qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "hw/sysbus.h"
  25#include "exec/address-spaces.h"
  26#include "intel_iommu_internal.h"
  27#include "hw/pci/pci.h"
  28#include "hw/pci/pci_bus.h"
  29#include "hw/i386/pc.h"
  30#include "hw/boards.h"
  31#include "hw/i386/x86-iommu.h"
  32#include "hw/pci-host/q35.h"
  33#include "sysemu/kvm.h"
  34
  35/*#define DEBUG_INTEL_IOMMU*/
  36#ifdef DEBUG_INTEL_IOMMU
  37enum {
  38    DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
  39    DEBUG_CACHE, DEBUG_IR,
  40};
  41#define VTD_DBGBIT(x)   (1 << DEBUG_##x)
  42static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
  43
  44#define VTD_DPRINTF(what, fmt, ...) do { \
  45    if (vtd_dbgflags & VTD_DBGBIT(what)) { \
  46        fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
  47                ## __VA_ARGS__); } \
  48    } while (0)
  49#else
  50#define VTD_DPRINTF(what, fmt, ...) do {} while (0)
  51#endif
  52
  53static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  54                            uint64_t wmask, uint64_t w1cmask)
  55{
  56    stq_le_p(&s->csr[addr], val);
  57    stq_le_p(&s->wmask[addr], wmask);
  58    stq_le_p(&s->w1cmask[addr], w1cmask);
  59}
  60
  61static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  62{
  63    stq_le_p(&s->womask[addr], mask);
  64}
  65
  66static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  67                            uint32_t wmask, uint32_t w1cmask)
  68{
  69    stl_le_p(&s->csr[addr], val);
  70    stl_le_p(&s->wmask[addr], wmask);
  71    stl_le_p(&s->w1cmask[addr], w1cmask);
  72}
  73
  74static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  75{
  76    stl_le_p(&s->womask[addr], mask);
  77}
  78
  79/* "External" get/set operations */
  80static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  81{
  82    uint64_t oldval = ldq_le_p(&s->csr[addr]);
  83    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  84    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  85    stq_le_p(&s->csr[addr],
  86             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  87}
  88
  89static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  90{
  91    uint32_t oldval = ldl_le_p(&s->csr[addr]);
  92    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  93    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  94    stl_le_p(&s->csr[addr],
  95             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  96}
  97
  98static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  99{
 100    uint64_t val = ldq_le_p(&s->csr[addr]);
 101    uint64_t womask = ldq_le_p(&s->womask[addr]);
 102    return val & ~womask;
 103}
 104
 105static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 106{
 107    uint32_t val = ldl_le_p(&s->csr[addr]);
 108    uint32_t womask = ldl_le_p(&s->womask[addr]);
 109    return val & ~womask;
 110}
 111
 112/* "Internal" get/set operations */
 113static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 114{
 115    return ldq_le_p(&s->csr[addr]);
 116}
 117
 118static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 119{
 120    return ldl_le_p(&s->csr[addr]);
 121}
 122
 123static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 124{
 125    stq_le_p(&s->csr[addr], val);
 126}
 127
 128static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 129                                        uint32_t clear, uint32_t mask)
 130{
 131    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 132    stl_le_p(&s->csr[addr], new_val);
 133    return new_val;
 134}
 135
 136static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 137                                        uint64_t clear, uint64_t mask)
 138{
 139    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 140    stq_le_p(&s->csr[addr], new_val);
 141    return new_val;
 142}
 143
 144/* GHashTable functions */
 145static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 146{
 147    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 148}
 149
 150static guint vtd_uint64_hash(gconstpointer v)
 151{
 152    return (guint)*(const uint64_t *)v;
 153}
 154
 155static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 156                                          gpointer user_data)
 157{
 158    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 159    uint16_t domain_id = *(uint16_t *)user_data;
 160    return entry->domain_id == domain_id;
 161}
 162
 163/* The shift of an addr for a certain level of paging structure */
 164static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 165{
 166    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 167}
 168
 169static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 170{
 171    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 172}
 173
 174static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 175                                        gpointer user_data)
 176{
 177    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 178    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 179    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 180    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 181    return (entry->domain_id == info->domain_id) &&
 182            (((entry->gfn & info->mask) == gfn) ||
 183             (entry->gfn == gfn_tlb));
 184}
 185
 186/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 187 * IntelIOMMUState to 1.
