qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qapi/error.h"
  12#include "hw/hw.h"
  13#include "hw/arm/arm.h"
  14#include "hw/arm/linux-boot-if.h"
  15#include "sysemu/kvm.h"
  16#include "sysemu/sysemu.h"
  17#include "sysemu/numa.h"
  18#include "hw/boards.h"
  19#include "hw/loader.h"
  20#include "elf.h"
  21#include "sysemu/device_tree.h"
  22#include "qemu/config-file.h"
  23#include "exec/address-spaces.h"
  24
  25/* Kernel boot protocol is specified in the kernel docs
  26 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  27 * They have different preferred image load offsets from system RAM base.
  28 */
  29#define KERNEL_ARGS_ADDR 0x100
  30#define KERNEL_LOAD_ADDR 0x00010000
  31#define KERNEL64_LOAD_ADDR 0x00080000
  32
  33typedef enum {
  34    FIXUP_NONE = 0,     /* do nothing */
  35    FIXUP_TERMINATOR,   /* end of insns */
  36    FIXUP_BOARDID,      /* overwrite with board ID number */
  37    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  38    FIXUP_ARGPTR,       /* overwrite with pointer to kernel args */
  39    FIXUP_ENTRYPOINT,   /* overwrite with kernel entry point */
  40    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  41    FIXUP_BOOTREG,      /* overwrite with boot register address */
  42    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  43    FIXUP_MAX,
  44} FixupType;
  45
  46typedef struct ARMInsnFixup {
  47    uint32_t insn;
  48    FixupType fixup;
  49} ARMInsnFixup;
  50
  51static const ARMInsnFixup bootloader_aarch64[] = {
  52    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  53    { 0xaa1f03e1 }, /* mov x1, xzr */
  54    { 0xaa1f03e2 }, /* mov x2, xzr */
  55    { 0xaa1f03e3 }, /* mov x3, xzr */
  56    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  57    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  58    { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
  59    { 0 }, /* .word @DTB Higher 32-bits */
  60    { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
  61    { 0 }, /* .word @Kernel Entry Higher 32-bits */
  62    { 0, FIXUP_TERMINATOR }
  63};
  64
  65/* A very small bootloader: call the board-setup code (if needed),
  66 * set r0-r2, then jump to the kernel.
  67 * If we're not calling boot setup code then we don't copy across
  68 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
  69 */
  70
  71static const ARMInsnFixup bootloader[] = {
  72    { 0xe28fe004 }, /* add     lr, pc, #4 */
  73    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
  74    { 0, FIXUP_BOARD_SETUP },
  75#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
  76    { 0xe3a00000 }, /* mov     r0, #0 */
  77    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
  78    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
  79    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
  80    { 0, FIXUP_BOARDID },
  81    { 0, FIXUP_ARGPTR },
  82    { 0, FIXUP_ENTRYPOINT },
  83    { 0, FIXUP_TERMINATOR }
  84};
  85
  86/* Handling for secondary CPU boot in a multicore system.
  87 * Unlike the uniprocessor/primary CPU boot, this is platform
  88 * dependent. The default code here is based on the secondary
  89 * CPU boot protocol used on realview/vexpress boards, with
  90 * some parameterisation to increase its flexibility.
  91 * QEMU platform models for which this code is not appropriate
  92 * should override write_secondary_boot and secondary_cpu_reset_hook
  93 * instead.
  94 *
  95 * This code enables the interrupt controllers for the secondary
  96 * CPUs and then puts all the secondary CPUs into a loop waiting
  97 * for an interprocessor interrupt and polling a configurable
  98 * location for the kernel secondary CPU entry point.
  99 */
 100#define DSB_INSN 0xf57ff04f
 101#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 102
 103static const ARMInsnFixup smpboot[] = {
 104    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 105    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 106    { 0xe3a01001 }, /* mov r1, #1 */
 107    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 108    { 0xe3a010ff }, /* mov r1, #0xff */
 109    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 110    { 0, FIXUP_DSB },   /* dsb */
 111    { 0xe320f003 }, /* wfi */
 112    { 0xe5901000 }, /* ldr     r1, [r0] */
 113    { 0xe1110001 }, /* tst     r1, r1 */
 114    { 0x0afffffb }, /* beq     <wfi> */
 115    { 0xe12fff11 }, /* bx      r1 */
 116    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 117    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 118    { 0, FIXUP_TERMINATOR }
 119};
 120
 121static void write_bootloader(const char *name, hwaddr addr,
 122                             const ARMInsnFixup *insns, uint32_t *fixupcontext)
 123{
 124    /* Fix up the specified bootloader fragment and write it into
 125     * guest memory using rom_add_blob_fixed(). fixupcontext is
 126     * an array giving the values to write in for the fixup types
 127     * which write a value into the code array.
