qemu/hw/char/cadence_uart.c
<<
>>
Prefs
   1/*
   2 * Device model for Cadence UART
   3 *
   4 * Copyright (c) 2010 Xilinx Inc.
   5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
   6 * Copyright (c) 2012 PetaLogix Pty Ltd.
   7 * Written by Haibing Ma
   8 *            M.Habib
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "hw/sysbus.h"
  21#include "sysemu/char.h"
  22#include "qemu/timer.h"
  23#include "qemu/log.h"
  24#include "hw/char/cadence_uart.h"
  25
  26#ifdef CADENCE_UART_ERR_DEBUG
  27#define DB_PRINT(...) do { \
  28    fprintf(stderr,  ": %s: ", __func__); \
  29    fprintf(stderr, ## __VA_ARGS__); \
  30    } while (0);
  31#else
  32    #define DB_PRINT(...)
  33#endif
  34
  35#define UART_SR_INTR_RTRIG     0x00000001
  36#define UART_SR_INTR_REMPTY    0x00000002
  37#define UART_SR_INTR_RFUL      0x00000004
  38#define UART_SR_INTR_TEMPTY    0x00000008
  39#define UART_SR_INTR_TFUL      0x00000010
  40/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  41#define UART_SR_TTRIG          0x00002000
  42#define UART_INTR_TTRIG        0x00000400
  43/* bits fields in CSR that correlate to CISR. If any of these bits are set in
  44 * SR, then the same bit in CISR is set high too */
  45#define UART_SR_TO_CISR_MASK   0x0000001F
  46
  47#define UART_INTR_ROVR         0x00000020
  48#define UART_INTR_FRAME        0x00000040
  49#define UART_INTR_PARE         0x00000080
  50#define UART_INTR_TIMEOUT      0x00000100
  51#define UART_INTR_DMSI         0x00000200
  52#define UART_INTR_TOVR         0x00001000
  53
  54#define UART_SR_RACTIVE    0x00000400
  55#define UART_SR_TACTIVE    0x00000800
  56#define UART_SR_FDELT      0x00001000
  57
  58#define UART_CR_RXRST       0x00000001
  59#define UART_CR_TXRST       0x00000002
  60#define UART_CR_RX_EN       0x00000004
  61#define UART_CR_RX_DIS      0x00000008
  62#define UART_CR_TX_EN       0x00000010
  63#define UART_CR_TX_DIS      0x00000020
  64#define UART_CR_RST_TO      0x00000040
  65#define UART_CR_STARTBRK    0x00000080
  66#define UART_CR_STOPBRK     0x00000100
  67
  68#define UART_MR_CLKS            0x00000001
  69#define UART_MR_CHRL            0x00000006
  70#define UART_MR_CHRL_SH         1
  71#define UART_MR_PAR             0x00000038
  72#define UART_MR_PAR_SH          3
  73#define UART_MR_NBSTOP          0x000000C0
  74#define UART_MR_NBSTOP_SH       6
  75#define UART_MR_CHMODE          0x00000300
  76#define UART_MR_CHMODE_SH       8
  77#define UART_MR_UCLKEN          0x00000400
  78#define UART_MR_IRMODE          0x00000800
  79
  80#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
  81#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
  82#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
  83#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
  84#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
  85#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
  86#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
  87#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
  88#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
  89#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
  90
  91#define UART_INPUT_CLK         50000000
  92
  93#define R_CR       (0x00/4)
  94#define R_MR       (0x04/4)
  95#define R_IER      (0x08/4)
  96#define R_IDR      (0x0C/4)
  97#define R_IMR      (0x10/4)
  98#define R_CISR     (0x14/4)
  99#define R_BRGR     (0x18/4)
 100#define R_RTOR     (0x1C/4)
 101#define R_RTRIG    (0x20/4)
 102#define R_MCR      (0x24/4)
 103#define R_MSR      (0x28/4)
 104#define R_SR       (0x2C/4)
 105#define R_TX_RX    (0x30/4)
 106#define R_BDIV     (0x34/4)
 107#define R_FDEL     (0x38/4)
 108#define R_PMIN     (0x3C/4)
 109#define R_PWID     (0x40/4)
 110#define R_TTRIG    (0x44/4)
 111
 112
 113static void uart_update_status(CadenceUARTState *s)
 114{
 115    s->r[R_SR] = 0;
 116
 117    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
 118                                                           : 0;
 119    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
 120    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
 121
 122    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
