qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qapi/error.h"
  33#include "hw/sysbus.h"
  34#include "hw/arm/arm.h"
  35#include "hw/arm/primecell.h"
  36#include "hw/arm/virt.h"
  37#include "hw/devices.h"
  38#include "net/net.h"
  39#include "sysemu/block-backend.h"
  40#include "sysemu/device_tree.h"
  41#include "sysemu/numa.h"
  42#include "sysemu/sysemu.h"
  43#include "sysemu/kvm.h"
  44#include "hw/boards.h"
  45#include "hw/compat.h"
  46#include "hw/loader.h"
  47#include "exec/address-spaces.h"
  48#include "qemu/bitops.h"
  49#include "qemu/error-report.h"
  50#include "hw/pci-host/gpex.h"
  51#include "hw/arm/virt-acpi-build.h"
  52#include "hw/arm/sysbus-fdt.h"
  53#include "hw/platform-bus.h"
  54#include "hw/arm/fdt.h"
  55#include "hw/intc/arm_gic.h"
  56#include "hw/intc/arm_gicv3_common.h"
  57#include "kvm_arm.h"
  58#include "hw/smbios/smbios.h"
  59#include "qapi/visitor.h"
  60#include "standard-headers/linux/input.h"
  61
  62/* Number of external interrupt lines to configure the GIC with */
  63#define NUM_IRQS 256
  64
  65#define PLATFORM_BUS_NUM_IRQS 64
  66
  67static ARMPlatformBusSystemParams platform_bus_params;
  68
  69typedef struct VirtBoardInfo {
  70    struct arm_boot_info bootinfo;
  71    const char *cpu_model;
  72    const MemMapEntry *memmap;
  73    const int *irqmap;
  74    int smp_cpus;
  75    void *fdt;
  76    int fdt_size;
  77    uint32_t clock_phandle;
  78    uint32_t gic_phandle;
  79    uint32_t v2m_phandle;
  80    bool using_psci;
  81} VirtBoardInfo;
  82
  83typedef struct {
  84    MachineClass parent;
  85    VirtBoardInfo *daughterboard;
  86    bool disallow_affinity_adjustment;
  87} VirtMachineClass;
  88
  89typedef struct {
  90    MachineState parent;
  91    bool secure;
  92    bool highmem;
  93    int32_t gic_version;
  94} VirtMachineState;
  95
  96#define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
  97#define VIRT_MACHINE(obj) \
  98    OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
  99#define VIRT_MACHINE_GET_CLASS(obj) \
 100    OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
 101#define VIRT_MACHINE_CLASS(klass) \
 102    OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
 103
 104
 105#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
 106    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
 107                                                    void *data) \
 108    { \
 109        MachineClass *mc = MACHINE_CLASS(oc); \
 110        virt_machine_##major##_##minor##_options(mc); \
 111        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
 112        if (latest) { \
 113            mc->alias = "virt"; \
 114        } \
 115    } \
 116    static const TypeInfo machvirt_##major##_##minor##_info = { \
 117        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
 118        .parent = TYPE_VIRT_MACHINE, \
 119        .instance_init = virt_##major##_##minor##_instance_init, \
 120        .class_init = virt_##major##_##minor##_class_init, \
 121    }; \
 122    static void machvirt_machine_##major##_##minor##_init(void) \
 123    { \
 124        type_register_static(&machvirt_##major##_##minor##_info); \
 125    } \
 126    type_init(machvirt_machine_##major##_##minor##_init);
 127
 128#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 129    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 130#define DEFINE_VIRT_MACHINE(major, minor) \
 131    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 132
 133
 134/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
 135 * RAM can go up to the 256GB mark, leaving 256GB of the physical
 136 * address space unallocated and free for future use between 256G and 512G.
 137 * If we need to provide more RAM to VMs in the future then we need to:
 138 *  * allocate a second bank of RAM starting at 2TB and working up
 139 *  * fix the DT and ACPI table generation code in QEMU to correctly
 140 *    report two split lumps of RAM to the guest
 141 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 142 * (We don't want to fill all the way up to 512GB with RAM because
 143 * we might want it for non-RAM purposes later. Conversely it seems
 144 * reasonable to assume that anybody configuring a VM with a quarter
 145 * of a terabyte of RAM will be doing it on a host with more than a
 146 * terabyte of physical address space.)
 147 */
 148#define RAMLIMIT_GB 255
 149#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 150
 151/* Addresses and sizes of our components.
 152 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 153 * 128MB..256MB is used for miscellaneous device I/O.
 154 * 256MB..1GB is reserved for possible future PCI support (ie where the
 155 * PCI memory window will go if we add a PCI host controller).
 156 * 1GB and up is RAM (which may happily spill over into the
 157 * high memory region beyond 4GB).
 158 * This represents a compromise between how much RAM can be given to
 159 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 160 * Note that devices should generally be placed at multiples of 0x10000,
 161 * to accommodate guests using 64K pages.