 128     */
 129    int i, len;
 130    uint32_t *code;
 131
 132    len = 0;
 133    while (insns[len].fixup != FIXUP_TERMINATOR) {
 134        len++;
 135    }
 136
 137    code = g_new0(uint32_t, len);
 138
 139    for (i = 0; i < len; i++) {
 140        uint32_t insn = insns[i].insn;
 141        FixupType fixup = insns[i].fixup;
 142
 143        switch (fixup) {
 144        case FIXUP_NONE:
 145            break;
 146        case FIXUP_BOARDID:
 147        case FIXUP_BOARD_SETUP:
 148        case FIXUP_ARGPTR:
 149        case FIXUP_ENTRYPOINT:
 150        case FIXUP_GIC_CPU_IF:
 151        case FIXUP_BOOTREG:
 152        case FIXUP_DSB:
 153            insn = fixupcontext[fixup];
 154            break;
 155        default:
 156            abort();
 157        }
 158        code[i] = tswap32(insn);
 159    }
 160
 161    rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
 162
 163    g_free(code);
 164}
 165
 166static void default_write_secondary(ARMCPU *cpu,
 167                                    const struct arm_boot_info *info)
 168{
 169    uint32_t fixupcontext[FIXUP_MAX];
 170
 171    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 172    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 173    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 174        fixupcontext[FIXUP_DSB] = DSB_INSN;
 175    } else {
 176        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 177    }
 178
 179    write_bootloader("smpboot", info->smp_loader_start,
 180                     smpboot, fixupcontext);
 181}
 182
 183void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 184                                            const struct arm_boot_info *info,
 185                                            hwaddr mvbar_addr)
 186{
 187    int n;
 188    uint32_t mvbar_blob[] = {
 189        /* mvbar_addr: secure monitor vectors
 190         * Default unimplemented and unused vectors to spin. Makes it
 191         * easier to debug (as opposed to the CPU running away).
 192         */
 193        0xeafffffe, /* (spin) */
 194        0xeafffffe, /* (spin) */
 195        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 196        0xeafffffe, /* (spin) */
 197        0xeafffffe, /* (spin) */
 198        0xeafffffe, /* (spin) */
 199        0xeafffffe, /* (spin) */
 200        0xeafffffe, /* (spin) */
 201    };
 202    uint32_t board_setup_blob[] = {
 203        /* board setup addr */
 204        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 205        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 206        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 207        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 208        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 209        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 210        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 211        0xe1a0f001, /* mov     pc, r1                 ;return */
 212    };
 213
 214    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 215    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 216
 217    /* check that these blobs don't overlap */
 218    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 219          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 220
 221    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 222        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 223    }
 224    rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 225                       mvbar_addr);
 226
 227    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 228        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 229    }
 230    rom_add_blob_fixed("board-setup", board_setup_blob,
 231                       sizeof(board_setup_blob), info->board_setup_addr);
 232}
 233
 234static void default_reset_secondary(ARMCPU *cpu,
 235                                    const struct arm_boot_info *info)
 236{
 237    CPUState *cs = CPU(cpu);
 238
 239    address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
 240                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 241    cpu_set_pc(cs, info->smp_loader_start);
 242}
 243
 244static inline bool have_dtb(const struct arm_boot_info *info)
 245{
 246    return info->dtb_filename || info->get_dtb;
 247}
 248
 249#define WRITE_WORD(p, value) do { \
 250    address_space_stl_notdirty(&address_space_memory, p, value, \
 251                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 252    p += 4;                       \
