qemu/hw/acpi/nvdimm.c
<<
>>
Prefs
   1/*
   2 * NVDIMM ACPI Implementation
   3 *
   4 * Copyright(C) 2015 Intel Corporation.
   5 *
   6 * Author:
   7 *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
   8 *
   9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  10 * and the DSM specification can be found at:
  11 *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
  12 *
  13 * Currently, it only supports PMEM Virtualization.
  14 *
  15 * This library is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU Lesser General Public
  17 * License as published by the Free Software Foundation; either
  18 * version 2 of the License, or (at your option) any later version.
  19 *
  20 * This library is distributed in the hope that it will be useful,
  21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * Lesser General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU Lesser General Public
  26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
  27 */
  28
  29#include "qemu/osdep.h"
  30#include "hw/acpi/acpi.h"
  31#include "hw/acpi/aml-build.h"
  32#include "hw/acpi/bios-linker-loader.h"
  33#include "hw/nvram/fw_cfg.h"
  34#include "hw/mem/nvdimm.h"
  35
  36static int nvdimm_plugged_device_list(Object *obj, void *opaque)
  37{
  38    GSList **list = opaque;
  39
  40    if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
  41        DeviceState *dev = DEVICE(obj);
  42
  43        if (dev->realized) { /* only realized NVDIMMs matter */
  44            *list = g_slist_append(*list, DEVICE(obj));
  45        }
  46    }
  47
  48    object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
  49    return 0;
  50}
  51
  52/*
  53 * inquire plugged NVDIMM devices and link them into the list which is
  54 * returned to the caller.
  55 *
  56 * Note: it is the caller's responsibility to free the list to avoid
  57 * memory leak.
  58 */
  59static GSList *nvdimm_get_plugged_device_list(void)
  60{
  61    GSList *list = NULL;
  62
  63    object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
  64                         &list);
  65    return list;
  66}
  67
  68#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
  69   { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
  70     (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
  71     (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
  72
  73/*
  74 * define Byte Addressable Persistent Memory (PM) Region according to
  75 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
  76 */
  77static const uint8_t nvdimm_nfit_spa_uuid[] =
  78      NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
  79                     0x18, 0xb7, 0x8c, 0xdb);
  80
  81/*
  82 * NVDIMM Firmware Interface Table
  83 * @signature: "NFIT"
  84 *
  85 * It provides information that allows OSPM to enumerate NVDIMM present in
  86 * the platform and associate system physical address ranges created by the
  87 * NVDIMMs.
  88 *
  89 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  90 */
  91struct NvdimmNfitHeader {
  92    ACPI_TABLE_HEADER_DEF
  93    uint32_t reserved;
  94} QEMU_PACKED;
  95typedef struct NvdimmNfitHeader NvdimmNfitHeader;
  96
  97/*
  98 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
  99 * Interface Table (NFIT).
 100 */
 101
 102/*
 103 * System Physical Address Range Structure
 104 *
 105 * It describes the system physical address ranges occupied by NVDIMMs and
 106 * the types of the regions.
 107 */
 108struct NvdimmNfitSpa {
 109    uint16_t type;
 110    uint16_t length;
 111    uint16_t spa_index;
 112    uint16_t flags;
 113    uint32_t reserved;
 114    uint32_t proximity_domain;
 115    uint8_t type_guid[16];
 116    uint64_t spa_base;
 117    uint64_t spa_length;
 118    uint64_t mem_attr;
 119} QEMU_PACKED;
 120typedef struct NvdimmNfitSpa NvdimmNfitSpa;
 121
 122/*
 123 * Memory Device to System Physical Address Range Mapping Structure
 124 *
 125 * It enables identifying each NVDIMM region and the corresponding SPA
 126 * describing the memory interleave
 127 */
 128struct NvdimmNfitMemDev {
 129    uint16_t type;
 130    uint16_t length;
 131    uint32_t nfit_handle;
 132    uint16_t phys_id;
 133    uint16_t region_id;
 134    uint16_t spa_index;
 135    uint16_t dcr_index;
 136    uint64_t region_len;
 137    uint64_t region_offset;
 138    uint64_t region_dpa;
 139    uint16_t interleave_index;
 140    uint16_t interleave_ways;
 141    uint16_t flags;
 142    uint16_t reserved;
 143} QEMU_PACKED;
 144typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
 145
 146/*
 147 * NVDIMM Control Region Structure
 148 *
 149 * It describes the NVDIMM and if applicable, Block Control Window.