 162 */
 163static const MemMapEntry a15memmap[] = {
 164    /* Space up to 0x8000000 is reserved for a boot ROM */
 165    [VIRT_FLASH] =              {          0, 0x08000000 },
 166    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 167    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 168    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 169    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 170    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 171    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 172    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 173    /* This redistributor space allows up to 2*64kB*123 CPUs */
 174    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 175    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 176    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 177    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 178    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 179    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 180    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 181    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 182    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 183    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 184    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 185    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 186    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 187    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 188    /* Second PCIe window, 512GB wide at the 512GB boundary */
 189    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 190};
 191
 192static const int a15irqmap[] = {
 193    [VIRT_UART] = 1,
 194    [VIRT_RTC] = 2,
 195    [VIRT_PCIE] = 3, /* ... to 6 */
 196    [VIRT_GPIO] = 7,
 197    [VIRT_SECURE_UART] = 8,
 198    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 199    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 200    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 201};
 202
 203static VirtBoardInfo machines[] = {
 204    {
 205        .cpu_model = "cortex-a15",
 206        .memmap = a15memmap,
 207        .irqmap = a15irqmap,
 208    },
 209    {
 210        .cpu_model = "cortex-a53",
 211        .memmap = a15memmap,
 212        .irqmap = a15irqmap,
 213    },
 214    {
 215        .cpu_model = "cortex-a57",
 216        .memmap = a15memmap,
 217        .irqmap = a15irqmap,
 218    },
 219    {
 220        .cpu_model = "host",
 221        .memmap = a15memmap,
 222        .irqmap = a15irqmap,
 223    },
 224};
 225
 226static VirtBoardInfo *find_machine_info(const char *cpu)
 227{
 228    int i;
 229
 230    for (i = 0; i < ARRAY_SIZE(machines); i++) {
 231        if (strcmp(cpu, machines[i].cpu_model) == 0) {
 232            return &machines[i];
 233        }
 234    }
 235    return NULL;
 236}
 237
 238static void create_fdt(VirtBoardInfo *vbi)
 239{
 240    void *fdt = create_device_tree(&vbi->fdt_size);
 241
 242    if (!fdt) {
 243        error_report("create_device_tree() failed");
 244        exit(1);
 245    }
 246
 247    vbi->fdt = fdt;
 248
 249    /* Header */
 250    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 251    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 252    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 253
 254    /*
 255     * /chosen and /memory nodes must exist for load_dtb
 256     * to fill in necessary properties later
 257     */
 258    qemu_fdt_add_subnode(fdt, "/chosen");
 259    qemu_fdt_add_subnode(fdt, "/memory");
 260    qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 261
 262    /* Clock node, for the benefit of the UART. The kernel device tree
 263     * binding documentation claims the PL011 node clock properties are
 264     * optional but in practice if you omit them the kernel refuses to
 265     * probe for the device.
 266     */
 267    vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 268    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 269    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 270    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 271    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 272    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 273                                "clk24mhz");
 274    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
 275
 276}
 277
 278static void fdt_add_psci_node(const VirtBoardInfo *vbi)
 279{
 280    uint32_t cpu_suspend_fn;
 281    uint32_t cpu_off_fn;
 282    uint32_t cpu_on_fn;
 283    uint32_t migrate_fn;
 284    void *fdt = vbi->fdt;
 285    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 286
 287    if (!vbi->using_psci) {
 288        return;
 289    }
 290
 291    qemu_fdt_add_subnode(fdt, "/psci");
 292    if (armcpu->psci_version == 2) {
 293        const char comp[] = "arm,psci-0.2\0arm,psci";
 294        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 295
 296        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 297        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 298            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 299            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 300            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 301        } else {
 302            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 303            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 304            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 305        }
 306    } else {
 307        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 308
 309        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 310        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 311        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 312        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 313    }
 314
 315    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 316     * to the instruction that should be used to invoke PSCI functions.
 317     * However, the device tree binding uses 'method' instead, so that is
 318     * what we should use here.
 319     */
 320    qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
 321
 322    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 323    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 324    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 325    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 326}
 327
 328static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
 329{
 330    /* Note that on A15 h/w these interrupts are level-triggered,
 331     * but for the GIC implementation provided by both QEMU and KVM
 332     * they are edge-triggered.
 333     */
 334    ARMCPU *armcpu;
 335    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 336
 337    if (gictype == 2) {
 338        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 339                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 340                             (1 << vbi->smp_cpus) - 1);
 341    }
 342
 343    qemu_fdt_add_subnode(vbi->fdt, "/timer");
 344
 345    armcpu = ARM_CPU(qemu_get_cpu(0));
 346    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 347        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 348        qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
 349                         compat, sizeof(compat));
 350    } else {
 351        qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
 352                                "arm,armv7-timer");
 353    }
 354    qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
 355    qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
 356                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 357                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 358                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 359                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 360}
 361
 362static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
 363{
 364    int cpu;
 365    int addr_cells = 1;
 366    unsigned int i;
 367
 368    /*
 369     * From Documentation/devicetree/bindings/arm/cpus.txt
 370     *  On ARM v8 64-bit systems value should be set to 2,
 371     *  that corresponds to the MPIDR_EL1 register size.
 372     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 373     *  in the system, #address-cells can be set to 1, since
 374     *  MPIDR_EL1[63:32] bits are not used for CPUs
 375     *  identification.
 376     *
 377     *  Here we actually don't know whether our system is 32- or 64-bit one.