 253} while (0)
 254
 255static void set_kernel_args(const struct arm_boot_info *info)
 256{
 257    int initrd_size = info->initrd_size;
 258    hwaddr base = info->loader_start;
 259    hwaddr p;
 260
 261    p = base + KERNEL_ARGS_ADDR;
 262    /* ATAG_CORE */
 263    WRITE_WORD(p, 5);
 264    WRITE_WORD(p, 0x54410001);
 265    WRITE_WORD(p, 1);
 266    WRITE_WORD(p, 0x1000);
 267    WRITE_WORD(p, 0);
 268    /* ATAG_MEM */
 269    /* TODO: handle multiple chips on one ATAG list */
 270    WRITE_WORD(p, 4);
 271    WRITE_WORD(p, 0x54410002);
 272    WRITE_WORD(p, info->ram_size);
 273    WRITE_WORD(p, info->loader_start);
 274    if (initrd_size) {
 275        /* ATAG_INITRD2 */
 276        WRITE_WORD(p, 4);
 277        WRITE_WORD(p, 0x54420005);
 278        WRITE_WORD(p, info->initrd_start);
 279        WRITE_WORD(p, initrd_size);
 280    }
 281    if (info->kernel_cmdline && *info->kernel_cmdline) {
 282        /* ATAG_CMDLINE */
 283        int cmdline_size;
 284
 285        cmdline_size = strlen(info->kernel_cmdline);
 286        cpu_physical_memory_write(p + 8, info->kernel_cmdline,
 287                                  cmdline_size + 1);
 288        cmdline_size = (cmdline_size >> 2) + 1;
 289        WRITE_WORD(p, cmdline_size + 2);
 290        WRITE_WORD(p, 0x54410009);
 291        p += cmdline_size * 4;
 292    }
 293    if (info->atag_board) {
 294        /* ATAG_BOARD */
 295        int atag_board_len;
 296        uint8_t atag_board_buf[0x1000];
 297
 298        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 299        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 300        WRITE_WORD(p, 0x414f4d50);
 301        cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
 302        p += atag_board_len;
 303    }
 304    /* ATAG_END */
 305    WRITE_WORD(p, 0);
 306    WRITE_WORD(p, 0);
 307}
 308
 309static void set_kernel_args_old(const struct arm_boot_info *info)
 310{
 311    hwaddr p;
 312    const char *s;
 313    int initrd_size = info->initrd_size;
 314    hwaddr base = info->loader_start;
 315
 316    /* see linux/include/asm-arm/setup.h */
 317    p = base + KERNEL_ARGS_ADDR;
 318    /* page_size */
 319    WRITE_WORD(p, 4096);
 320    /* nr_pages */
 321    WRITE_WORD(p, info->ram_size / 4096);
 322    /* ramdisk_size */
 323    WRITE_WORD(p, 0);
 324#define FLAG_READONLY   1
 325#define FLAG_RDLOAD     4
 326#define FLAG_RDPROMPT   8
 327    /* flags */
 328    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 329    /* rootdev */
 330    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 331    /* video_num_cols */
 332    WRITE_WORD(p, 0);
 333    /* video_num_rows */
 334    WRITE_WORD(p, 0);
 335    /* video_x */
 336    WRITE_WORD(p, 0);
 337    /* video_y */
 338    WRITE_WORD(p, 0);
 339    /* memc_control_reg */
 340    WRITE_WORD(p, 0);
 341    /* unsigned char sounddefault */
 342    /* unsigned char adfsdrives */
 343    /* unsigned char bytes_per_char_h */
 344    /* unsigned char bytes_per_char_v */
 345    WRITE_WORD(p, 0);
 346    /* pages_in_bank[4] */
 347    WRITE_WORD(p, 0);
 348    WRITE_WORD(p, 0);
 349    WRITE_WORD(p, 0);
 350    WRITE_WORD(p, 0);
 351    /* pages_in_vram */
 352    WRITE_WORD(p, 0);
 353    /* initrd_start */
 354    if (initrd_size) {
 355        WRITE_WORD(p, info->initrd_start);
 356    } else {
 357        WRITE_WORD(p, 0);
 358    }
 359    /* initrd_size */
 360    WRITE_WORD(p, initrd_size);
 361    /* rd_start */
 362    WRITE_WORD(p, 0);
 363    /* system_rev */
 364    WRITE_WORD(p, 0);
 365    /* system_serial_low */
 366    WRITE_WORD(p, 0);
 367    /* system_serial_high */
 368    WRITE_WORD(p, 0);
 369    /* mem_fclk_21285 */
 370    WRITE_WORD(p, 0);
 371    /* zero unused fields */
 372    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 373        WRITE_WORD(p, 0);
 374    }
 375    s = info->kernel_cmdline;
 376    if (s) {
 377        cpu_physical_memory_write(p, s, strlen(s) + 1);
 378    } else {
 379        WRITE_WORD(p, 0);
 380    }
 381}
 382
 383/**
 384 * load_dtb() - load a device tree binary image into memory
 385 * @addr:       the address to load the image at
 386 * @binfo:      struct describing the boot environment
 387 * @addr_limit: upper limit of the available memory area at @addr
 388 *
 389 * Load a device tree supplied by the machine or by the user  with the
 390 * '-dtb' command line option, and put it at offset @addr in target
 391 * memory.