 150 */
 151struct NvdimmNfitControlRegion {
 152    uint16_t type;
 153    uint16_t length;
 154    uint16_t dcr_index;
 155    uint16_t vendor_id;
 156    uint16_t device_id;
 157    uint16_t revision_id;
 158    uint16_t sub_vendor_id;
 159    uint16_t sub_device_id;
 160    uint16_t sub_revision_id;
 161    uint8_t reserved[6];
 162    uint32_t serial_number;
 163    uint16_t fic;
 164    uint16_t num_bcw;
 165    uint64_t bcw_size;
 166    uint64_t cmd_offset;
 167    uint64_t cmd_size;
 168    uint64_t status_offset;
 169    uint64_t status_size;
 170    uint16_t flags;
 171    uint8_t reserved2[6];
 172} QEMU_PACKED;
 173typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
 174
 175/*
 176 * Module serial number is a unique number for each device. We use the
 177 * slot id of NVDIMM device to generate this number so that each device
 178 * associates with a different number.
 179 *
 180 * 0x123456 is a magic number we arbitrarily chose.
 181 */
 182static uint32_t nvdimm_slot_to_sn(int slot)
 183{
 184    return 0x123456 + slot;
 185}
 186
 187/*
 188 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
 189 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
 190 * by ACPI device _ADR method.
 191 *
 192 * We generate the handle with the slot id of NVDIMM device and reserve
 193 * 0 for NVDIMM root device.
 194 */
 195static uint32_t nvdimm_slot_to_handle(int slot)
 196{
 197    return slot + 1;
 198}
 199
 200/*
 201 * index uniquely identifies the structure, 0 is reserved which indicates
 202 * that the structure is not valid or the associated structure is not
 203 * present.
 204 *
 205 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
 206 * nfit_dc which are generated by the slot id of NVDIMM device.
 207 */
 208static uint16_t nvdimm_slot_to_spa_index(int slot)
 209{
 210    return (slot + 1) << 1;
 211}
 212
 213/* See the comments of nvdimm_slot_to_spa_index(). */
 214static uint32_t nvdimm_slot_to_dcr_index(int slot)
 215{
 216    return nvdimm_slot_to_spa_index(slot) + 1;
 217}
 218
 219static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
 220{
 221    NVDIMMDevice *nvdimm = NULL;
 222    GSList *list, *device_list = nvdimm_get_plugged_device_list();
 223
 224    for (list = device_list; list; list = list->next) {
 225        NVDIMMDevice *nvd = list->data;
 226        int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
 227                                           NULL);
 228
 229        if (nvdimm_slot_to_handle(slot) == handle) {
 230            nvdimm = nvd;
 231            break;
 232        }
 233    }
 234
 235    g_slist_free(device_list);
 236    return nvdimm;
 237}
 238
 239/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
 240static void
 241nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
 242{
 243    NvdimmNfitSpa *nfit_spa;
 244    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
 245                                            NULL);
 246    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
 247                                            NULL);
 248    uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
 249                                            NULL);
 250    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 251                                            NULL);
 252
 253    nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
 254
 255    nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
 256                                      Structure */);
 257    nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
 258    nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 259
 260    /*
 261     * Control region is strict as all the device info, such as SN, index,
 262     * is associated with slot id.