 378     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 379     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 380     */
 381    for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
 382        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 383
 384        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 385            addr_cells = 2;
 386            break;
 387        }
 388    }
 389
 390    qemu_fdt_add_subnode(vbi->fdt, "/cpus");
 391    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
 392    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
 393
 394    for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
 395        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 396        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 397
 398        qemu_fdt_add_subnode(vbi->fdt, nodename);
 399        qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
 400        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
 401                                    armcpu->dtb_compatible);
 402
 403        if (vbi->using_psci && vbi->smp_cpus > 1) {
 404            qemu_fdt_setprop_string(vbi->fdt, nodename,
 405                                        "enable-method", "psci");
 406        }
 407
 408        if (addr_cells == 2) {
 409            qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
 410                                 armcpu->mp_affinity);
 411        } else {
 412            qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
 413                                  armcpu->mp_affinity);
 414        }
 415
 416        for (i = 0; i < nb_numa_nodes; i++) {
 417            if (test_bit(cpu, numa_info[i].node_cpu)) {
 418                qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
 419            }
 420        }
 421
 422        g_free(nodename);
 423    }
 424}
 425
 426static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
 427{
 428    vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 429    qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
 430    qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
 431                            "arm,gic-v2m-frame");
 432    qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
 433    qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
 434                                 2, vbi->memmap[VIRT_GIC_V2M].base,
 435                                 2, vbi->memmap[VIRT_GIC_V2M].size);
 436    qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
 437}
 438
 439static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
 440{
 441    vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 442    qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
 443
 444    qemu_fdt_add_subnode(vbi->fdt, "/intc");
 445    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
 446    qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
 447    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
 448    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
 449    qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
 450    if (type == 3) {
 451        qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
 452                                "arm,gic-v3");
 453        qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
 454                                     2, vbi->memmap[VIRT_GIC_DIST].base,
 455                                     2, vbi->memmap[VIRT_GIC_DIST].size,
 456                                     2, vbi->memmap[VIRT_GIC_REDIST].base,
 457                                     2, vbi->memmap[VIRT_GIC_REDIST].size);
 458    } else {
 459        /* 'cortex-a15-gic' means 'GIC v2' */
 460        qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
 461                                "arm,cortex-a15-gic");
 462        qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
 463                                      2, vbi->memmap[VIRT_GIC_DIST].base,
 464                                      2, vbi->memmap[VIRT_GIC_DIST].size,
 465                                      2, vbi->memmap[VIRT_GIC_CPU].base,
 466                                      2, vbi->memmap[VIRT_GIC_CPU].size);
 467    }
 468
 469    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
 470}
 471
 472static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
 473{
 474    CPUState *cpu;
 475    ARMCPU *armcpu;
 476    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 477
 478    CPU_FOREACH(cpu) {
 479        armcpu = ARM_CPU(cpu);
 480        if (!armcpu->has_pmu ||
 481            !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
 482            return;
 483        }
 484    }
 485
 486    if (gictype == 2) {
 487        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 488                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 489                             (1 << vbi->smp_cpus) - 1);
 490    }
 491
 492    armcpu = ARM_CPU(qemu_get_cpu(0));
 493    qemu_fdt_add_subnode(vbi->fdt, "/pmu");
 494    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 495        const char compat[] = "arm,armv8-pmuv3";
 496        qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
 497                         compat, sizeof(compat));
 498        qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
 499                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 500    }
 501}
 502
 503static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
 504{
 505    int i;
 506    int irq = vbi->irqmap[VIRT_GIC_V2M];
 507    DeviceState *dev;
 508
 509    dev = qdev_create(NULL, "arm-gicv2m");
 510    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
 511    qdev_prop_set_uint32(dev, "base-spi", irq);
 512    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 513    qdev_init_nofail(dev);
 514
 515    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 516        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 517    }
 518
 519    fdt_add_v2m_gic_node(vbi);
 520}
 521
 522static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
 523{
 524    /* We create a standalone GIC */
 525    DeviceState *gicdev;
 526    SysBusDevice *gicbusdev;
 527    const char *gictype;
 528    int i;
 529
 530    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 531
 532    gicdev = qdev_create(NULL, gictype);
 533    qdev_prop_set_uint32(gicdev, "revision", type);
 534    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 535    /* Note that the num-irq property counts both internal and external
 536     * interrupts; there are always 32 of the former (mandated by GIC spec).
 537     */
 538    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 539    if (!kvm_irqchip_in_kernel()) {
 540        qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
 541    }
 542    qdev_init_nofail(gicdev);
 543    gicbusdev = SYS_BUS_DEVICE(gicdev);
 544    sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
 545    if (type == 3) {
 546        sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
 547    } else {
 548        sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
 549    }
 550
 551    /* Wire the outputs from each CPU's generic timer to the
 552     * appropriate GIC PPI inputs, and the GIC's IRQ output to
 553     * the CPU's IRQ input.
 554     */
 555    for (i = 0; i < smp_cpus; i++) {
 556        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 557        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 558        int irq;
 559        /* Mapping from the output timer irq lines from the CPU to the
 560         * GIC PPI inputs we use for the virt board.
 561         */
 562        const int timer_irq[] = {
 563            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 564            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 565            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 566            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 567        };
 568
 569        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 570            qdev_connect_gpio_out(cpudev, irq,
 571                                  qdev_get_gpio_in(gicdev,
 572                                                   ppibase + timer_irq[irq]));
 573        }
 574
 575        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 576        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 577                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 578    }
 579
 580    for (i = 0; i < NUM_IRQS; i++) {
 581        pic[i] = qdev_get_gpio_in(gicdev, i);
 582    }
 583
 584    fdt_add_gic_node(vbi, type);
 585
 586    if (type == 2) {
 587        create_v2m(vbi, pic);
 588    }
 589}
 590
 591static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
 592                        MemoryRegion *mem, CharDriverState *chr)
 593{
 594    char *nodename;
 595    hwaddr base = vbi->memmap[uart].base;