 392 *
 393 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
 394 * than @addr), the device tree is only loaded if its size does not exceed
 395 * the limit.
 396 *
 397 * Returns: the size of the device tree image on success,
 398 *          0 if the image size exceeds the limit,
 399 *          -1 on errors.
 400 *
 401 * Note: Must not be called unless have_dtb(binfo) is true.
 402 */
 403static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 404                    hwaddr addr_limit)
 405{
 406    void *fdt = NULL;
 407    int size, rc;
 408    uint32_t acells, scells;
 409    char *nodename;
 410    unsigned int i;
 411    hwaddr mem_base, mem_len;
 412
 413    if (binfo->dtb_filename) {
 414        char *filename;
 415        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 416        if (!filename) {
 417            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 418            goto fail;
 419        }
 420
 421        fdt = load_device_tree(filename, &size);
 422        if (!fdt) {
 423            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 424            g_free(filename);
 425            goto fail;
 426        }
 427        g_free(filename);
 428    } else {
 429        fdt = binfo->get_dtb(binfo, &size);
 430        if (!fdt) {
 431            fprintf(stderr, "Board was unable to create a dtb blob\n");
 432            goto fail;
 433        }
 434    }
 435
 436    if (addr_limit > addr && size > (addr_limit - addr)) {
 437        /* Installing the device tree blob at addr would exceed addr_limit.
 438         * Whether this constitutes failure is up to the caller to decide,
 439         * so just return 0 as size, i.e., no error.
 440         */
 441        g_free(fdt);
 442        return 0;
 443    }
 444
 445    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 446                                   NULL, &error_fatal);
 447    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 448                                   NULL, &error_fatal);
 449    if (acells == 0 || scells == 0) {
 450        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 451        goto fail;
 452    }
 453
 454    if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
 455        /* This is user error so deserves a friendlier error message
 456         * than the failure of setprop_sized_cells would provide
 457         */
 458        fprintf(stderr, "qemu: dtb file not compatible with "
 459                "RAM size > 4GB\n");
 460        goto fail;
 461    }
 462
 463    if (nb_numa_nodes > 0) {
 464        /*
 465         * Turn the /memory node created before into a NOP node, then create
 466         * /memory@addr nodes for all numa nodes respectively.
 467         */
 468        qemu_fdt_nop_node(fdt, "/memory");
 469        mem_base = binfo->loader_start;
 470        for (i = 0; i < nb_numa_nodes; i++) {
 471            mem_len = numa_info[i].node_mem;
 472            nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 473            qemu_fdt_add_subnode(fdt, nodename);
 474            qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 475            rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
 476                                              acells, mem_base,
 477                                              scells, mem_len);
 478            if (rc < 0) {
 479                fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
 480                        i);
 481                goto fail;
 482            }
 483
 484            qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
 485            mem_base += mem_len;
 486            g_free(nodename);
 487        }
 488    } else {
 489        rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
 490                                          acells, binfo->loader_start,
 491                                          scells, binfo->ram_size);
 492        if (rc < 0) {
 493            fprintf(stderr, "couldn't set /memory/reg\n");
 494            goto fail;
 495        }
 496    }
 497
 498    if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
 499        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 500                                     binfo->kernel_cmdline);
 501        if (rc < 0) {
 502            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 503            goto fail;
 504        }
 505    }
 506
 507    if (binfo->initrd_size) {
 508        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 509                                   binfo->initrd_start);
 510        if (rc < 0) {
 511            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 512            goto fail;
 513        }
 514
 515        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 516                                   binfo->initrd_start + binfo->initrd_size);
 517        if (rc < 0) {
 518            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 519            goto fail;
 520        }
 521    }
 522
 523    if (binfo->modify_dtb) {
 524        binfo->modify_dtb(binfo, fdt);
 525    }
 526
 527    qemu_fdt_dumpdtb(fdt, size);
 528
 529    /* Put the DTB into the memory map as a ROM image: this will ensure
 530     * the DTB is copied again upon reset, even if addr points into RAM.
