qemu/hw/block/nvme.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
  13 *
  14 *  http://www.nvmexpress.org/resources/
  15 */
  16
  17/**
  18 * Usage: add options:
  19 *      -drive file=<file>,if=none,id=<drive_id>
  20 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
  21 */
  22
  23#include "qemu/osdep.h"
  24#include "hw/block/block.h"
  25#include "hw/hw.h"
  26#include "hw/pci/msix.h"
  27#include "hw/pci/pci.h"
  28#include "sysemu/sysemu.h"
  29#include "qapi/error.h"
  30#include "qapi/visitor.h"
  31#include "sysemu/block-backend.h"
  32
  33#include "nvme.h"
  34
  35static void nvme_process_sq(void *opaque);
  36
  37static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
  38{
  39    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
  40}
  41
  42static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
  43{
  44    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
  45}
  46
  47static void nvme_inc_cq_tail(NvmeCQueue *cq)
  48{
  49    cq->tail++;
  50    if (cq->tail >= cq->size) {
  51        cq->tail = 0;
  52        cq->phase = !cq->phase;
  53    }
  54}
  55
  56static void nvme_inc_sq_head(NvmeSQueue *sq)
  57{
  58    sq->head = (sq->head + 1) % sq->size;
  59}
  60
  61static uint8_t nvme_cq_full(NvmeCQueue *cq)
  62{
  63    return (cq->tail + 1) % cq->size == cq->head;
  64}
  65
  66static uint8_t nvme_sq_empty(NvmeSQueue *sq)
  67{
  68    return sq->head == sq->tail;
  69}
  70
  71static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
  72{
  73    if (cq->irq_enabled) {
  74        if (msix_enabled(&(n->parent_obj))) {
  75            msix_notify(&(n->parent_obj), cq->vector);
  76        } else {
  77            pci_irq_pulse(&n->parent_obj);
  78        }
  79    }
  80}
  81
  82static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
  83    uint32_t len, NvmeCtrl *n)
  84{
  85    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
  86    trans_len = MIN(len, trans_len);
  87    int num_prps = (len >> n->page_bits) + 1;
  88
  89    if (!prp1) {
  90        return NVME_INVALID_FIELD | NVME_DNR;
  91    }
  92
  93    pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
  94    qemu_sglist_add(qsg, prp1, trans_len);
  95    len -= trans_len;
  96    if (len) {
  97        if (!prp2) {
  98            goto unmap;
  99        }
 100        if (len > n->page_size) {
 101            uint64_t prp_list[n->max_prp_ents];
 102            uint32_t nents, prp_trans;
 103            int i = 0;
 104
 105            nents = (len + n->page_size - 1) >> n->page_bits;
 106            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 107            pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
 108            while (len != 0) {
 109                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 110
 111                if (i == n->max_prp_ents - 1 && len > n->page_size) {
 112                    if (!prp_ent || prp_ent & (n->page_size - 1)) {
 113                        goto unmap;
 114                    }
 115
 116                    i = 0;
 117                    nents = (len + n->page_size - 1) >> n->page_bits;
 118                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 119                    pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
 120                        prp_trans);
 121                    prp_ent = le64_to_cpu(prp_list[i]);
 122                }
 123
 124                if (!prp_ent || prp_ent & (n->page_size - 1)) {
 125                    goto unmap;
 126                }
 127
 128                trans_len = MIN(len, n->page_size);
 129                qemu_sglist_add(qsg, prp_ent, trans_len);
 130                len -= trans_len;
 131                i++;
 132            }
 133        } else {
 134            if (prp2 & (n->page_size - 1)) {
 135                goto unmap;
 136            }
 137            qemu_sglist_add(qsg, prp2, len);
 138        }
 139    }
 140    return NVME_SUCCESS;
 141
 142 unmap:
 143    qemu_sglist_destroy(qsg);
 144    return NVME_INVALID_FIELD | NVME_DNR;
 145}
 146
 147static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
 148    uint64_t prp1, uint64_t prp2)
 149{
 150    QEMUSGList qsg;
 151
 152    if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
 153        return NVME_INVALID_FIELD | NVME_DNR;
 154    }
 155    if (dma_buf_read(ptr, len, &qsg)) {
 156        qemu_sglist_destroy(&qsg);