 596    hwaddr size = vbi->memmap[uart].size;
 597    int irq = vbi->irqmap[uart];
 598    const char compat[] = "arm,pl011\0arm,primecell";
 599    const char clocknames[] = "uartclk\0apb_pclk";
 600    DeviceState *dev = qdev_create(NULL, "pl011");
 601    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 602
 603    qdev_prop_set_chr(dev, "chardev", chr);
 604    qdev_init_nofail(dev);
 605    memory_region_add_subregion(mem, base,
 606                                sysbus_mmio_get_region(s, 0));
 607    sysbus_connect_irq(s, 0, pic[irq]);
 608
 609    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 610    qemu_fdt_add_subnode(vbi->fdt, nodename);
 611    /* Note that we can't use setprop_string because of the embedded NUL */
 612    qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
 613                         compat, sizeof(compat));
 614    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 615                                     2, base, 2, size);
 616    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 617                               GIC_FDT_IRQ_TYPE_SPI, irq,
 618                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 619    qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
 620                               vbi->clock_phandle, vbi->clock_phandle);
 621    qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
 622                         clocknames, sizeof(clocknames));
 623
 624    if (uart == VIRT_UART) {
 625        qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
 626    } else {
 627        /* Mark as not usable by the normal world */
 628        qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
 629        qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
 630    }
 631
 632    g_free(nodename);
 633}
 634
 635static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
 636{
 637    char *nodename;
 638    hwaddr base = vbi->memmap[VIRT_RTC].base;
 639    hwaddr size = vbi->memmap[VIRT_RTC].size;
 640    int irq = vbi->irqmap[VIRT_RTC];
 641    const char compat[] = "arm,pl031\0arm,primecell";
 642
 643    sysbus_create_simple("pl031", base, pic[irq]);
 644
 645    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 646    qemu_fdt_add_subnode(vbi->fdt, nodename);
 647    qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
 648    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 649                                 2, base, 2, size);
 650    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 651                           GIC_FDT_IRQ_TYPE_SPI, irq,
 652                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 653    qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
 654    qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
 655    g_free(nodename);
 656}
 657
 658static DeviceState *gpio_key_dev;
 659static void virt_powerdown_req(Notifier *n, void *opaque)
 660{
 661    /* use gpio Pin 3 for power button event */
 662    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 663}
 664
 665static Notifier virt_system_powerdown_notifier = {
 666    .notify = virt_powerdown_req
 667};
 668
 669static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
 670{
 671    char *nodename;
 672    DeviceState *pl061_dev;
 673    hwaddr base = vbi->memmap[VIRT_GPIO].base;
 674    hwaddr size = vbi->memmap[VIRT_GPIO].size;
 675    int irq = vbi->irqmap[VIRT_GPIO];
 676    const char compat[] = "arm,pl061\0arm,primecell";
 677
 678    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 679
 680    uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 681    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 682    qemu_fdt_add_subnode(vbi->fdt, nodename);
 683    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 684                                 2, base, 2, size);
 685    qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
 686    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
 687    qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
 688    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 689                           GIC_FDT_IRQ_TYPE_SPI, irq,
 690                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 691    qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
 692    qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
 693    qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
 694
 695    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 696                                        qdev_get_gpio_in(pl061_dev, 3));
 697    qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
 698    qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
 699    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
 700    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
 701
 702    qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
 703    qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
 704                            "label", "GPIO Key Poweroff");
 705    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
 706                          KEY_POWER);
 707    qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
 708                           "gpios", phandle, 3, 0);
 709
 710    /* connect powerdown request */
 711    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 712
 713    g_free(nodename);
 714}
 715
 716static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
 717{
 718    int i;
 719    hwaddr size = vbi->memmap[VIRT_MMIO].size;
 720
 721    /* We create the transports in forwards order. Since qbus_realize()
 722     * prepends (not appends) new child buses, the incrementing loop below will
 723     * create a list of virtio-mmio buses with decreasing base addresses.
 724     *
 725     * When a -device option is processed from the command line,
 726     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 727     * order. The upshot is that -device options in increasing command line
 728     * order are mapped to virtio-mmio buses with decreasing base addresses.
 729     *
 730     * When this code was originally written, that arrangement ensured that the
 731     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 732     * the first -device on the command line. (The end-to-end order is a
 733     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 734     * guest kernel's name-to-address assignment strategy.)
 735     *
 736     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 737     * the message, if not necessarily the code, of commit 70161ff336.
 738     * Therefore the loop now establishes the inverse of the original intent.
 739     *
 740     * Unfortunately, we can't counteract the kernel change by reversing the
 741     * loop; it would break existing command lines.
 742     *
 743     * In any case, the kernel makes no guarantee about the stability of
 744     * enumeration order of virtio devices (as demonstrated by it changing
 745     * between kernel versions). For reliable and stable identification
 746     * of disks users must use UUIDs or similar mechanisms.
 747     */
 748    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 749        int irq = vbi->irqmap[VIRT_MMIO] + i;
 750        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
 751
 752        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 753    }
 754
 755    /* We add dtb nodes in reverse order so that they appear in the finished
 756     * device tree lowest address first.
 757     *
 758     * Note that this mapping is independent of the loop above. The previous
 759     * loop influences virtio device to virtio transport assignment, whereas
 760     * this loop controls how virtio transports are laid out in the dtb.
 761     */
 762    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 763        char *nodename;
 764        int irq = vbi->irqmap[VIRT_MMIO] + i;
 765        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
 766
 767        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 768        qemu_fdt_add_subnode(vbi->fdt, nodename);
 769        qemu_fdt_setprop_string(vbi->fdt, nodename,
 770                                "compatible", "virtio,mmio");
 771        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 772                                     2, base, 2, size);
 773        qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 774                               GIC_FDT_IRQ_TYPE_SPI, irq,
 775                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 776        g_free(nodename);
 777    }
 778}
 779
 780static void create_one_flash(const char *name, hwaddr flashbase,
 781                             hwaddr flashsize, const char *file,
 782                             MemoryRegion *sysmem)
 783{
 784    /* Create and map a single flash device. We use the same
 785     * parameters as the flash devices on the Versatile Express board.