 263     */
 264    nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
 265                                       management during hot add/online
 266                                       operation */ |
 267                                  2 /* Data in Proximity Domain field is
 268                                       valid*/);
 269
 270    /* NUMA node. */
 271    nfit_spa->proximity_domain = cpu_to_le32(node);
 272    /* the region reported as PMEM. */
 273    memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
 274           sizeof(nvdimm_nfit_spa_uuid));
 275
 276    nfit_spa->spa_base = cpu_to_le64(addr);
 277    nfit_spa->spa_length = cpu_to_le64(size);
 278
 279    /* It is the PMEM and can be cached as writeback. */
 280    nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
 281                                     0x8000ULL /* EFI_MEMORY_NV */);
 282}
 283
 284/*
 285 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
 286 * Structure
 287 */
 288static void
 289nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
 290{
 291    NvdimmNfitMemDev *nfit_memdev;
 292    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
 293                                            NULL);
 294    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
 295                                            NULL);
 296    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 297                                            NULL);
 298    uint32_t handle = nvdimm_slot_to_handle(slot);
 299
 300    nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
 301
 302    nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
 303                                         Range Map Structure*/);
 304    nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
 305    nfit_memdev->nfit_handle = cpu_to_le32(handle);
 306
 307    /*
 308     * associate memory device with System Physical Address Range
 309     * Structure.
 310     */
 311    nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 312    /* associate memory device with Control Region Structure. */
 313    nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 314
 315    /* The memory region on the device. */
 316    nfit_memdev->region_len = cpu_to_le64(size);
 317    nfit_memdev->region_dpa = cpu_to_le64(addr);
 318
 319    /* Only one interleave for PMEM. */
 320    nfit_memdev->interleave_ways = cpu_to_le16(1);
 321}
 322
 323/*
 324 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
 325 */
 326static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
 327{
 328    NvdimmNfitControlRegion *nfit_dcr;
 329    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 330                                       NULL);
 331    uint32_t sn = nvdimm_slot_to_sn(slot);
 332
 333    nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
 334
 335    nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
 336    nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
 337    nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 338
 339    /* vendor: Intel. */
 340    nfit_dcr->vendor_id = cpu_to_le16(0x8086);
 341    nfit_dcr->device_id = cpu_to_le16(1);
 342
 343    /* The _DSM method is following Intel's DSM specification. */
 344    nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
 345                                             in ACPI 6.0 is 1. */);
 346    nfit_dcr->serial_number = cpu_to_le32(sn);
 347    nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
 348                                         2: NVDIMM Device Specific Method
 349                                         (DSM) in DSM Spec Rev1.*/);
 350}
 351
 352static GArray *nvdimm_build_device_structure(GSList *device_list)
 353{
 354    GArray *structures = g_array_new(false, true /* clear */, 1);
 355
 356    for (; device_list; device_list = device_list->next) {
 357        DeviceState *dev = device_list->data;
 358
 359        /* build System Physical Address Range Structure. */
 360        nvdimm_build_structure_spa(structures, dev);
 361
 362        /*
 363         * build Memory Device to System Physical Address Range Mapping
 364         * Structure.