 157        return NVME_INVALID_FIELD | NVME_DNR;
 158    }
 159    qemu_sglist_destroy(&qsg);
 160    return NVME_SUCCESS;
 161}
 162
 163static void nvme_post_cqes(void *opaque)
 164{
 165    NvmeCQueue *cq = opaque;
 166    NvmeCtrl *n = cq->ctrl;
 167    NvmeRequest *req, *next;
 168
 169    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 170        NvmeSQueue *sq;
 171        hwaddr addr;
 172
 173        if (nvme_cq_full(cq)) {
 174            break;
 175        }
 176
 177        QTAILQ_REMOVE(&cq->req_list, req, entry);
 178        sq = req->sq;
 179        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
 180        req->cqe.sq_id = cpu_to_le16(sq->sqid);
 181        req->cqe.sq_head = cpu_to_le16(sq->head);
 182        addr = cq->dma_addr + cq->tail * n->cqe_size;
 183        nvme_inc_cq_tail(cq);
 184        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
 185            sizeof(req->cqe));
 186        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 187    }
 188    nvme_isr_notify(n, cq);
 189}
 190
 191static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
 192{
 193    assert(cq->cqid == req->sq->cqid);
 194    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
 195    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
 196    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 197}
 198
 199static void nvme_rw_cb(void *opaque, int ret)
 200{
 201    NvmeRequest *req = opaque;
 202    NvmeSQueue *sq = req->sq;
 203    NvmeCtrl *n = sq->ctrl;
 204    NvmeCQueue *cq = n->cq[sq->cqid];
 205
 206    if (!ret) {
 207        block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
 208        req->status = NVME_SUCCESS;
 209    } else {
 210        block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
 211        req->status = NVME_INTERNAL_DEV_ERROR;
 212    }
 213    if (req->has_sg) {
 214        qemu_sglist_destroy(&req->qsg);
 215    }
 216    nvme_enqueue_req_completion(cq, req);
 217}
 218
 219static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 220    NvmeRequest *req)
 221{
 222    req->has_sg = false;
 223    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 224         BLOCK_ACCT_FLUSH);
 225    req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
 226
 227    return NVME_NO_COMPLETE;
 228}
 229
 230static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 231    NvmeRequest *req)
 232{
 233    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 234    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
 235    uint64_t slba = le64_to_cpu(rw->slba);
 236    uint64_t prp1 = le64_to_cpu(rw->prp1);
 237    uint64_t prp2 = le64_to_cpu(rw->prp2);
 238
 239    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 240    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 241    uint64_t data_size = (uint64_t)nlb << data_shift;
 242    uint64_t data_offset = slba << data_shift;
 243    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
 244    enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
 245
 246    if ((slba + nlb) > ns->id_ns.nsze) {
 247        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 248        return NVME_LBA_RANGE | NVME_DNR;
 249    }
 250
 251    if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
 252        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 253        return NVME_INVALID_FIELD | NVME_DNR;
 254    }
 255
 256    assert((nlb << data_shift) == req->qsg.size);
 257
 258    req->has_sg = true;
 259    dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
 260    req->aiocb = is_write ?
 261        dma_blk_write(n->conf.blk, &req->qsg, data_offset, nvme_rw_cb, req) :
 262        dma_blk_read(n->conf.blk, &req->qsg, data_offset, nvme_rw_cb, req);
 263
 264    return NVME_NO_COMPLETE;
 265}
 266
 267static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 268{
 269    NvmeNamespace *ns;
 270    uint32_t nsid = le32_to_cpu(cmd->nsid);
 271
 272    if (nsid == 0 || nsid > n->num_namespaces) {
 273        return NVME_INVALID_NSID | NVME_DNR;
 274    }
 275
 276    ns = &n->namespaces[nsid - 1];
 277    switch (cmd->opcode) {
 278    case NVME_CMD_FLUSH:
 279        return nvme_flush(n, ns, cmd, req);
 280    case NVME_CMD_WRITE:
 281    case NVME_CMD_READ:
 282        return nvme_rw(n, ns, cmd, req);
 283    default:
 284        return NVME_INVALID_OPCODE | NVME_DNR;
 285    }
 286}
 287
 288static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