 786     */
 787    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 788    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 789    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 790    const uint64_t sectorlength = 256 * 1024;
 791
 792    if (dinfo) {
 793        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 794                            &error_abort);
 795    }
 796
 797    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 798    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 799    qdev_prop_set_uint8(dev, "width", 4);
 800    qdev_prop_set_uint8(dev, "device-width", 2);
 801    qdev_prop_set_bit(dev, "big-endian", false);
 802    qdev_prop_set_uint16(dev, "id0", 0x89);
 803    qdev_prop_set_uint16(dev, "id1", 0x18);
 804    qdev_prop_set_uint16(dev, "id2", 0x00);
 805    qdev_prop_set_uint16(dev, "id3", 0x00);
 806    qdev_prop_set_string(dev, "name", name);
 807    qdev_init_nofail(dev);
 808
 809    memory_region_add_subregion(sysmem, flashbase,
 810                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 811
 812    if (file) {
 813        char *fn;
 814        int image_size;
 815
 816        if (drive_get(IF_PFLASH, 0, 0)) {
 817            error_report("The contents of the first flash device may be "
 818                         "specified with -bios or with -drive if=pflash... "
 819                         "but you cannot use both options at once");
 820            exit(1);
 821        }
 822        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 823        if (!fn) {
 824            error_report("Could not find ROM image '%s'", file);
 825            exit(1);
 826        }
 827        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 828        g_free(fn);
 829        if (image_size < 0) {
 830            error_report("Could not load ROM image '%s'", file);
 831            exit(1);
 832        }
 833    }
 834}
 835
 836static void create_flash(const VirtBoardInfo *vbi,
 837                         MemoryRegion *sysmem,
 838                         MemoryRegion *secure_sysmem)
 839{
 840    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 841     * Any file passed via -bios goes in the first of these.
 842     * sysmem is the system memory space. secure_sysmem is the secure view
 843     * of the system, and the first flash device should be made visible only
 844     * there. The second flash device is visible to both secure and nonsecure.
 845     * If sysmem == secure_sysmem this means there is no separate Secure
 846     * address space and both flash devices are generally visible.
 847     */
 848    hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
 849    hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
 850    char *nodename;
 851
 852    create_one_flash("virt.flash0", flashbase, flashsize,
 853                     bios_name, secure_sysmem);
 854    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 855                     NULL, sysmem);
 856
 857    if (sysmem == secure_sysmem) {
 858        /* Report both flash devices as a single node in the DT */
 859        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 860        qemu_fdt_add_subnode(vbi->fdt, nodename);
 861        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 862        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 863                                     2, flashbase, 2, flashsize,
 864                                     2, flashbase + flashsize, 2, flashsize);
 865        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 866        g_free(nodename);
 867    } else {
 868        /* Report the devices as separate nodes so we can mark one as
 869         * only visible to the secure world.
 870         */
 871        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 872        qemu_fdt_add_subnode(vbi->fdt, nodename);
 873        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 874        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 875                                     2, flashbase, 2, flashsize);
 876        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 877        qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
 878        qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
 879        g_free(nodename);
 880
 881        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 882        qemu_fdt_add_subnode(vbi->fdt, nodename);
 883        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 884        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 885                                     2, flashbase + flashsize, 2, flashsize);
 886        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 887        g_free(nodename);
 888    }
 889}
 890
 891static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
 892{
 893    hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
 894    hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
 895    char *nodename;
 896
 897    fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 898
 899    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 900    qemu_fdt_add_subnode(vbi->fdt, nodename);
 901    qemu_fdt_setprop_string(vbi->fdt, nodename,
 902                            "compatible", "qemu,fw-cfg-mmio");
 903    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 904                                 2, base, 2, size);
 905    g_free(nodename);
 906}
 907
 908static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
 909                                int first_irq, const char *nodename)
 910{
 911    int devfn, pin;
 912    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 913    uint32_t *irq_map = full_irq_map;
 914
 915    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 916        for (pin = 0; pin < 4; pin++) {
 917            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 918            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 919            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 920            int i;
 921
 922            uint32_t map[] = {
 923                devfn << 8, 0, 0,                           /* devfn */
 924                pin + 1,                                    /* PCI pin */
 925                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 926
 927            /* Convert map to big endian */
 928            for (i = 0; i < 10; i++) {
 929                irq_map[i] = cpu_to_be32(map[i]);
 930            }
 931            irq_map += 10;
 932        }
 933    }
 934
 935    qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
 936                     full_irq_map, sizeof(full_irq_map));
 937
 938    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
 939                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
 940                           0x7           /* PCI irq */);
 941}
 942
 943static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
 944                        bool use_highmem)
 945{
 946    hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
 947    hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
 948    hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
 949    hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
 950    hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
 951    hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
 952    hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
 953    hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
 954    hwaddr base = base_mmio;
 955    int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
 956    int irq = vbi->irqmap[VIRT_PCIE];
 957    MemoryRegion *mmio_alias;
 958    MemoryRegion *mmio_reg;
 959    MemoryRegion *ecam_alias;
 960    MemoryRegion *ecam_reg;
 961    DeviceState *dev;
 962    char *nodename;
 963    int i;
 964    PCIHostState *pci;
 965
 966    dev = qdev_create(NULL, TYPE_GPEX_HOST);
 967    qdev_init_nofail(dev);
 968
 969    /* Map only the first size_ecam bytes of ECAM space */
 970    ecam_alias = g_new0(MemoryRegion, 1);
 971    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 972    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
 973                             ecam_reg, 0, size_ecam);
 974    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
 975
 976    /* Map the MMIO window into system address space so as to expose
 977     * the section of PCI MMIO space which starts at the same base address
 978     * (ie 1:1 mapping for that part of PCI MMIO space visible through
 979     * the window).