 365         */
 366        nvdimm_build_structure_memdev(structures, dev);
 367
 368        /* build NVDIMM Control Region Structure. */
 369        nvdimm_build_structure_dcr(structures, dev);
 370    }
 371
 372    return structures;
 373}
 374
 375static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
 376                              GArray *table_data, BIOSLinker *linker)
 377{
 378    GArray *structures = nvdimm_build_device_structure(device_list);
 379    unsigned int header;
 380
 381    acpi_add_table(table_offsets, table_data);
 382
 383    /* NFIT header. */
 384    header = table_data->len;
 385    acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
 386    /* NVDIMM device structures. */
 387    g_array_append_vals(table_data, structures->data, structures->len);
 388
 389    build_header(linker, table_data,
 390                 (void *)(table_data->data + header), "NFIT",
 391                 sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
 392    g_array_free(structures, true);
 393}
 394
 395struct NvdimmDsmIn {
 396    uint32_t handle;
 397    uint32_t revision;
 398    uint32_t function;
 399    /* the remaining size in the page is used by arg3. */
 400    union {
 401        uint8_t arg3[4084];
 402    };
 403} QEMU_PACKED;
 404typedef struct NvdimmDsmIn NvdimmDsmIn;
 405QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
 406
 407struct NvdimmDsmOut {
 408    /* the size of buffer filled by QEMU. */
 409    uint32_t len;
 410    uint8_t data[4092];
 411} QEMU_PACKED;
 412typedef struct NvdimmDsmOut NvdimmDsmOut;
 413QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
 414
 415struct NvdimmDsmFunc0Out {
 416    /* the size of buffer filled by QEMU. */
 417     uint32_t len;
 418     uint32_t supported_func;
 419} QEMU_PACKED;
 420typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
 421
 422struct NvdimmDsmFuncNoPayloadOut {
 423    /* the size of buffer filled by QEMU. */
 424     uint32_t len;
 425     uint32_t func_ret_status;
 426} QEMU_PACKED;
 427typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
 428
 429struct NvdimmFuncGetLabelSizeOut {
 430    /* the size of buffer filled by QEMU. */
 431    uint32_t len;
 432    uint32_t func_ret_status; /* return status code. */
 433    uint32_t label_size; /* the size of label data area. */
 434    /*
 435     * Maximum size of the namespace label data length supported by
 436     * the platform in Get/Set Namespace Label Data functions.
 437     */
 438    uint32_t max_xfer;
 439} QEMU_PACKED;
 440typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
 441QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
 442
 443struct NvdimmFuncGetLabelDataIn {
 444    uint32_t offset; /* the offset in the namespace label data area. */
 445    uint32_t length; /* the size of data is to be read via the function. */
 446} QEMU_PACKED;
 447typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
 448QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
 449                  offsetof(NvdimmDsmIn, arg3) > 4096);
 450
 451struct NvdimmFuncGetLabelDataOut {
 452    /* the size of buffer filled by QEMU. */
 453    uint32_t len;
 454    uint32_t func_ret_status; /* return status code. */
 455    uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
 456} QEMU_PACKED;
 457typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
 458QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
 459
 460struct NvdimmFuncSetLabelDataIn {
 461    uint32_t offset; /* the offset in the namespace label data area. */
 462    uint32_t length; /* the size of data is to be written via the function. */
 463    uint8_t in_buf[0]; /* the data written to label data area. */
 464} QEMU_PACKED;
 465typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
 466QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
 467                  offsetof(NvdimmDsmIn, arg3) > 4096);
 468
 469static void
 470nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
 471{
 472    NvdimmDsmFunc0Out func0 = {
 473        .len = cpu_to_le32(sizeof(func0)),
 474        .supported_func = cpu_to_le32(supported_func),
 475    };
 476    cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
 477}
 478
 479static void
 480nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
 481{
 482    NvdimmDsmFuncNoPayloadOut out = {
 483        .len = cpu_to_le32(sizeof(out)),
 484        .func_ret_status = cpu_to_le32(func_ret_status),
 485    };
 486    cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
 487}
 488
 489static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 490{
 491    /*
 492     * function 0 is called to inquire which functions are supported by
 493     * OSPM
 494     */
 495    if (!in->function) {
 496        nvdimm_dsm_function0(0 /* No function supported other than
 497                                  function 0 */, dsm_mem_addr);
 498        return;
 499    }
 500
 501    /* No function except function 0 is supported yet. */
 502    nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
 503}
 504
 505/*
 506 * the max transfer size is the max size transferred by both a
 507 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
 508 * function.
 509 */
 510static uint32_t nvdimm_get_max_xfer_label_size(void)
 511{
 512    uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
 513
 514    /*
 515     * the max data ACPI can read one time which is transferred by
 516     * the response of 'Get Namespace Label Data' function.
 517     */
 518    max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
 519
 520    /*
 521     * the max data ACPI can write one time which is transferred by
 522     * 'Set Namespace Label Data' function.