 531     */
 532    rom_add_blob_fixed("dtb", fdt, size, addr);
 533
 534    g_free(fdt);
 535
 536    return size;
 537
 538fail:
 539    g_free(fdt);
 540    return -1;
 541}
 542
 543static void do_cpu_reset(void *opaque)
 544{
 545    ARMCPU *cpu = opaque;
 546    CPUState *cs = CPU(cpu);
 547    CPUARMState *env = &cpu->env;
 548    const struct arm_boot_info *info = env->boot_info;
 549
 550    cpu_reset(cs);
 551    if (info) {
 552        if (!info->is_linux) {
 553            int i;
 554            /* Jump to the entry point.  */
 555            uint64_t entry = info->entry;
 556
 557            switch (info->endianness) {
 558            case ARM_ENDIANNESS_LE:
 559                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 560                for (i = 1; i < 4; ++i) {
 561                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 562                }
 563                env->uncached_cpsr &= ~CPSR_E;
 564                break;
 565            case ARM_ENDIANNESS_BE8:
 566                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 567                for (i = 1; i < 4; ++i) {
 568                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 569                }
 570                env->uncached_cpsr |= CPSR_E;
 571                break;
 572            case ARM_ENDIANNESS_BE32:
 573                env->cp15.sctlr_el[1] |= SCTLR_B;
 574                break;
 575            case ARM_ENDIANNESS_UNKNOWN:
 576                break; /* Board's decision */
 577            default:
 578                g_assert_not_reached();
 579            }
 580
 581            if (!env->aarch64) {
 582                env->thumb = info->entry & 1;
 583                entry &= 0xfffffffe;
 584            }
 585            cpu_set_pc(cs, entry);
 586        } else {
 587            /* If we are booting Linux then we need to check whether we are
 588             * booting into secure or non-secure state and adjust the state
 589             * accordingly.  Out of reset, ARM is defined to be in secure state
 590             * (SCR.NS = 0), we change that here if non-secure boot has been
 591             * requested.
 592             */
 593            if (arm_feature(env, ARM_FEATURE_EL3)) {
 594                /* AArch64 is defined to come out of reset into EL3 if enabled.
 595                 * If we are booting Linux then we need to adjust our EL as
 596                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 597                 * SVC, which Linux expects, so no privilege/exception level to
 598                 * adjust.
 599                 */
 600                if (env->aarch64) {
 601                    env->cp15.scr_el3 |= SCR_RW;
 602                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 603                        env->cp15.hcr_el2 |= HCR_RW;
 604                        env->pstate = PSTATE_MODE_EL2h;
 605                    } else {
 606                        env->pstate = PSTATE_MODE_EL1h;
 607                    }
 608                }
 609
 610                /* Set to non-secure if not a secure boot */
 611                if (!info->secure_boot &&
 612                    (cs != first_cpu || !info->secure_board_setup)) {
 613                    /* Linux expects non-secure state */
 614                    env->cp15.scr_el3 |= SCR_NS;
 615                }
 616            }
 617
 618            if (cs == first_cpu) {
 619                cpu_set_pc(cs, info->loader_start);
 620
 621                if (!have_dtb(info)) {
 622                    if (old_param) {
 623                        set_kernel_args_old(info);
 624                    } else {
 625                        set_kernel_args(info);
 626                    }
 627                }
 628            } else {
 629                info->secondary_cpu_reset_hook(cpu, info);
 630            }
 631        }
 632    }
 633}
 634
 635/**
 636 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 637 *                          by key.
 638 * @fw_cfg:         The firmware config instance to store the data in.
 639 * @size_key:       The firmware config key to store the size of the loaded
 640 *                  data under, with fw_cfg_add_i32().
 641 * @data_key:       The firmware config key to store the loaded data under,
 642 *                  with fw_cfg_add_bytes().
