    type_register_static(&host_arm_cpu_type_info);
 179
 180    return 0;
 181}
 182
 183unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 184{
 185    return cpu->cpu_index;
 186}
 187
 188/* We track all the KVM devices which need their memory addresses
 189 * passing to the kernel in a list of these structures.
 190 * When board init is complete we run through the list and
 191 * tell the kernel the base addresses of the memory regions.
 192 * We use a MemoryListener to track mapping and unmapping of
 193 * the regions during board creation, so the board models don't
 194 * need to do anything special for the KVM case.
 195 */
 196typedef struct KVMDevice {
 197    struct kvm_arm_device_addr kda;
 198    struct kvm_device_attr kdattr;
 199    MemoryRegion *mr;
 200    QSLIST_ENTRY(KVMDevice) entries;
 201    int dev_fd;
 202} KVMDevice;
 203
 204static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
 205
 206static void kvm_arm_devlistener_add(MemoryListener *listener,
 207                                    MemoryRegionSection *section)
 208{
 209    KVMDevice *kd;
 210
 211    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 212        if (section->mr == kd->mr) {
 213            kd->kda.addr = section->offset_within_address_space;
 214        }
 215    }
 216}
 217
 218static void kvm_arm_devlistener_del(MemoryListener *listener,
 219                                    MemoryRegionSection *section)
 220{
 221    KVMDevice *kd;
 222
 223    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 224        if (section->mr == kd->mr) {
 225            kd->kda.addr = -1;
 226        }
 227    }
 228}
 229
 230static MemoryListener devlistener = {
 231    .region_add = kvm_arm_devlistener_add,
 232    .region_del = kvm_arm_devlistener_del,
 233};
 234
 235static void kvm_arm_set_device_addr(KVMDevice *kd)
 236{
 237    struct kvm_device_attr *attr = &kd->kdattr;
 238    int ret;
 239
 240    /* If the device control API is available and we have a device fd on the
 241     * KVMDevice struct, let's use the newer API
 242     */
 243    if (kd->dev_fd >= 0) {
 244        uint64_t addr = kd->kda.addr;
 245        attr->addr = (uintptr_t)&addr;
 246        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 247    } else {
 248        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 249    }
 250
 251    if (ret < 0) {
 252        fprintf(stderr, "Failed to set device address: %s\n",
 253                strerror(-ret));
 254        abort();
 255    }
 256}
 257
 258static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 259{
 260    KVMDevice *kd, *tkd;
 261
 262    memory_listener_unregister(&devlistener);
 263    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 264        if (kd->kda.addr != -1) {
 265            kvm_arm_set_device_addr(kd);
 266        }
 267        memory_region_unref(kd->mr);
 268        g_free(kd);
 269    }
 270}
 271
 272static Notifier notify = {
 273    .notify = kvm_arm_machine_init_done,
 274};
 275
 276void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 277                             uint64_t attr, int dev_fd)
 278{
 279    KVMDevice *kd;
 280
 281    if (!kvm_irqchip_in_kernel()) {
 282        return;
 283    }
 284
 285    if (QSLIST_EMPTY(&kvm_devices_head)) {
 286        memory_listener_register(&devlistener, NULL);
 287        qemu_add_machine_init_done_notifier(&notify);
 288    }
 289    kd = g_new0(KVMDevice, 1);
 290    kd->mr = mr;
 291    kd->kda.id = devid;
 292    kd->kda.addr = -1;
 293    kd->kdattr.flags = 0;
 294    kd->kdattr.group = group;
 295    kd->kdattr.attr = attr;
 296    kd->dev_fd = dev_fd;
 297    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 298    memory_region_ref(kd->mr);
 299}
 300
 301static int compare_u64(const void *a, const void *b)
 302{
 303    if (*(uint64_t *)a > *(uint64_t *)b) {
 304        return 1;
 305    }
 306    if (*(uint64_t *)a < *(uint64_t *)b) {
 307        return -1;
 308    }
 309    return 0;
 310}
 311
 312/* Initialize the CPUState's cpreg list according to the kernel's
 313 * definition of what CPU registers it knows about (and throw away
 314 * the previous TCG-created cpreg list).