 523     */
 524    max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
 525                   sizeof(NvdimmFuncSetLabelDataIn);
 526
 527    return MIN(max_get_size, max_set_size);
 528}
 529
 530/*
 531 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
 532 *
 533 * It gets the size of Namespace Label data area and the max data size
 534 * that Get/Set Namespace Label Data functions can transfer.
 535 */
 536static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
 537{
 538    NvdimmFuncGetLabelSizeOut label_size_out = {
 539        .len = cpu_to_le32(sizeof(label_size_out)),
 540    };
 541    uint32_t label_size, mxfer;
 542
 543    label_size = nvdimm->label_size;
 544    mxfer = nvdimm_get_max_xfer_label_size();
 545
 546    nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
 547
 548    label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
 549    label_size_out.label_size = cpu_to_le32(label_size);
 550    label_size_out.max_xfer = cpu_to_le32(mxfer);
 551
 552    cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
 553                              sizeof(label_size_out));
 554}
 555
 556static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
 557                                           uint32_t offset, uint32_t length)
 558{
 559    uint32_t ret = 3 /* Invalid Input Parameters */;
 560
 561    if (offset + length < offset) {
 562        nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
 563                     length);
 564        return ret;
 565    }
 566
 567    if (nvdimm->label_size < offset + length) {
 568        nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
 569                     offset + length, nvdimm->label_size);
 570        return ret;
 571    }
 572
 573    if (length > nvdimm_get_max_xfer_label_size()) {
 574        nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
 575                     length, nvdimm_get_max_xfer_label_size());
 576        return ret;
 577    }
 578
 579    return 0 /* Success */;
 580}
 581
 582/*
 583 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
 584 */
 585static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 586                                      hwaddr dsm_mem_addr)
 587{
 588    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 589    NvdimmFuncGetLabelDataIn *get_label_data;
 590    NvdimmFuncGetLabelDataOut *get_label_data_out;
 591    uint32_t status;
 592    int size;
 593
 594    get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
 595    le32_to_cpus(&get_label_data->offset);
 596    le32_to_cpus(&get_label_data->length);
 597
 598    nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
 599                 get_label_data->offset, get_label_data->length);
 600
 601    status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
 602                                        get_label_data->length);
 603    if (status != 0 /* Success */) {
 604        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 605        return;
 606    }
 607
 608    size = sizeof(*get_label_data_out) + get_label_data->length;
 609    assert(size <= 4096);
 610    get_label_data_out = g_malloc(size);
 611
 612    get_label_data_out->len = cpu_to_le32(size);
 613    get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
 614    nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
 615                         get_label_data->length, get_label_data->offset);
 616
 617    cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
 618    g_free(get_label_data_out);
 619}
 620
 621/*
 622 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
 623 */
 624static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 625                                      hwaddr dsm_mem_addr)
 626{
 627    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 628    NvdimmFuncSetLabelDataIn *set_label_data;
 629    uint32_t status;
 630
 631    set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
 632
 633    le32_to_cpus(&set_label_data->offset);
 634    le32_to_cpus(&set_label_data->length);
 635
 636    nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
 637                 set_label_data->offset, set_label_data->length);
 638
 639    status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
 640                                        set_label_data->length);
 641    if (status != 0 /* Success */) {
 642        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 643        return;
 644    }
 645
 646    assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <=
 647           4096);
 648
 649    nvc->write_label_data(nvdimm, set_label_data->in_buf,
 650                          set_label_data->length, set_label_data->offset);
 651    nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
 652}
 653
 654static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 655{