 289{
 290    n->sq[sq->sqid] = NULL;
 291    timer_del(sq->timer);
 292    timer_free(sq->timer);
 293    g_free(sq->io_req);
 294    if (sq->sqid) {
 295        g_free(sq);
 296    }
 297}
 298
 299static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
 300{
 301    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 302    NvmeRequest *req, *next;
 303    NvmeSQueue *sq;
 304    NvmeCQueue *cq;
 305    uint16_t qid = le16_to_cpu(c->qid);
 306
 307    if (!qid || nvme_check_sqid(n, qid)) {
 308        return NVME_INVALID_QID | NVME_DNR;
 309    }
 310
 311    sq = n->sq[qid];
 312    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
 313        req = QTAILQ_FIRST(&sq->out_req_list);
 314        assert(req->aiocb);
 315        blk_aio_cancel(req->aiocb);
 316    }
 317    if (!nvme_check_cqid(n, sq->cqid)) {
 318        cq = n->cq[sq->cqid];
 319        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
 320
 321        nvme_post_cqes(cq);
 322        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 323            if (req->sq == sq) {
 324                QTAILQ_REMOVE(&cq->req_list, req, entry);
 325                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 326            }
 327        }
 328    }
 329
 330    nvme_free_sq(sq, n);
 331    return NVME_SUCCESS;
 332}
 333
 334static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
 335    uint16_t sqid, uint16_t cqid, uint16_t size)
 336{
 337    int i;
 338    NvmeCQueue *cq;
 339
 340    sq->ctrl = n;
 341    sq->dma_addr = dma_addr;
 342    sq->sqid = sqid;
 343    sq->size = size;
 344    sq->cqid = cqid;
 345    sq->head = sq->tail = 0;
 346    sq->io_req = g_new(NvmeRequest, sq->size);
 347
 348    QTAILQ_INIT(&sq->req_list);
 349    QTAILQ_INIT(&sq->out_req_list);
 350    for (i = 0; i < sq->size; i++) {
 351        sq->io_req[i].sq = sq;
 352        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
 353    }
 354    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
 355
 356    assert(n->cq[cqid]);
 357    cq = n->cq[cqid];
 358    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
 359    n->sq[sqid] = sq;
 360}
 361
 362static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
 363{
 364    NvmeSQueue *sq;
 365    NvmeCreateSq *c = (NvmeCreateSq *)cmd;
 366
 367    uint16_t cqid = le16_to_cpu(c->cqid);
 368    uint16_t sqid = le16_to_cpu(c->sqid);
 369    uint16_t qsize = le16_to_cpu(c->qsize);
 370    uint16_t qflags = le16_to_cpu(c->sq_flags);
 371    uint64_t prp1 = le64_to_cpu(c->prp1);
 372
 373    if (!cqid || nvme_check_cqid(n, cqid)) {
 374        return NVME_INVALID_CQID | NVME_DNR;
 375    }
 376    if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
 377        return NVME_INVALID_QID | NVME_DNR;
 378    }
 379    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
 380        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 381    }
 382    if (!prp1 || prp1 & (n->page_size - 1)) {
 383        return NVME_INVALID_FIELD | NVME_DNR;
 384    }
 385    if (!(NVME_SQ_FLAGS_PC(qflags))) {
 386        return NVME_INVALID_FIELD | NVME_DNR;
 387    }
 388    sq = g_malloc0(sizeof(*sq));
 389    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
 390    return NVME_SUCCESS;
 391}
 392
 393static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
 394{
 395    n->cq[cq->cqid] = NULL;
 396    timer_del(cq->timer);
 397    timer_free(cq->timer);
 398    msix_vector_unuse(&n->parent_obj, cq->vector);
 399    if (cq->cqid) {
 400        g_free(cq);
 401    }
 402}
 403
 404static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
 405{
 406    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 407    NvmeCQueue *cq;
 408    uint16_t qid = le16_to_cpu(c->qid);
 409
 410    if (!qid || nvme_check_cqid(n, qid)) {
 411        return NVME_INVALID_CQID | NVME_DNR;
 412    }
 413
 414    cq = n->cq[qid];
 415    if (!QTAILQ_EMPTY(&cq->sq_list)) {
 416        return NVME_INVALID_QUEUE_DEL;
 417    }
 418    nvme_free_cq(cq, n);
 419    return NVME_SUCCESS;
 420}
 421
 422static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
 423    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
 424{
 425    cq->ctrl = n;
 426    cq->cqid = cqid;
 427    cq->size = size;
 428    cq->dma_addr = dma_addr;
 429    cq->phase = 1;
 430    cq->irq_enabled = irq_enabled;
 431    cq->vector = vector;
 432    cq->head = cq->tail = 0;