 123                                                           : 0;
 124    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
 125    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
 126
 127    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 128    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
 129    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 130}
 131
 132static void fifo_trigger_update(void *opaque)
 133{
 134    CadenceUARTState *s = opaque;
 135
 136    s->r[R_CISR] |= UART_INTR_TIMEOUT;
 137
 138    uart_update_status(s);
 139}
 140
 141static void uart_rx_reset(CadenceUARTState *s)
 142{
 143    s->rx_wpos = 0;
 144    s->rx_count = 0;
 145    if (s->chr) {
 146        qemu_chr_accept_input(s->chr);
 147    }
 148}
 149
 150static void uart_tx_reset(CadenceUARTState *s)
 151{
 152    s->tx_count = 0;
 153}
 154
 155static void uart_send_breaks(CadenceUARTState *s)
 156{
 157    int break_enabled = 1;
 158
 159    if (s->chr) {
 160        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 161                                   &break_enabled);
 162    }
 163}
 164
 165static void uart_parameters_setup(CadenceUARTState *s)
 166{
 167    QEMUSerialSetParams ssp;
 168    unsigned int baud_rate, packet_size;
 169
 170    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
 171            UART_INPUT_CLK / 8 : UART_INPUT_CLK;
 172
 173    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 174    packet_size = 1;
 175
 176    switch (s->r[R_MR] & UART_MR_PAR) {
 177    case UART_PARITY_EVEN:
 178        ssp.parity = 'E';
 179        packet_size++;
 180        break;
 181    case UART_PARITY_ODD:
 182        ssp.parity = 'O';
 183        packet_size++;
 184        break;
 185    default:
 186        ssp.parity = 'N';
 187        break;
 188    }
 189
 190    switch (s->r[R_MR] & UART_MR_CHRL) {
 191    case UART_DATA_BITS_6:
 192        ssp.data_bits = 6;
 193        break;
 194    case UART_DATA_BITS_7:
 195        ssp.data_bits = 7;
 196        break;
 197    default:
 198        ssp.data_bits = 8;
 199        break;
 200    }
 201
 202    switch (s->r[R_MR] & UART_MR_NBSTOP) {
 203    case UART_STOP_BITS_1:
 204        ssp.stop_bits = 1;
 205        break;
 206    default:
 207        ssp.stop_bits = 2;
 208        break;
 209    }
 210
 211    packet_size += ssp.data_bits + ssp.stop_bits;
 212    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
 213    if (s->chr) {
 214        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 215    }
 216}
 217
 218static int uart_can_receive(void *opaque)
 219{
 220    CadenceUARTState *s = opaque;
 221    int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
 222    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 223
 224    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 225        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
 226    }
 227    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 228        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
 229    }
 230    return ret;
 231}
 232
 233static void uart_ctrl_update(CadenceUARTState *s)
 234{
 235    if (s->r[R_CR] & UART_CR_TXRST) {
 236        uart_tx_reset(s);
 237    }
 238
 239    if (s->r[R_CR] & UART_CR_RXRST) {
 240        uart_rx_reset(s);
 241    }
 242
 243    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 244
 245    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 246        uart_send_breaks(s);
 247    }
 248}
 249
 250static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 251{
 252    CadenceUARTState *s = opaque;
 253    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 254    int i;
 255
 256    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 257        return;
 258    }
 259
 260    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
 261        s->r[R_CISR] |= UART_INTR_ROVR;
 262    } else {
 263        for (i = 0; i < size; i++) {
 264            s->rx_fifo[s->rx_wpos] = buf[i];
 265            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
 266            s->rx_count++;
 267        }
 268        timer_mod(s->fifo_trigger_handle, new_rx_time +