 656    NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
 657
 658    /* See the comments in nvdimm_dsm_root(). */
 659    if (!in->function) {
 660        uint32_t supported_func = 0;
 661
 662        if (nvdimm && nvdimm->label_size) {
 663            supported_func |= 0x1 /* Bit 0 indicates whether there is
 664                                     support for any functions other
 665                                     than function 0. */ |
 666                              1 << 4 /* Get Namespace Label Size */ |
 667                              1 << 5 /* Get Namespace Label Data */ |
 668                              1 << 6 /* Set Namespace Label Data */;
 669        }
 670        nvdimm_dsm_function0(supported_func, dsm_mem_addr);
 671        return;
 672    }
 673
 674    if (!nvdimm) {
 675        nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
 676                              dsm_mem_addr);
 677        return;
 678    }
 679
 680    /* Encode DSM function according to DSM Spec Rev1. */
 681    switch (in->function) {
 682    case 4 /* Get Namespace Label Size */:
 683        if (nvdimm->label_size) {
 684            nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
 685            return;
 686        }
 687        break;
 688    case 5 /* Get Namespace Label Data */:
 689        if (nvdimm->label_size) {
 690            nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
 691            return;
 692        }
 693        break;
 694    case 0x6 /* Set Namespace Label Data */:
 695        if (nvdimm->label_size) {
 696            nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
 697            return;
 698        }
 699        break;
 700    }
 701
 702    nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
 703}
 704
 705static uint64_t
 706nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
 707{
 708    nvdimm_debug("BUG: we never read _DSM IO Port.\n");
 709    return 0;
 710}
 711
 712static void
 713nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
 714{
 715    NvdimmDsmIn *in;
 716    hwaddr dsm_mem_addr = val;
 717
 718    nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
 719
 720    /*
 721     * The DSM memory is mapped to guest address space so an evil guest
 722     * can change its content while we are doing DSM emulation. Avoid
 723     * this by copying DSM memory to QEMU local memory.
 724     */
 725    in = g_new(NvdimmDsmIn, 1);
 726    cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
 727
 728    le32_to_cpus(&in->revision);
 729    le32_to_cpus(&in->function);
 730    le32_to_cpus(&in->handle);
 731
 732    nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
 733                 in->handle, in->function);
 734
 735    if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
 736        nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
 737                     in->revision, 0x1);
 738        nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
 739        goto exit;
 740    }
 741
 742     /* Handle 0 is reserved for NVDIMM Root Device. */
 743    if (!in->handle) {
 744        nvdimm_dsm_root(in, dsm_mem_addr);
 745        goto exit;
 746    }
 747
 748    nvdimm_dsm_device(in, dsm_mem_addr);
 749
 750exit:
 751    g_free(in);
 752}
 753
 754static const MemoryRegionOps nvdimm_dsm_ops = {
 755    .read = nvdimm_dsm_read,
 756    .write = nvdimm_dsm_write,
 757    .endianness = DEVICE_LITTLE_ENDIAN,
 758    .valid = {
 759        .min_access_size = 4,
 760        .max_access_size = 4,
 761    },
 762};
 763
 764void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
 765                            FWCfgState *fw_cfg, Object *owner)
 766{
 767    memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
 768                          "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
 769    memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
 770
 771    state->dsm_mem = g_array_new(false, true /* clear */, 1);
 772    acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
 773    fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
 774                    state->dsm_mem->len);
 775}
 776
 777#define NVDIMM_COMMON_DSM      "NCAL"
 778#define NVDIMM_ACPI_MEM_ADDR   "MEMA"
 779
 780static void nvdimm_build_common_dsm(Aml *dev)
 781{
 782    Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *result_size;
 783    Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
 784    Aml *pckg, *pckg_index, *pckg_buf;
 785    uint8_t byte_list[1];
 786
 787    method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
 788    uuid = aml_arg(0);
 789    function = aml_arg(2);
 790    handle = aml_arg(4);
 791    dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);
 792
 793    /*
 794     * do not support any method if DSM memory address has not been
 795     * patched.