 433    QTAILQ_INIT(&cq->req_list);
 434    QTAILQ_INIT(&cq->sq_list);
 435    msix_vector_use(&n->parent_obj, cq->vector);
 436    n->cq[cqid] = cq;
 437    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
 438}
 439
 440static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
 441{
 442    NvmeCQueue *cq;
 443    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
 444    uint16_t cqid = le16_to_cpu(c->cqid);
 445    uint16_t vector = le16_to_cpu(c->irq_vector);
 446    uint16_t qsize = le16_to_cpu(c->qsize);
 447    uint16_t qflags = le16_to_cpu(c->cq_flags);
 448    uint64_t prp1 = le64_to_cpu(c->prp1);
 449
 450    if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
 451        return NVME_INVALID_CQID | NVME_DNR;
 452    }
 453    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
 454        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 455    }
 456    if (!prp1) {
 457        return NVME_INVALID_FIELD | NVME_DNR;
 458    }
 459    if (vector > n->num_queues) {
 460        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
 461    }
 462    if (!(NVME_CQ_FLAGS_PC(qflags))) {
 463        return NVME_INVALID_FIELD | NVME_DNR;
 464    }
 465
 466    cq = g_malloc0(sizeof(*cq));
 467    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
 468        NVME_CQ_FLAGS_IEN(qflags));
 469    return NVME_SUCCESS;
 470}
 471
 472static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
 473{
 474    uint64_t prp1 = le64_to_cpu(c->prp1);
 475    uint64_t prp2 = le64_to_cpu(c->prp2);
 476
 477    return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
 478        prp1, prp2);
 479}
 480
 481static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
 482{
 483    NvmeNamespace *ns;
 484    uint32_t nsid = le32_to_cpu(c->nsid);
 485    uint64_t prp1 = le64_to_cpu(c->prp1);
 486    uint64_t prp2 = le64_to_cpu(c->prp2);
 487
 488    if (nsid == 0 || nsid > n->num_namespaces) {
 489        return NVME_INVALID_NSID | NVME_DNR;
 490    }
 491
 492    ns = &n->namespaces[nsid - 1];
 493    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
 494        prp1, prp2);
 495}
 496
 497static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
 498{
 499    static const int data_len = 4096;
 500    uint32_t min_nsid = le32_to_cpu(c->nsid);
 501    uint64_t prp1 = le64_to_cpu(c->prp1);
 502    uint64_t prp2 = le64_to_cpu(c->prp2);
 503    uint32_t *list;
 504    uint16_t ret;
 505    int i, j = 0;
 506
 507    list = g_malloc0(data_len);
 508    for (i = 0; i < n->num_namespaces; i++) {
 509        if (i < min_nsid) {
 510            continue;
 511        }
 512        list[j++] = cpu_to_le32(i + 1);
 513        if (j == data_len / sizeof(uint32_t)) {
 514            break;
 515        }
 516    }
 517    ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
 518    g_free(list);
 519    return ret;
 520}
 521
 522
 523static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
 524{
 525    NvmeIdentify *c = (NvmeIdentify *)cmd;
 526
 527    switch (le32_to_cpu(c->cns)) {
 528    case 0x00:
 529        return nvme_identify_ns(n, c);
 530    case 0x01:
 531        return nvme_identify_ctrl(n, c);
 532    case 0x02:
 533        return nvme_identify_nslist(n, c);
 534    default:
 535        return NVME_INVALID_FIELD | NVME_DNR;
 536    }
 537}
 538
 539static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 540{
 541    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 542    uint32_t result;
 543
 544    switch (dw10) {
 545    case NVME_VOLATILE_WRITE_CACHE:
 546        result = blk_enable_write_cache(n->conf.blk);
 547        break;
 548    case NVME_NUMBER_OF_QUEUES:
 549        result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
 550        break;
 551    default:
 552        return NVME_INVALID_FIELD | NVME_DNR;
 553    }
 554
 555    req->cqe.result = result;
 556    return NVME_SUCCESS;
 557}
 558
 559static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 560{
 561    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 562    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 563
 564    switch (dw10) {
 565    case NVME_VOLATILE_WRITE_CACHE:
 566        blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
 567        break;
 568    case NVME_NUMBER_OF_QUEUES:
 569        req->cqe.result =
 570            cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
 571        break;
 572    default:
 573        return NVME_INVALID_FIELD | NVME_DNR;
 574    }
 575    return NVME_SUCCESS;
 576}
 577
 578static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 579{
 580    switch (cmd->opcode) {
 581    case NVME_ADM_CMD_DELETE_SQ:
 582        return nvme_del_sq(n, cmd);
 583    case NVME_ADM_CMD_CREATE_SQ:
 584        return nvme_create_sq(n, cmd);
 585    case NVME_ADM_CMD_DELETE_CQ:
 586        return nvme_del_cq(n, cmd);
 587    case NVME_ADM_CMD_CREATE_CQ:
 588        return nvme_create_cq(n, cmd);
 589    case NVME_ADM_CMD_IDENTIFY:
 590        return nvme_identify(n, cmd);
 591    case NVME_ADM_CMD_SET_FEATURES:
 592        return nvme_set_feature(n, cmd, req);
 593    case NVME_ADM_CMD_GET_FEATURES:
 594        return nvme_get_feature(n, cmd, req);
 595    default:
 596        return NVME_INVALID_OPCODE | NVME_DNR;
 597    }
 598}
 599
 600static void nvme_process_sq(void *opaque)
 601{
 602    NvmeSQueue *sq = opaque;
 603    NvmeCtrl *n = sq->ctrl;
 604    NvmeCQueue *cq = n->cq[sq->cqid];
 605
 606    uint16_t status;
 607    hwaddr addr;
 608    NvmeCmd cmd;
 609    NvmeRequest *req;
 610
 611    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
 612        addr = sq->dma_addr + sq->head * n->sqe_size;
 613        pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
 614        nvme_inc_sq_head(sq);
 615
 616        req = QTAILQ_FIRST(&sq->req_list);
 617        QTAILQ_REMOVE(&sq->req_list, req, entry);
 618        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
 619        memset(&req->cqe, 0, sizeof(req->cqe));
 620        req->cqe.cid = cmd.cid;
 621
 622        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
 623            nvme_admin_cmd(n, &cmd, req);
 624        if (status != NVME_NO_COMPLETE) {
 625            req->status = status;
 626            nvme_enqueue_req_completion(cq, req);
 627        }
 628    }
 629}
 630
 631static void nvme_clear_ctrl(NvmeCtrl *n)
 632{
 633    int i;
 634
 635    for (i = 0; i < n->num_queues; i++) {
 636        if (n->sq[i] != NULL) {
 637            nvme_free_sq(n->sq[i], n);
 638        }
 639    }
 640    for (i = 0; i < n->num_queues; i++) {
 641        if (n->cq[i] != NULL) {
 642            nvme_free_cq(n->cq[i], n);
 643        }
 644    }
 645
 646    blk_flush(n->conf.blk);
 647    n->bar.cc = 0;
 648}
 649
 650static int nvme_start_ctrl(NvmeCtrl *n)
 651{
 652    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
 653    uint32_t page_size = 1 << page_bits;
 654
 655    if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
 656            n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
 657            NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
 658            NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
 659            NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
 660            NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
 661            NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
 662            NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
 663            !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
 664        return -1;
 665    }
 666
 667    n->page_bits = page_bits;
 668    n->page_size = page_size;
 669    n->max_prp_ents = n->page_size / sizeof(uint64_t);
 670    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
 671    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
 672    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
 673        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
 674    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
 675        NVME_AQA_ASQS(n->bar.aqa) + 1);
 676
 677    return 0;
 678}
 679
 680static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
 681    unsigned size)
 682{
 683    switch (offset) {
 684    case 0xc:
 685        n->bar.intms |= data & 0xffffffff;
 686        n->bar.intmc = n->bar.intms;
 687        break;
 688    case 0x10:
 689        n->bar.intms &= ~(data & 0xffffffff);
 690        n->bar.intmc = n->bar.intms;
 691        break;
 692    case 0x14:
 693        /* Windows first sends data, then sends enable bit */
 694        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
 695            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
 696        {
 697            n->bar.cc = data;
 698        }
 699
 700        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
 701            n->bar.cc = data;