 643 * @image_name:     The name of the image file to load. If it is NULL, the
 644 *                  function returns without doing anything.
 645 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 646 *                  adding it to fw_cfg. If decompression fails, the image is
 647 *                  loaded as-is.
 648 *
 649 * In case of failure, the function prints an error message to stderr and the
 650 * process exits with status 1.
 651 */
 652static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 653                                 uint16_t data_key, const char *image_name,
 654                                 bool try_decompress)
 655{
 656    size_t size = -1;
 657    uint8_t *data;
 658
 659    if (image_name == NULL) {
 660        return;
 661    }
 662
 663    if (try_decompress) {
 664        size = load_image_gzipped_buffer(image_name,
 665                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 666    }
 667
 668    if (size == (size_t)-1) {
 669        gchar *contents;
 670        gsize length;
 671
 672        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 673            fprintf(stderr, "failed to load \"%s\"\n", image_name);
 674            exit(1);
 675        }
 676        size = length;
 677        data = (uint8_t *)contents;
 678    }
 679
 680    fw_cfg_add_i32(fw_cfg, size_key, size);
 681    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 682}
 683
 684static int do_arm_linux_init(Object *obj, void *opaque)
 685{
 686    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 687        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 688        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 689        struct arm_boot_info *info = opaque;
 690
 691        if (albifc->arm_linux_init) {
 692            albifc->arm_linux_init(albif, info->secure_boot);
 693        }
 694    }
 695    return 0;
 696}
 697
 698static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 699                             uint64_t *lowaddr, uint64_t *highaddr,
 700                             int elf_machine)
 701{
 702    bool elf_is64;
 703    union {
 704        Elf32_Ehdr h32;
 705        Elf64_Ehdr h64;
 706    } elf_header;
 707    int data_swab = 0;
 708    bool big_endian;
 709    uint64_t ret = -1;
 710    Error *err = NULL;
 711
 712
 713    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 714    if (err) {
 715        return ret;
 716    }
 717
 718    if (elf_is64) {
 719        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 720        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 721                                      : ARM_ENDIANNESS_LE;
 722    } else {
 723        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 724        if (big_endian) {
 725            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 726                info->endianness = ARM_ENDIANNESS_BE8;
 727            } else {
 728                info->endianness = ARM_ENDIANNESS_BE32;
 729                /* In BE32, the CPU has a different view of the per-byte
 730                 * address map than the rest of the system. BE32 ELF files
 731                 * are organised such that they can be programmed through
 732                 * the CPU's per-word byte-reversed view of the world. QEMU
 733                 * however loads ELF files independently of the CPU. So
 734                 * tell the ELF loader to byte reverse the data for us.
 735                 */
 736                data_swab = 2;
 737            }
 738        } else {
 739            info->endianness = ARM_ENDIANNESS_LE;
 740        }
 741    }
 742
 743    ret = load_elf(info->kernel_filename, NULL, NULL,
 744                   pentry, lowaddr, highaddr, big_endian, elf_machine,
 745                   1, data_swab);
 746    if (ret <= 0) {
 747        /* The header loaded but the image didn't */
 748        exit(1);
 749    }
 750
 751    return ret;
 752}
 753
 754static void arm_load_kernel_notify(Notifier *notifier, void *data)
 755{
 756    CPUState *cs;
 757    int kernel_size;
 758    int initrd_size;
 759    int is_linux = 0;
 760    uint64_t elf_entry, elf_low_addr, elf_high_addr;
 761    int elf_machine;
 762    hwaddr entry, kernel_load_offset;
 763    static const ARMInsnFixup *primary_loader;
 764    ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
 765                                         notifier, notifier);
 766    ARMCPU *cpu = n->cpu;
 767    struct arm_boot_info *info =
 768        container_of(n, struct arm_boot_info, load_kernel_notifier);
 769
 770    /* The board code is not supposed to set secure_board_setup unless
 771     * running its code in secure mode is actually possible, and KVM
 772     * doesn't support secure.
 773     */
 774    assert(!(info->secure_board_setup && kvm_enabled()));
 775
 776    /* Load the kernel.  */
 777    if (!info->kernel_filename || info->firmware_loaded) {
 778
 779        if (have_dtb(info)) {
 780            /* If we have a device tree blob, but no kernel to supply it to (or
 781             * the kernel is supposed to be loaded by the bootloader), copy the
 782             * DTB to the base of RAM for the bootloader to pick up.