 980     */
 981    mmio_alias = g_new0(MemoryRegion, 1);
 982    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 983    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
 984                             mmio_reg, base_mmio, size_mmio);
 985    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
 986
 987    if (use_highmem) {
 988        /* Map high MMIO space */
 989        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
 990
 991        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
 992                                 mmio_reg, base_mmio_high, size_mmio_high);
 993        memory_region_add_subregion(get_system_memory(), base_mmio_high,
 994                                    high_mmio_alias);
 995    }
 996
 997    /* Map IO port space */
 998    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
 999
1000    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1001        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1002    }
1003
1004    pci = PCI_HOST_BRIDGE(dev);
1005    if (pci->bus) {
1006        for (i = 0; i < nb_nics; i++) {
1007            NICInfo *nd = &nd_table[i];
1008
1009            if (!nd->model) {
1010                nd->model = g_strdup("virtio");
1011            }
1012
1013            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1014        }
1015    }
1016
1017    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1018    qemu_fdt_add_subnode(vbi->fdt, nodename);
1019    qemu_fdt_setprop_string(vbi->fdt, nodename,
1020                            "compatible", "pci-host-ecam-generic");
1021    qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1022    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1023    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1024    qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1025                           nr_pcie_buses - 1);
1026    qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1027
1028    if (vbi->v2m_phandle) {
1029        qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1030                               vbi->v2m_phandle);
1031    }
1032
1033    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1034                                 2, base_ecam, 2, size_ecam);
1035
1036    if (use_highmem) {
1037        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1038                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1039                                     2, base_pio, 2, size_pio,
1040                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1041                                     2, base_mmio, 2, size_mmio,
1042                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1043                                     2, base_mmio_high,
1044                                     2, base_mmio_high, 2, size_mmio_high);
1045    } else {
1046        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1047                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1048                                     2, base_pio, 2, size_pio,
1049                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1050                                     2, base_mmio, 2, size_mmio);
1051    }
1052
1053    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1054    create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1055
1056    g_free(nodename);
1057}
1058
1059static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1060{
1061    DeviceState *dev;
1062    SysBusDevice *s;
1063    int i;
1064    ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1065    MemoryRegion *sysmem = get_system_memory();
1066
1067    platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1068    platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1069    platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1070    platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1071
1072    fdt_params->system_params = &platform_bus_params;
1073    fdt_params->binfo = &vbi->bootinfo;
1074    fdt_params->intc = "/intc";
1075    /*
1076     * register a machine init done notifier that creates the device tree
1077     * nodes of the platform bus and its children dynamic sysbus devices
1078     */
1079    arm_register_platform_bus_fdt_creator(fdt_params);
1080
1081    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1082    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1083    qdev_prop_set_uint32(dev, "num_irqs",
1084        platform_bus_params.platform_bus_num_irqs);
1085    qdev_prop_set_uint32(dev, "mmio_size",
1086        platform_bus_params.platform_bus_size);
1087    qdev_init_nofail(dev);
1088    s = SYS_BUS_DEVICE(dev);
1089
1090    for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1091        int irqn = platform_bus_params.platform_bus_first_irq + i;
1092        sysbus_connect_irq(s, i, pic[irqn]);
1093    }
1094
1095    memory_region_add_subregion(sysmem,
1096                                platform_bus_params.platform_bus_base,
1097                                sysbus_mmio_get_region(s, 0));
1098}
1099
1100static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1101{
1102    MemoryRegion *secram = g_new(MemoryRegion, 1);
1103    char *nodename;
1104    hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1105    hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1106
1107    memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1108    vmstate_register_ram_global(secram);
1109    memory_region_add_subregion(secure_sysmem, base, secram);
1110
1111    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1112    qemu_fdt_add_subnode(vbi->fdt, nodename);
1113    qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1114    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1115    qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1116    qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1117
1118    g_free(nodename);
1119}
1120
1121static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1122{
1123    const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1124
1125    *fdt_size = board->fdt_size;
1126    return board->fdt;
1127}
1128
1129static void virt_build_smbios(VirtGuestInfo *guest_info)
1130{
1131    FWCfgState *fw_cfg = guest_info->fw_cfg;
1132    uint8_t *smbios_tables, *smbios_anchor;
1133    size_t smbios_tables_len, smbios_anchor_len;
1134    const char *product = "QEMU Virtual Machine";
1135
1136    if (!fw_cfg) {
1137        return;
1138    }
1139
1140    if (kvm_enabled()) {
1141        product = "KVM Virtual Machine";
1142    }
1143
1144    smbios_set_defaults("QEMU", product,
1145                        "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1146
1147    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1148                      &smbios_anchor, &smbios_anchor_len);
1149
1150    if (smbios_anchor) {
1151        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1152                        smbios_tables, smbios_tables_len);
1153        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1154                        smbios_anchor, smbios_anchor_len);
1155    }
1156}
1157
1158static
1159void virt_guest_info_machine_done(Notifier *notifier, void *data)
1160{
1161    VirtGuestInfoState *guest_info_state = container_of(notifier,
1162                                              VirtGuestInfoState, machine_done);
1163    virt_acpi_setup(&guest_info_state->info);
1164    virt_build_smbios(&guest_info_state->info);
1165}
1166
1167static void machvirt_init(MachineState *machine)
1168{
1169    VirtMachineState *vms = VIRT_MACHINE(machine);
1170    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1171    qemu_irq pic[NUM_IRQS];
1172    MemoryRegion *sysmem = get_system_memory();
1173    MemoryRegion *secure_sysmem = NULL;
1174    int gic_version = vms->gic_version;
1175    int n, virt_max_cpus;
1176    MemoryRegion *ram = g_new(MemoryRegion, 1);
1177    const char *cpu_model = machine->cpu_model;
1178    VirtBoardInfo *vbi;
1179    VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1180    VirtGuestInfo *guest_info = &guest_info_state->info;
1181    char **cpustr;
1182    ObjectClass *oc;
1183    const char *typename;
1184    CPUClass *cc;
1185    Error *err = NULL;
1186    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1187    uint8_t clustersz;
1188
1189    if (!cpu_model) {
1190        cpu_model = "cortex-a15";
1191    }
1192
1193    /* We can probe only here because during property set
1194     * KVM is not available yet
1195     */
1196    if (!gic_version) {
1197        if (!kvm_enabled()) {
1198            error_report("gic-version=host requires KVM");
1199            exit(1);
1200        }
1201
1202        gic_version = kvm_arm_vgic_probe();
1203        if (!gic_version) {
1204            error_report("Unable to determine GIC version supported by host");
1205            exit(1);
1206        }
1207    }
1208
1209    /* Separate the actual CPU model name from any appended features */
1210    cpustr = g_strsplit(cpu_model, ",", 2);
1211
1212    vbi = find_machine_info(cpustr[0]);
1213
1214    if (!vbi) {
1215        error_report("mach-virt: CPU %s not supported", cpustr[0]);
1216        exit(1);
1217    }
1218
1219    /* If we have an EL3 boot ROM then the assumption is that it will
1220     * implement PSCI itself, so disable QEMU's internal implementation
1221     * so it doesn't get in the way. Instead of starting secondary
1222     * CPUs in PSCI powerdown state we will start them all running and
1223     * let the boot ROM sort them out.