 315 */
 316int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 317{
 318    struct kvm_reg_list rl;
 319    struct kvm_reg_list *rlp;
 320    int i, ret, arraylen;
 321    CPUState *cs = CPU(cpu);
 322
 323    rl.n = 0;
 324    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 325    if (ret != -E2BIG) {
 326        return ret;
 327    }
 328    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 329    rlp->n = rl.n;
 330    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 331    if (ret) {
 332        goto out;
 333    }
 334    /* Sort the list we get back from the kernel, since cpreg_tuples
 335     * must be in strictly ascending order.
 336     */
 337    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 338
 339    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 340        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 341            continue;
 342        }
 343        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 344        case KVM_REG_SIZE_U32:
 345        case KVM_REG_SIZE_U64:
 346            break;
 347        default:
 348            fprintf(stderr, "Can't handle size of register in kernel list\n");
 349            ret = -EINVAL;
 350            goto out;
 351        }
 352
 353        arraylen++;
 354    }
 355
 356    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 357    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 358    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 359                                         arraylen);
 360    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 361                                        arraylen);
 362    cpu->cpreg_array_len = arraylen;
 363    cpu->cpreg_vmstate_array_len = arraylen;
 364
 365    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 366        uint64_t regidx = rlp->reg[i];
 367        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 368            continue;
 369        }
 370        cpu->cpreg_indexes[arraylen] = regidx;
 371        arraylen++;
 372    }
 373    assert(cpu->cpreg_array_len == arraylen);
 374
 375    if (!write_kvmstate_to_list(cpu)) {
 376        /* Shouldn't happen unless kernel is inconsistent about
 377         * what registers exist.
 378         */
 379        fprintf(stderr, "Initial read of kernel register state failed\n");
 380        ret = -EINVAL;
 381        goto out;
 382    }
 383
 384out:
 385    g_free(rlp);
 386    return ret;
 387}
 388
 389bool write_kvmstate_to_list(ARMCPU *cpu)
 390{
 391    CPUState *cs = CPU(cpu);
 392    int i;
 393    bool ok = true;
 394
 395    for (i = 0; i < cpu->cpreg_array_len; i++) {
 396        struct kvm_one_reg r;
 397        uint64_t regidx = cpu->cpreg_indexes[i];
 398        uint32_t v32;
 399        int ret;
 400
 401        r.id = regidx;
 402
 403        switch (regidx & KVM_REG_SIZE_MASK) {
 404        case KVM_REG_SIZE_U32:
 405            r.addr = (uintptr_t)&v32;
 406            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 407            if (!ret) {
 408                cpu->cpreg_values[i] = v32;
 409            }
 410            break;
 411        case KVM_REG_SIZE_U64:
 412            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 413            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 414            break;
 415        default:
 416            abort();
 417        }
 418        if (ret) {
 419            ok = false;
 420        }
 421    }
 422    return ok;
 423}
 424
 425bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 426{
 427    CPUState *cs = CPU(cpu);
 428    int i;
 429    bool ok = true;
 430
 431    for (i = 0; i < cpu->cpreg_array_len; i++) {
 432        struct kvm_one_reg r;
 433        uint64_t regidx = cpu->cpreg_indexes[i];
 434        uint32_t v32;
 435        int ret;
 436
 437        if (kvm_arm_cpreg_level(regidx) > level) {
 438            continue;
 439        }
 440
 441        r.id = regidx;
 442        switch (regidx & KVM_REG_SIZE_MASK) {
 443        case KVM_REG_SIZE_U32:
 444            v32 = cpu->cpreg_values[i];
 445            r.addr = (uintptr_t)&v32;
 446            break;
 447        case KVM_REG_SIZE_U64:
 448            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 449            break;
 450        default:
 451            abort();
 452        }
 453        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 454        if (ret) {
 455            /* We might fail for "unknown register" and also for
 456             * "you tried to set a register which is constant with
 457             * a different value from what it actually contains".