 796     */
 797    unpatched = aml_equal(dsm_mem, aml_int(0x0));
 798
 799    expected_uuid = aml_local(0);
 800
 801    ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
 802    aml_append(ifctx, aml_store(
 803               aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
 804               /* UUID for NVDIMM Root Device */, expected_uuid));
 805    aml_append(method, ifctx);
 806    elsectx = aml_else();
 807    aml_append(elsectx, aml_store(
 808               aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
 809               /* UUID for NVDIMM Devices */, expected_uuid));
 810    aml_append(method, elsectx);
 811
 812    uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
 813
 814    unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
 815
 816    /*
 817     * function 0 is called to inquire what functions are supported by
 818     * OSPM
 819     */
 820    ifctx = aml_if(aml_equal(function, aml_int(0)));
 821    byte_list[0] = 0 /* No function Supported */;
 822    aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
 823    aml_append(unsupport, ifctx);
 824
 825    /* No function is supported yet. */
 826    byte_list[0] = 1 /* Not Supported */;
 827    aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
 828    aml_append(method, unsupport);
 829
 830    /*
 831     * The HDLE indicates the DSM function is issued from which device,
 832     * it reserves 0 for root device and is the handle for NVDIMM devices.
 833     * See the comments in nvdimm_slot_to_handle().
 834     */
 835    aml_append(method, aml_store(handle, aml_name("HDLE")));
 836    aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
 837    aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));
 838
 839    /*
 840     * The fourth parameter (Arg3) of _DSM is a package which contains
 841     * a buffer, the layout of the buffer is specified by UUID (Arg0),
 842     * Revision ID (Arg1) and Function Index (Arg2) which are documented
 843     * in the DSM Spec.
 844     */
 845    pckg = aml_arg(3);
 846    ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
 847                   aml_int(4 /* Package */)) /* It is a Package? */,
 848                   aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
 849                   NULL));
 850
 851    pckg_index = aml_local(2);
 852    pckg_buf = aml_local(3);
 853    aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
 854    aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
 855    aml_append(ifctx, aml_store(pckg_buf, aml_name("ARG3")));
 856    aml_append(method, ifctx);
 857
 858    /*
 859     * tell QEMU about the real address of DSM memory, then QEMU
 860     * gets the control and fills the result in DSM memory.
 861     */
 862    aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));
 863
 864    result_size = aml_local(1);
 865    aml_append(method, aml_store(aml_name("RLEN"), result_size));
 866    aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
 867                                 result_size));
 868    aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
 869                                        result_size, "OBUF"));
 870    aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
 871                                       aml_arg(6)));
 872    aml_append(method, aml_return(aml_arg(6)));
 873    aml_append(dev, method);
 874}
 875
 876static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
 877{
 878    Aml *method;
 879
 880    method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
 881    aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
 882                                  aml_arg(1), aml_arg(2), aml_arg(3),
 883                                  aml_int(handle))));
 884    aml_append(dev, method);
 885}
 886
 887static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
 888{
 889    for (; device_list; device_list = device_list->next) {
 890        DeviceState *dev = device_list->data;
 891        int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 892                                           NULL);
 893        uint32_t handle = nvdimm_slot_to_handle(slot);
 894        Aml *nvdimm_dev;
 895
 896        nvdimm_dev = aml_device("NV%02X", slot);
 897
 898        /*
 899         * ACPI 6.0: 9.20 NVDIMM Devices:
 900         *
 901         * _ADR object that is used to supply OSPM with unique address
 902         * of the NVDIMM device. This is done by returning the NFIT Device
 903         * handle that is used to identify the associated entries in ACPI
 904         * table NFIT or _FIT.
 905         */
 906        aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
 907
 908        nvdimm_build_device_dsm(nvdimm_dev, handle);
 909        aml_append(root_dev, nvdimm_dev);
 910    }
 911}
 912
 913static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
 914                              GArray *table_data, BIOSLinker *linker,
 915                              GArray *dsm_dma_arrea)
 916{
 917    Aml *ssdt, *sb_scope, *dev, *field;
 918    int mem_addr_offset, nvdimm_ssdt;
 919
 920    acpi_add_table(table_offsets, table_data);
 921
 922    ssdt = init_aml_allocator();
 923    acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
 924
 925    sb_scope = aml_scope("\\_SB");
 926
 927    dev = aml_device("NVDR");
 928
 929    /*
 930     * ACPI 6.0: 9.20 NVDIMM Devices:
 931     *
 932     * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
 933     * NVDIMM interface device. Platform firmware is required to contain one
 934     * such device in _SB scope if NVDIMMs support is exposed by platform to
 935     * OSPM.