1224     * The usual case is that we do use QEMU's PSCI implementation.
1225     */
1226    vbi->using_psci = !(vms->secure && firmware_loaded);
1227
1228    /* The maximum number of CPUs depends on the GIC version, or on how
1229     * many redistributors we can fit into the memory map.
1230     */
1231    if (gic_version == 3) {
1232        virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1233        clustersz = GICV3_TARGETLIST_BITS;
1234    } else {
1235        virt_max_cpus = GIC_NCPU;
1236        clustersz = GIC_TARGETLIST_BITS;
1237    }
1238
1239    if (max_cpus > virt_max_cpus) {
1240        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1241                     "supported by machine 'mach-virt' (%d)",
1242                     max_cpus, virt_max_cpus);
1243        exit(1);
1244    }
1245
1246    vbi->smp_cpus = smp_cpus;
1247
1248    if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1249        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1250        exit(1);
1251    }
1252
1253    if (vms->secure) {
1254        if (kvm_enabled()) {
1255            error_report("mach-virt: KVM does not support Security extensions");
1256            exit(1);
1257        }
1258
1259        /* The Secure view of the world is the same as the NonSecure,
1260         * but with a few extra devices. Create it as a container region
1261         * containing the system memory at low priority; any secure-only
1262         * devices go in at higher priority and take precedence.
1263         */
1264        secure_sysmem = g_new(MemoryRegion, 1);
1265        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1266                           UINT64_MAX);
1267        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1268    }
1269
1270    create_fdt(vbi);
1271
1272    oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1273    if (!oc) {
1274        error_report("Unable to find CPU definition");
1275        exit(1);
1276    }
1277    typename = object_class_get_name(oc);
1278
1279    /* convert -smp CPU options specified by the user into global props */
1280    cc = CPU_CLASS(oc);
1281    cc->parse_features(typename, cpustr[1], &err);
1282    g_strfreev(cpustr);
1283    if (err) {
1284        error_report_err(err);
1285        exit(1);
1286    }
1287
1288    for (n = 0; n < smp_cpus; n++) {
1289        Object *cpuobj = object_new(typename);
1290        if (!vmc->disallow_affinity_adjustment) {
1291            /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1292             * GIC's target-list limitations. 32-bit KVM hosts currently
1293             * always create clusters of 4 CPUs, but that is expected to
1294             * change when they gain support for gicv3. When KVM is enabled
1295             * it will override the changes we make here, therefore our
1296             * purposes are to make TCG consistent (with 64-bit KVM hosts)
1297             * and to improve SGI efficiency.
1298             */
1299            uint8_t aff1 = n / clustersz;
1300            uint8_t aff0 = n % clustersz;
1301            object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1302                                    "mp-affinity", NULL);
1303        }
1304
1305        if (!vms->secure) {
1306            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1307        }
1308
1309        if (vbi->using_psci) {
1310            object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1311                                    "psci-conduit", NULL);
1312
1313            /* Secondary CPUs start in PSCI powered-down state */
1314            if (n > 0) {
1315                object_property_set_bool(cpuobj, true,
1316                                         "start-powered-off", NULL);
1317            }
1318        }
1319
1320        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1321            object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1322                                    "reset-cbar", &error_abort);
1323        }
1324
1325        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1326                                 &error_abort);
1327        if (vms->secure) {
1328            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1329                                     "secure-memory", &error_abort);
1330        }
1331
1332        object_property_set_bool(cpuobj, true, "realized", NULL);
1333    }
1334    fdt_add_timer_nodes(vbi, gic_version);
1335    fdt_add_cpu_nodes(vbi);
1336    fdt_add_psci_node(vbi);
1337
1338    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1339                                         machine->ram_size);
1340    memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1341
1342    create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1343
1344    create_gic(vbi, pic, gic_version, vms->secure);
1345
1346    fdt_add_pmu_nodes(vbi, gic_version);
1347
1348    create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1349
1350    if (vms->secure) {
1351        create_secure_ram(vbi, secure_sysmem);
1352        create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1353    }
1354
1355    create_rtc(vbi, pic);
1356
1357    create_pcie(vbi, pic, vms->highmem);
1358
1359    create_gpio(vbi, pic);
1360
1361    /* Create mmio transports, so the user can create virtio backends
1362     * (which will be automatically plugged in to the transports). If
1363     * no backend is created the transport will just sit harmlessly idle.