 783             */
 784            if (load_dtb(info->loader_start, info, 0) < 0) {
 785                exit(1);
 786            }
 787        }
 788
 789        if (info->kernel_filename) {
 790            FWCfgState *fw_cfg;
 791            bool try_decompressing_kernel;
 792
 793            fw_cfg = fw_cfg_find();
 794            try_decompressing_kernel = arm_feature(&cpu->env,
 795                                                   ARM_FEATURE_AARCH64);
 796
 797            /* Expose the kernel, the command line, and the initrd in fw_cfg.
 798             * We don't process them here at all, it's all left to the
 799             * firmware.
 800             */
 801            load_image_to_fw_cfg(fw_cfg,
 802                                 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
 803                                 info->kernel_filename,
 804                                 try_decompressing_kernel);
 805            load_image_to_fw_cfg(fw_cfg,
 806                                 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
 807                                 info->initrd_filename, false);
 808
 809            if (info->kernel_cmdline) {
 810                fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 811                               strlen(info->kernel_cmdline) + 1);
 812                fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
 813                                  info->kernel_cmdline);
 814            }
 815        }
 816
 817        /* We will start from address 0 (typically a boot ROM image) in the
 818         * same way as hardware.
 819         */
 820        return;
 821    }
 822
 823    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 824        primary_loader = bootloader_aarch64;
 825        kernel_load_offset = KERNEL64_LOAD_ADDR;
 826        elf_machine = EM_AARCH64;
 827    } else {
 828        primary_loader = bootloader;
 829        if (!info->write_board_setup) {
 830            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
 831        }
 832        kernel_load_offset = KERNEL_LOAD_ADDR;
 833        elf_machine = EM_ARM;
 834    }
 835
 836    info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
 837
 838    if (!info->secondary_cpu_reset_hook) {
 839        info->secondary_cpu_reset_hook = default_reset_secondary;
 840    }
 841    if (!info->write_secondary_boot) {
 842        info->write_secondary_boot = default_write_secondary;
 843    }
 844
 845    if (info->nb_cpus == 0)
 846        info->nb_cpus = 1;
 847
 848    /* We want to put the initrd far enough into RAM that when the
 849     * kernel is uncompressed it will not clobber the initrd. However
 850     * on boards without much RAM we must ensure that we still leave
 851     * enough room for a decent sized initrd, and on boards with large
 852     * amounts of RAM we must avoid the initrd being so far up in RAM
 853     * that it is outside lowmem and inaccessible to the kernel.
 854     * So for boards with less  than 256MB of RAM we put the initrd
 855     * halfway into RAM, and for boards with 256MB of RAM or more we put
 856     * the initrd at 128MB.
 857     */
 858    info->initrd_start = info->loader_start +
 859        MIN(info->ram_size / 2, 128 * 1024 * 1024);
 860
 861    /* Assume that raw images are linux kernels, and ELF images are not.  */
 862    kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
 863                               &elf_high_addr, elf_machine);
 864    if (kernel_size > 0 && have_dtb(info)) {
 865        /* If there is still some room left at the base of RAM, try and put
 866         * the DTB there like we do for images loaded with -bios or -pflash.