 702            if (nvme_start_ctrl(n)) {
 703                n->bar.csts = NVME_CSTS_FAILED;
 704            } else {
 705                n->bar.csts = NVME_CSTS_READY;
 706            }
 707        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
 708            nvme_clear_ctrl(n);
 709            n->bar.csts &= ~NVME_CSTS_READY;
 710        }
 711        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
 712                nvme_clear_ctrl(n);
 713                n->bar.cc = data;
 714                n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
 715        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
 716                n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
 717                n->bar.cc = data;
 718        }
 719        break;
 720    case 0x24:
 721        n->bar.aqa = data & 0xffffffff;
 722        break;
 723    case 0x28:
 724        n->bar.asq = data;
 725        break;
 726    case 0x2c:
 727        n->bar.asq |= data << 32;
 728        break;
 729    case 0x30:
 730        n->bar.acq = data;
 731        break;
 732    case 0x34:
 733        n->bar.acq |= data << 32;
 734        break;
 735    default:
 736        break;
 737    }
 738}
 739
 740static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
 741{
 742    NvmeCtrl *n = (NvmeCtrl *)opaque;
 743    uint8_t *ptr = (uint8_t *)&n->bar;
 744    uint64_t val = 0;
 745
 746    if (addr < sizeof(n->bar)) {
 747        memcpy(&val, ptr + addr, size);
 748    }
 749    return val;
 750}
 751
 752static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
 753{
 754    uint32_t qid;
 755
 756    if (addr & ((1 << 2) - 1)) {
 757        return;
 758    }
 759
 760    if (((addr - 0x1000) >> 2) & 1) {
 761        uint16_t new_head = val & 0xffff;
 762        int start_sqs;
 763        NvmeCQueue *cq;
 764
 765        qid = (addr - (0x1000 + (1 << 2))) >> 3;
 766        if (nvme_check_cqid(n, qid)) {
 767            return;
 768        }
 769
 770        cq = n->cq[qid];
 771        if (new_head >= cq->size) {
 772            return;
 773        }
 774
 775        start_sqs = nvme_cq_full(cq) ? 1 : 0;
 776        cq->head = new_head;
 777        if (start_sqs) {
 778            NvmeSQueue *sq;
 779            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
 780                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 781            }
 782            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 783        }
 784
 785        if (cq->tail != cq->head) {
 786            nvme_isr_notify(n, cq);
 787        }
 788    } else {
 789        uint16_t new_tail = val & 0xffff;
 790        NvmeSQueue *sq;
 791
 792        qid = (addr - 0x1000) >> 3;
 793        if (nvme_check_sqid(n, qid)) {
 794            return;
 795        }
 796
 797        sq = n->sq[qid];
 798        if (new_tail >= sq->size) {
 799            return;
 800        }
 801
 802        sq->tail = new_tail;
 803        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 804    }
 805}
 806
 807static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
 808    unsigned size)
 809{
 810    NvmeCtrl *n = (NvmeCtrl *)opaque;
 811    if (addr < sizeof(n->bar)) {
 812        nvme_write_bar(n, addr, data, size);
 813    } else if (addr >= 0x1000) {
 814        nvme_process_db(n, addr, data);
 815    }
 816}
 817
 818static const MemoryRegionOps nvme_mmio_ops = {
 819    .read = nvme_mmio_read,
 820    .write = nvme_mmio_write,
 821    .endianness = DEVICE_LITTLE_ENDIAN,
 822    .impl = {
 823        .min_access_size = 2,
 824        .max_access_size = 8,
 825    },
 826};
 827
 828static int nvme_init(PCIDevice *pci_dev)
 829{
 830    NvmeCtrl *n = NVME(pci_dev);
 831    NvmeIdCtrl *id = &n->id_ctrl;
 832
 833    int i;
 834    int64_t bs_size;
 835    uint8_t *pci_conf;
 836
 837    if (!n->conf.blk) {
 838        return -1;
 839    }
 840
 841    bs_size = blk_getlength(n->conf.blk);
 842    if (bs_size < 0) {
 843        return -1;
 844    }
 845
 846    blkconf_serial(&n->conf, &n->serial);
 847    if (!n->serial) {
 848        return -1;
 849    }
 850    blkconf_blocksizes(&n->conf);
 851    blkconf_apply_backend_options(&n->conf);
 852
 853    pci_conf = pci_dev->config;
 854    pci_conf[PCI_INTERRUPT_PIN] = 1;
 855    pci_config_set_prog_interface(pci_dev->config, 0x2);
 856    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
 857    pcie_endpoint_cap_init(&n->parent_obj, 0x80);