 269                                                (s->char_tx_time * 4));
 270    }
 271    uart_update_status(s);
 272}
 273
 274static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
 275                                  void *opaque)
 276{
 277    CadenceUARTState *s = opaque;
 278    int ret;
 279
 280    /* instant drain the fifo when there's no back-end */
 281    if (!s->chr) {
 282        s->tx_count = 0;
 283        return FALSE;
 284    }
 285
 286    if (!s->tx_count) {
 287        return FALSE;
 288    }
 289
 290    ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
 291
 292    if (ret >= 0) {
 293        s->tx_count -= ret;
 294        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
 295    }
 296
 297    if (s->tx_count) {
 298        guint r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
 299                                        cadence_uart_xmit, s);
 300        if (!r) {
 301            s->tx_count = 0;
 302            return FALSE;
 303        }
 304    }
 305
 306    uart_update_status(s);
 307    return FALSE;
 308}
 309
 310static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
 311                               int size)
 312{
 313    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 314        return;
 315    }
 316
 317    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
 318        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
 319        /*
 320         * This can only be a guest error via a bad tx fifo register push,
 321         * as can_receive() should stop remote loop and echo modes ever getting
 322         * us to here.
 323         */
 324        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
 325        s->r[R_CISR] |= UART_INTR_ROVR;
 326    }
 327
 328    memcpy(s->tx_fifo + s->tx_count, buf, size);
 329    s->tx_count += size;
 330
 331    cadence_uart_xmit(NULL, G_IO_OUT, s);
 332}
 333
 334static void uart_receive(void *opaque, const uint8_t *buf, int size)
 335{
 336    CadenceUARTState *s = opaque;
 337    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 338
 339    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 340        uart_write_rx_fifo(opaque, buf, size);
 341    }
 342    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 343        uart_write_tx_fifo(s, buf, size);
 344    }
 345}
 346
 347static void uart_event(void *opaque, int event)
 348{
 349    CadenceUARTState *s = opaque;
 350    uint8_t buf = '\0';
 351
 352    if (event == CHR_EVENT_BREAK) {
 353        uart_write_rx_fifo(opaque, &buf, 1);
 354    }
 355
 356    uart_update_status(s);
 357}
 358
 359static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
 360{
 361    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 362        return;
 363    }
 364
 365    if (s->rx_count) {
 366        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
 367                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
 368        *c = s->rx_fifo[rx_rpos];
 369        s->rx_count--;
 370
 371        if (s->chr) {
 372            qemu_chr_accept_input(s->chr);
 373        }
 374    } else {
 375        *c = 0;
 376    }
 377
 378    uart_update_status(s);
 379}
 380
 381static void uart_write(void *opaque, hwaddr offset,
 382                          uint64_t value, unsigned size)
 383{
 384    CadenceUARTState *s = opaque;
 385
 386    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
 387    offset >>= 2;
 388    if (offset >= CADENCE_UART_R_MAX) {
 389        return;
 390    }
 391    switch (offset) {
 392    case R_IER: /* ier (wts imr) */
 393        s->r[R_IMR] |= value;
 394        break;
 395    case R_IDR: /* idr (wtc imr) */
 396        s->r[R_IMR] &= ~value;
 397        break;
 398    case R_IMR: /* imr (read only) */
 399        break;
 400    case R_CISR: /* cisr (wtc) */
 401        s->r[R_CISR] &= ~value;
 402        break;
 403    case R_TX_RX: /* UARTDR */
 404        switch (s->r[R_MR] & UART_MR_CHMODE) {
 405        case NORMAL_MODE:
 406            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 407            break;
 408        case LOCAL_LOOPBACK:
 409            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 410            break;