 936     * For each NVDIMM present or intended to be supported by platform,
 937     * platform firmware also exposes an ACPI Namespace Device under the
 938     * root device.
 939     */
 940    aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
 941
 942    /* map DSM memory and IO into ACPI namespace. */
 943    aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
 944               aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
 945    aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
 946               aml_name(NVDIMM_ACPI_MEM_ADDR), sizeof(NvdimmDsmIn)));
 947
 948    /*
 949     * DSM notifier:
 950     * NTFI: write the address of DSM memory and notify QEMU to emulate
 951     *       the access.
 952     *
 953     * It is the IO port so that accessing them will cause VM-exit, the
 954     * control will be transferred to QEMU.
 955     */
 956    field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
 957    aml_append(field, aml_named_field("NTFI",
 958               sizeof(uint32_t) * BITS_PER_BYTE));
 959    aml_append(dev, field);
 960
 961    /*
 962     * DSM input:
 963     * HDLE: store device's handle, it's zero if the _DSM call happens
 964     *       on NVDIMM Root Device.
 965     * REVS: store the Arg1 of _DSM call.
 966     * FUNC: store the Arg2 of _DSM call.
 967     * ARG3: store the Arg3 of _DSM call.
 968     *
 969     * They are RAM mapping on host so that these accesses never cause
 970     * VM-EXIT.
 971     */
 972    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
 973    aml_append(field, aml_named_field("HDLE",
 974               sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
 975    aml_append(field, aml_named_field("REVS",
 976               sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
 977    aml_append(field, aml_named_field("FUNC",
 978               sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
 979    aml_append(field, aml_named_field("ARG3",
 980               (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
 981    aml_append(dev, field);
 982
 983    /*
 984     * DSM output:
 985     * RLEN: the size of the buffer filled by QEMU.
 986     * ODAT: the buffer QEMU uses to store the result.
 987     *
 988     * Since the page is reused by both input and out, the input data
 989     * will be lost after storing new result into ODAT so we should fetch
 990     * all the input data before writing the result.
 991     */
 992    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
 993    aml_append(field, aml_named_field("RLEN",
 994               sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
 995    aml_append(field, aml_named_field("ODAT",
 996               (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
 997    aml_append(dev, field);
 998
 999    nvdimm_build_common_dsm(dev);
1000
1001    /* 0 is reserved for root device. */
1002    nvdimm_build_device_dsm(dev, 0);
1003
1004    nvdimm_build_nvdimm_devices(device_list, dev);
1005
1006    aml_append(sb_scope, dev);
1007    aml_append(ssdt, sb_scope);
1008
1009    nvdimm_ssdt = table_data->len;
1010
1011    /* copy AML table into ACPI tables blob and patch header there */
1012    g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1013    mem_addr_offset = build_append_named_dword(table_data,
1014                                               NVDIMM_ACPI_MEM_ADDR);
1015
1016    bios_linker_loader_alloc(linker,
1017                             NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1018                             sizeof(NvdimmDsmIn), false /* high memory */);
1019    bios_linker_loader_add_pointer(linker,
1020        ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1021        NVDIMM_DSM_MEM_FILE, 0);
1022    build_header(linker, table_data,
1023        (void *)(table_data->data + nvdimm_ssdt),
1024        "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1025    free_aml_allocator();
1026}
1027
1028void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1029                       BIOSLinker *linker, GArray *dsm_dma_arrea)
1030{
1031    GSList *device_list;
1032
1033    /* no NVDIMM device is plugged. */
1034    device_list = nvdimm_get_plugged_device_list();
1035    if (!device_list) {
1036        return;
1037    }
1038    nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
1039    nvdimm_build_ssdt(device_list, table_offsets, table_data, linker,
1040                      dsm_dma_arrea);
1041    g_slist_free(device_list);
1042}
1043