 867         */
 868        if (elf_low_addr > info->loader_start
 869            || elf_high_addr < info->loader_start) {
 870            /* Pass elf_low_addr as address limit to load_dtb if it may be
 871             * pointing into RAM, otherwise pass '0' (no limit)
 872             */
 873            if (elf_low_addr < info->loader_start) {
 874                elf_low_addr = 0;
 875            }
 876            if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
 877                exit(1);
 878            }
 879        }
 880    }
 881    entry = elf_entry;
 882    if (kernel_size < 0) {
 883        kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
 884                                  &is_linux, NULL, NULL);
 885    }
 886    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 887    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
 888        entry = info->loader_start + kernel_load_offset;
 889        kernel_size = load_image_gzipped(info->kernel_filename, entry,
 890                                         info->ram_size - kernel_load_offset);
 891        is_linux = 1;
 892    }
 893    if (kernel_size < 0) {
 894        entry = info->loader_start + kernel_load_offset;
 895        kernel_size = load_image_targphys(info->kernel_filename, entry,
 896                                          info->ram_size - kernel_load_offset);
 897        is_linux = 1;
 898    }
 899    if (kernel_size < 0) {
 900        fprintf(stderr, "qemu: could not load kernel '%s'\n",
 901                info->kernel_filename);
 902        exit(1);
 903    }
 904    info->entry = entry;
 905    if (is_linux) {
 906        uint32_t fixupcontext[FIXUP_MAX];
 907
 908        if (info->initrd_filename) {
 909            initrd_size = load_ramdisk(info->initrd_filename,
 910                                       info->initrd_start,
 911                                       info->ram_size -
 912                                       info->initrd_start);
 913            if (initrd_size < 0) {
 914                initrd_size = load_image_targphys(info->initrd_filename,
 915                                                  info->initrd_start,
 916                                                  info->ram_size -
 917                                                  info->initrd_start);
 918            }
 919            if (initrd_size < 0) {
 920                fprintf(stderr, "qemu: could not load initrd '%s'\n",
 921                        info->initrd_filename);
 922                exit(1);
 923            }
 924        } else {
 925            initrd_size = 0;
 926        }
 927        info->initrd_size = initrd_size;
 928
 929        fixupcontext[FIXUP_BOARDID] = info->board_id;
 930        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
 931
 932        /* for device tree boot, we pass the DTB directly in r2. Otherwise
 933         * we point to the kernel args.
 934         */
 935        if (have_dtb(info)) {
 936            hwaddr align;
 937            hwaddr dtb_start;
 938
 939            if (elf_machine == EM_AARCH64) {
 940                /*
 941                 * Some AArch64 kernels on early bootup map the fdt region as
 942                 *
 943                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
 944                 *
 945                 * Let's play safe and prealign it to 2MB to give us some space.
 946                 */
 947                align = 2 * 1024 * 1024;
 948            } else {
 949                /*
 950                 * Some 32bit kernels will trash anything in the 4K page the
 951                 * initrd ends in, so make sure the DTB isn't caught up in that.
 952                 */
 953                align = 4096;
 954            }
 955
 956            /* Place the DTB after the initrd in memory with alignment. */
 957            dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
 958            if (load_dtb(dtb_start, info, 0) < 0) {
 959                exit(1);
 960            }
 961            fixupcontext[FIXUP_ARGPTR] = dtb_start;
 962        } else {
 963            fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
 964            if (info->ram_size >= (1ULL << 32)) {
 965                fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
 966                        " Linux kernel using ATAGS (try passing a device tree"
 967                        " using -dtb)\n");
 968                exit(1);
 969            }
 970        }
 971        fixupcontext[FIXUP_ENTRYPOINT] = entry;
 972
 973        write_bootloader("bootloader", info->loader_start,
 974                         primary_loader, fixupcontext);
 975
 976        if (info->nb_cpus > 1) {
 977            info->write_secondary_boot(cpu, info);
 978        }
 979        if (info->write_board_setup) {
 980            info->write_board_setup(cpu, info);
 981        }
 982
 983        /* Notify devices which need to fake up firmware initialization
 984         * that we're doing a direct kernel boot.
 985         */
 986        object_child_foreach_recursive(object_get_root(),
 987                                       do_arm_linux_init, info);
 988    }
 989    info->is_linux = is_linux;
 990
 991    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
 992        ARM_CPU(cs)->env.boot_info = info;
 993    }
 994}
 995
 996void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
 997{
 998    CPUState *cs;
 999
1000    info->load_kernel_notifier.cpu = cpu;
1001    info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1002    qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1003
1004    /* CPU objects (unlike devices) are not automatically reset on system
1005     * reset, so we must always register a handler to do so. If we're
1006     * actually loading a kernel, the handler is also responsible for
1007     * arranging that we start it correctly.
1008     */
1009    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1010        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1011    }
1012}
1013
1014static const TypeInfo arm_linux_boot_if_info = {
1015    .name = TYPE_ARM_LINUX_BOOT_IF,
1016    .parent = TYPE_INTERFACE,
1017    .class_size = sizeof(ARMLinuxBootIfClass),
1018};
1019
1020static void arm_linux_boot_register_types(void)
1021{
1022    type_register_static(&arm_linux_boot_if_info);
1023}
1024
1025type_init(arm_linux_boot_register_types)
1026