1364     */
1365    create_virtio_devices(vbi, pic);
1366
1367    create_fw_cfg(vbi, &address_space_memory);
1368    rom_set_fw(fw_cfg_find());
1369
1370    guest_info->smp_cpus = smp_cpus;
1371    guest_info->fw_cfg = fw_cfg_find();
1372    guest_info->memmap = vbi->memmap;
1373    guest_info->irqmap = vbi->irqmap;
1374    guest_info->use_highmem = vms->highmem;
1375    guest_info->gic_version = gic_version;
1376    guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1377    qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1378
1379    vbi->bootinfo.ram_size = machine->ram_size;
1380    vbi->bootinfo.kernel_filename = machine->kernel_filename;
1381    vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1382    vbi->bootinfo.initrd_filename = machine->initrd_filename;
1383    vbi->bootinfo.nb_cpus = smp_cpus;
1384    vbi->bootinfo.board_id = -1;
1385    vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1386    vbi->bootinfo.get_dtb = machvirt_dtb;
1387    vbi->bootinfo.firmware_loaded = firmware_loaded;
1388    arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1389
1390    /*
1391     * arm_load_kernel machine init done notifier registration must
1392     * happen before the platform_bus_create call. In this latter,
1393     * another notifier is registered which adds platform bus nodes.
1394     * Notifiers are executed in registration reverse order.
1395     */
1396    create_platform_bus(vbi, pic);
1397}
1398
1399static bool virt_get_secure(Object *obj, Error **errp)
1400{
1401    VirtMachineState *vms = VIRT_MACHINE(obj);
1402
1403    return vms->secure;
1404}
1405
1406static void virt_set_secure(Object *obj, bool value, Error **errp)
1407{
1408    VirtMachineState *vms = VIRT_MACHINE(obj);
1409
1410    vms->secure = value;
1411}
1412
1413static bool virt_get_highmem(Object *obj, Error **errp)
1414{
1415    VirtMachineState *vms = VIRT_MACHINE(obj);
1416
1417    return vms->highmem;
1418}
1419
1420static void virt_set_highmem(Object *obj, bool value, Error **errp)
1421{
1422    VirtMachineState *vms = VIRT_MACHINE(obj);
1423
1424    vms->highmem = value;
1425}
1426
1427static char *virt_get_gic_version(Object *obj, Error **errp)
1428{
1429    VirtMachineState *vms = VIRT_MACHINE(obj);
1430    const char *val = vms->gic_version == 3 ? "3" : "2";
1431
1432    return g_strdup(val);
1433}
1434
1435static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1436{
1437    VirtMachineState *vms = VIRT_MACHINE(obj);
1438
1439    if (!strcmp(value, "3")) {
1440        vms->gic_version = 3;
1441    } else if (!strcmp(value, "2")) {
1442        vms->gic_version = 2;
1443    } else if (!strcmp(value, "host")) {
1444        vms->gic_version = 0; /* Will probe later */
1445    } else {
1446        error_setg(errp, "Invalid gic-version value");
1447        error_append_hint(errp, "Valid values are 3, 2, host.\n");
1448    }
1449}
1450
1451static void virt_machine_class_init(ObjectClass *oc, void *data)
1452{
1453    MachineClass *mc = MACHINE_CLASS(oc);
1454
1455    mc->init = machvirt_init;
1456    /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1457     * it later in machvirt_init, where we have more information about the
1458     * configuration of the particular instance.
1459     */
1460    mc->max_cpus = MAX_CPUMASK_BITS;
1461    mc->has_dynamic_sysbus = true;
1462    mc->block_default_type = IF_VIRTIO;
1463    mc->no_cdrom = 1;
1464    mc->pci_allow_0_address = true;
1465}
1466
1467static const TypeInfo virt_machine_info = {
1468    .name          = TYPE_VIRT_MACHINE,
1469    .parent        = TYPE_MACHINE,
1470    .abstract      = true,
1471    .instance_size = sizeof(VirtMachineState),
1472    .class_size    = sizeof(VirtMachineClass),
1473    .class_init    = virt_machine_class_init,
1474};
1475
1476static void machvirt_machine_init(void)
1477{
1478    type_register_static(&virt_machine_info);
1479}
1480type_init(machvirt_machine_init);
1481
1482static void virt_2_7_instance_init(Object *obj)
1483{
1484    VirtMachineState *vms = VIRT_MACHINE(obj);
1485
1486    /* EL3 is disabled by default on virt: this makes us consistent
1487     * between KVM and TCG for this board, and it also allows us to
1488     * boot UEFI blobs which assume no TrustZone support.
1489     */
1490    vms->secure = false;
1491    object_property_add_bool(obj, "secure", virt_get_secure,
1492                             virt_set_secure, NULL);
1493    object_property_set_description(obj, "secure",
1494                                    "Set on/off to enable/disable the ARM "
1495                                    "Security Extensions (TrustZone)",
1496                                    NULL);
1497
1498    /* High memory is enabled by default */
1499    vms->highmem = true;
1500    object_property_add_bool(obj, "highmem", virt_get_highmem,
1501                             virt_set_highmem, NULL);
1502    object_property_set_description(obj, "highmem",
1503                                    "Set on/off to enable/disable using "
1504                                    "physical address space above 32 bits",
1505                                    NULL);
1506    /* Default GIC type is v2 */
1507    vms->gic_version = 2;
1508    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1509                        virt_set_gic_version, NULL);
1510    object_property_set_description(obj, "gic-version",
1511                                    "Set GIC version. "
1512                                    "Valid values are 2, 3 and host", NULL);
1513}
1514
1515static void virt_machine_2_7_options(MachineClass *mc)
1516{
1517}
1518DEFINE_VIRT_MACHINE_AS_LATEST(2, 7)
1519
1520#define VIRT_COMPAT_2_6 \
1521    HW_COMPAT_2_6
1522
1523static void virt_2_6_instance_init(Object *obj)
1524{
1525    virt_2_7_instance_init(obj);
1526}
1527
1528static void virt_machine_2_6_options(MachineClass *mc)
1529{
1530    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1531
1532    virt_machine_2_7_options(mc);
1533    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1534    vmc->disallow_affinity_adjustment = true;
1535}
1536DEFINE_VIRT_MACHINE(2, 6)
1537