 411        }
 412        break;
 413    default:
 414        s->r[offset] = value;
 415    }
 416
 417    switch (offset) {
 418    case R_CR:
 419        uart_ctrl_update(s);
 420        break;
 421    case R_MR:
 422        uart_parameters_setup(s);
 423        break;
 424    }
 425    uart_update_status(s);
 426}
 427
 428static uint64_t uart_read(void *opaque, hwaddr offset,
 429        unsigned size)
 430{
 431    CadenceUARTState *s = opaque;
 432    uint32_t c = 0;
 433
 434    offset >>= 2;
 435    if (offset >= CADENCE_UART_R_MAX) {
 436        c = 0;
 437    } else if (offset == R_TX_RX) {
 438        uart_read_rx_fifo(s, &c);
 439    } else {
 440       c = s->r[offset];
 441    }
 442
 443    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
 444    return c;
 445}
 446
 447static const MemoryRegionOps uart_ops = {
 448    .read = uart_read,
 449    .write = uart_write,
 450    .endianness = DEVICE_NATIVE_ENDIAN,
 451};
 452
 453static void cadence_uart_reset(DeviceState *dev)
 454{
 455    CadenceUARTState *s = CADENCE_UART(dev);
 456
 457    s->r[R_CR] = 0x00000128;
 458    s->r[R_IMR] = 0;
 459    s->r[R_CISR] = 0;
 460    s->r[R_RTRIG] = 0x00000020;
 461    s->r[R_BRGR] = 0x0000000F;
 462    s->r[R_TTRIG] = 0x00000020;
 463
 464    uart_rx_reset(s);
 465    uart_tx_reset(s);
 466
 467    uart_update_status(s);
 468}
 469
 470static void cadence_uart_realize(DeviceState *dev, Error **errp)
 471{
 472    CadenceUARTState *s = CADENCE_UART(dev);
 473
 474    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 475                                          fifo_trigger_update, s);
 476
 477    if (s->chr) {
 478        qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
 479                              uart_event, s);
 480    }
 481}
 482
 483static void cadence_uart_init(Object *obj)
 484{
 485    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 486    CadenceUARTState *s = CADENCE_UART(obj);
 487
 488    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
 489    sysbus_init_mmio(sbd, &s->iomem);
 490    sysbus_init_irq(sbd, &s->irq);
 491
 492    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
 493}
 494
 495static int cadence_uart_post_load(void *opaque, int version_id)
 496{
 497    CadenceUARTState *s = opaque;
 498
 499    uart_parameters_setup(s);
 500    uart_update_status(s);
 501    return 0;
 502}
 503
 504static const VMStateDescription vmstate_cadence_uart = {
 505    .name = "cadence_uart",
 506    .version_id = 2,
 507    .minimum_version_id = 2,
 508    .post_load = cadence_uart_post_load,
 509    .fields = (VMStateField[]) {
 510        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
 511        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
 512                            CADENCE_UART_RX_FIFO_SIZE),
 513        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
 514                            CADENCE_UART_TX_FIFO_SIZE),
 515        VMSTATE_UINT32(rx_count, CadenceUARTState),
 516        VMSTATE_UINT32(tx_count, CadenceUARTState),
 517        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
 518        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
 519        VMSTATE_END_OF_LIST()
 520    }
 521};
 522
 523static Property cadence_uart_properties[] = {
 524    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
 525    DEFINE_PROP_END_OF_LIST(),
 526};
 527
 528static void cadence_uart_class_init(ObjectClass *klass, void *data)
 529{
 530    DeviceClass *dc = DEVICE_CLASS(klass);
 531
 532    dc->realize = cadence_uart_realize;
 533    dc->vmsd = &vmstate_cadence_uart;
 534    dc->reset = cadence_uart_reset;
 535    dc->props = cadence_uart_properties;
 536  }
 537
 538static const TypeInfo cadence_uart_info = {
 539    .name          = TYPE_CADENCE_UART,
 540    .parent        = TYPE_SYS_BUS_DEVICE,
 541    .instance_size = sizeof(CadenceUARTState),
 542    .instance_init = cadence_uart_init,
 543    .class_init    = cadence_uart_class_init,
 544};
 545
 546static void cadence_uart_register_types(void)
 547{
 548    type_register_static(&cadence_uart_info);
 549}
 550
 551type_init(cadence_uart_register_types)
 552