 858
 859    n->num_namespaces = 1;
 860    n->num_queues = 64;
 861    n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
 862    n->ns_size = bs_size / (uint64_t)n->num_namespaces;
 863
 864    n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
 865    n->sq = g_new0(NvmeSQueue *, n->num_queues);
 866    n->cq = g_new0(NvmeCQueue *, n->num_queues);
 867
 868    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
 869                          "nvme", n->reg_size);
 870    pci_register_bar(&n->parent_obj, 0,
 871        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
 872        &n->iomem);
 873    msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
 874
 875    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
 876    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
 877    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
 878    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
 879    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
 880    id->rab = 6;
 881    id->ieee[0] = 0x00;
 882    id->ieee[1] = 0x02;
 883    id->ieee[2] = 0xb3;
 884    id->oacs = cpu_to_le16(0);
 885    id->frmw = 7 << 1;
 886    id->lpa = 1 << 0;
 887    id->sqes = (0x6 << 4) | 0x6;
 888    id->cqes = (0x4 << 4) | 0x4;
 889    id->nn = cpu_to_le32(n->num_namespaces);
 890    id->psd[0].mp = cpu_to_le16(0x9c4);
 891    id->psd[0].enlat = cpu_to_le32(0x10);
 892    id->psd[0].exlat = cpu_to_le32(0x4);
 893    if (blk_enable_write_cache(n->conf.blk)) {
 894        id->vwc = 1;
 895    }
 896
 897    n->bar.cap = 0;
 898    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
 899    NVME_CAP_SET_CQR(n->bar.cap, 1);
 900    NVME_CAP_SET_AMS(n->bar.cap, 1);
 901    NVME_CAP_SET_TO(n->bar.cap, 0xf);
 902    NVME_CAP_SET_CSS(n->bar.cap, 1);
 903    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
 904
 905    n->bar.vs = 0x00010100;
 906    n->bar.intmc = n->bar.intms = 0;
 907
 908    for (i = 0; i < n->num_namespaces; i++) {
 909        NvmeNamespace *ns = &n->namespaces[i];
 910        NvmeIdNs *id_ns = &ns->id_ns;
 911        id_ns->nsfeat = 0;
 912        id_ns->nlbaf = 0;
 913        id_ns->flbas = 0;
 914        id_ns->mc = 0;
 915        id_ns->dpc = 0;
 916        id_ns->dps = 0;
 917        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
 918        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
 919            cpu_to_le64(n->ns_size >>
 920                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
 921    }
 922    return 0;
 923}
 924
 925static void nvme_exit(PCIDevice *pci_dev)
 926{
 927    NvmeCtrl *n = NVME(pci_dev);
 928
 929    nvme_clear_ctrl(n);
 930    g_free(n->namespaces);
 931    g_free(n->cq);
 932    g_free(n->sq);
 933    msix_uninit_exclusive_bar(pci_dev);
 934}
 935
 936static Property nvme_props[] = {
 937    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
 938    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
 939    DEFINE_PROP_END_OF_LIST(),
 940};
 941
 942static const VMStateDescription nvme_vmstate = {
 943    .name = "nvme",
 944    .unmigratable = 1,
 945};
 946
 947static void nvme_class_init(ObjectClass *oc, void *data)
 948{
 949    DeviceClass *dc = DEVICE_CLASS(oc);
 950    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
 951
 952    pc->init = nvme_init;
 953    pc->exit = nvme_exit;
 954    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
 955    pc->vendor_id = PCI_VENDOR_ID_INTEL;
 956    pc->device_id = 0x5845;
 957    pc->revision = 2;
 958    pc->is_express = 1;
 959
 960    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
 961    dc->desc = "Non-Volatile Memory Express";
 962    dc->props = nvme_props;
 963    dc->vmsd = &nvme_vmstate;
 964}
 965
 966static void nvme_instance_init(Object *obj)
 967{
 968    NvmeCtrl *s = NVME(obj);
 969
 970    device_add_bootindex_property(obj, &s->conf.bootindex,
 971                                  "bootindex", "/namespace@1,0",
 972                                  DEVICE(obj), &error_abort);
 973}
 974
 975static const TypeInfo nvme_info = {
 976    .name          = "nvme",
 977    .parent        = TYPE_PCI_DEVICE,
 978    .instance_size = sizeof(NvmeCtrl),
 979    .class_init    = nvme_class_init,
 980    .instance_init = nvme_instance_init,
 981};
 982
 983static void nvme_register_types(void)
 984{
 985    type_register_static(&nvme_info);
 986}
 987
 988type_init(nvme_register_types)
 989