 458             */
 459            ok = false;
 460        }
 461    }
 462    return ok;
 463}
 464
 465void kvm_arm_reset_vcpu(ARMCPU *cpu)
 466{
 467    int ret;
 468
 469    /* Re-init VCPU so that all registers are set to
 470     * their respective reset values.
 471     */
 472    ret = kvm_arm_vcpu_init(CPU(cpu));
 473    if (ret < 0) {
 474        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 475        abort();
 476    }
 477    if (!write_kvmstate_to_list(cpu)) {
 478        fprintf(stderr, "write_kvmstate_to_list failed\n");
 479        abort();
 480    }
 481}
 482
 483/*
 484 * Update KVM's MP_STATE based on what QEMU thinks it is
 485 */
 486int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 487{
 488    if (cap_has_mp_state) {
 489        struct kvm_mp_state mp_state = {
 490            .mp_state =
 491            cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 492        };
 493        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 494        if (ret) {
 495            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 496                    __func__, ret, strerror(-ret));
 497            return -1;
 498        }
 499    }
 500
 501    return 0;
 502}
 503
 504/*
 505 * Sync the KVM MP_STATE into QEMU
 506 */
 507int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 508{
 509    if (cap_has_mp_state) {
 510        struct kvm_mp_state mp_state;
 511        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 512        if (ret) {
 513            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 514                    __func__, ret, strerror(-ret));
 515            abort();
 516        }
 517        cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED);
 518    }
 519
 520    return 0;
 521}
 522
 523void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 524{
 525}
 526
 527MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 528{
 529    return MEMTXATTRS_UNSPECIFIED;
 530}
 531
 532
 533int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 534{
 535    int ret = 0;
 536
 537    switch (run->exit_reason) {
 538    case KVM_EXIT_DEBUG:
 539        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 540            ret = EXCP_DEBUG;
 541        } /* otherwise return to guest */
 542        break;
 543    default:
 544        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 545                      __func__, run->exit_reason);
 546        break;
 547    }
 548    return ret;
 549}
 550
 551bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 552{
 553    return true;
 554}
 555
 556int kvm_arch_process_async_events(CPUState *cs)
 557{
 558    return 0;
 559}
 560
 561int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
 562{
 563    return 1;
 564}
 565
 566int kvm_arch_on_sigbus(int code, void *addr)
 567{
 568    return 1;
 569}
 570
 571/* The #ifdef protections are until 32bit headers are imported and can
 572 * be removed once both 32 and 64 bit reach feature parity.
 573 */
 574void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 575{
 576#ifdef KVM_GUESTDBG_USE_SW_BP
 577    if (kvm_sw_breakpoints_active(cs)) {
 578        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 579    }
 580#endif
 581#ifdef KVM_GUESTDBG_USE_HW
 582    if (kvm_arm_hw_debug_active(cs)) {
 583        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 584        kvm_arm_copy_hw_debug_data(&dbg->arch);
 585    }
 586#endif
 587}
 588
 589void kvm_arch_init_irq_routing(KVMState *s)
 590{
 591}
 592
 593int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 594{
 595     if (machine_kernel_irqchip_split(ms)) {
 596         perror("-machine kernel_irqchip=split is not supported on ARM.");
 597         exit(1);
 598    }
 599
 600    /* If we can create the VGIC using the newer device control API, we
 601     * let the device do this when it initializes itself, otherwise we
 602     * fall back to the old API */
 603    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 604}
 605
 606int kvm_arm_vgic_probe(void)
 607{
 608    if (kvm_create_device(kvm_state,
 609                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 610        return 3;
 611    } else if (kvm_create_device(kvm_state,
 612                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 613        return 2;
 614    } else {
 615        return 0;
 616    }
 617}
 618
 619int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 620                             uint64_t address, uint32_t data, PCIDevice *dev)
 621{
 622    return 0;
 623}
 624
 625int kvm_arch_msi_data_to_gsi(uint32_t data)
 626{
 627    return (data - 32) & 0xffff;
 628}
 629