 188 */
 189static void vtd_reset_context_cache(IntelIOMMUState *s)
 190{
 191    VTDAddressSpace *vtd_as;
 192    VTDBus *vtd_bus;
 193    GHashTableIter bus_it;
 194    uint32_t devfn_it;
 195
 196    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 197
 198    VTD_DPRINTF(CACHE, "global context_cache_gen=1");
 199    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 200        for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
 201            vtd_as = vtd_bus->dev_as[devfn_it];
 202            if (!vtd_as) {
 203                continue;
 204            }
 205            vtd_as->context_cache_entry.context_cache_gen = 0;
 206        }
 207    }
 208    s->context_cache_gen = 1;
 209}
 210
 211static void vtd_reset_iotlb(IntelIOMMUState *s)
 212{
 213    assert(s->iotlb);
 214    g_hash_table_remove_all(s->iotlb);
 215}
 216
 217static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
 218                                  uint32_t level)
 219{
 220    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 221           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 222}
 223
 224static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 225{
 226    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 227}
 228
 229static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 230                                       hwaddr addr)
 231{
 232    VTDIOTLBEntry *entry;
 233    uint64_t key;
 234    int level;
 235
 236    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 237        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 238                                source_id, level);
 239        entry = g_hash_table_lookup(s->iotlb, &key);
 240        if (entry) {
 241            goto out;
 242        }
 243    }
 244
 245out:
 246    return entry;
 247}
 248
 249static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 250                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 251                             bool read_flags, bool write_flags,
 252                             uint32_t level)
 253{
 254    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 255    uint64_t *key = g_malloc(sizeof(*key));
 256    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 257
 258    VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
 259                " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
 260                domain_id);
 261    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 262        VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
 263        vtd_reset_iotlb(s);
 264    }
 265
 266    entry->gfn = gfn;
 267    entry->domain_id = domain_id;
 268    entry->slpte = slpte;
 269    entry->read_flags = read_flags;
 270    entry->write_flags = write_flags;
 271    entry->mask = vtd_slpt_level_page_mask(level);
 272    *key = vtd_get_iotlb_key(gfn, source_id, level);
 273    g_hash_table_replace(s->iotlb, key, entry);
 274}
 275
 276/* Given the reg addr of both the message data and address, generate an
 277 * interrupt via MSI.
 278 */
 279static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 280                                   hwaddr mesg_data_reg)
 281{
 282    hwaddr addr;
 283    uint32_t data;
 284
 285    assert(mesg_data_reg < DMAR_REG_SIZE);
 286    assert(mesg_addr_reg < DMAR_REG_SIZE);
 287
 288    addr = vtd_get_long_raw(s, mesg_addr_reg);
 289    data = vtd_get_long_raw(s, mesg_data_reg);
 290
 291    VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
 292    address_space_stl_le(&address_space_memory, addr, data,
 293                         MEMTXATTRS_UNSPECIFIED, NULL);
 294}
 295
 296/* Generate a fault event to software via MSI if conditions are met.
 297 * Notice that the value of FSTS_REG being passed to it should be the one
 298 * before any update.
 299 */
 300static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 301{
 302    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 303        pre_fsts & VTD_FSTS_IQE) {
 304        VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
 305                    "to be serviced by software, fault event is not generated "
 306                    "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
 307        return;
 308    }
 309    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 310    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 311        VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
 312    } else {
 313        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 314        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 315    }
 316}
 317
 318/* Check if the Fault (F) field of the Fault Recording Register referenced by
 319 * @index is Set.
 320 */
 321static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 322{
 323    /* Each reg is 128-bit */
 324    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 325    addr += 8; /* Access the high 64-bit half */
 326
 327    assert(index < DMAR_FRCD_REG_NR);
 328
 329    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 330}
 331
 332/* Update the PPF field of Fault Status Register.
 333 * Should be called whenever change the F field of any fault recording
 334 * registers.
 335 */
 336static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 337{
 338    uint32_t i;
 339    uint32_t ppf_mask = 0;
 340
 341    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 342        if (vtd_is_frcd_set(s, i)) {
 343            ppf_mask = VTD_FSTS_PPF;
 344            break;
 345        }
 346    }
 347    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 348    VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
 349}
 350
 351static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 352{
 353    /* Each reg is 128-bit */
 354    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 355    addr += 8; /* Access the high 64-bit half */
 356
 357    assert(index < DMAR_FRCD_REG_NR);
 358
 359    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 360    vtd_update_fsts_ppf(s);
 361}
 362
 363/* Must not update F field now, should be done later */
 364static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 365                            uint16_t source_id, hwaddr addr,
 366                            VTDFaultReason fault, bool is_write)
 367{
 368    uint64_t hi = 0, lo;
 369    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 370
 371    assert(index < DMAR_FRCD_REG_NR);
 372
 373    lo = VTD_FRCD_FI(addr);
 374    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 375    if (!is_write) {
 376        hi |= VTD_FRCD_T;
 377    }
 378    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 379    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 380    VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
 381                ", lo 0x%"PRIx64, index, hi, lo);
 382}
 383
 384/* Try to collapse multiple pending faults from the same requester */
 385static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 386{
 387    uint32_t i;
 388    uint64_t frcd_reg;
 389    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 390
 391    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 392        frcd_reg = vtd_get_quad_raw(s, addr);
 393        VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
 394        if ((frcd_reg & VTD_FRCD_F) &&
 395            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 396            return true;
 397        }
 398        addr += 16; /* 128-bit for each */
 399    }
 400    return false;
 401}
 402
 403/* Log and report an DMAR (address translation) fault to software */
 404static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 405                                  hwaddr addr, VTDFaultReason fault,
 406                                  bool is_write)
 407{
 408    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 409
 410    assert(fault < VTD_FR_MAX);
 411
 412    if (fault == VTD_FR_RESERVED_ERR) {
 413        /* This is not a normal fault reason case. Drop it. */
 414        return;
 415    }
 416    VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
 417                ", is_write %d", source_id, fault, addr, is_write);
 418    if (fsts_reg & VTD_FSTS_PFO) {
 419        VTD_DPRINTF(FLOG, "new fault is not recorded due to "
 420                    "Primary Fault Overflow");
 421        return;
 422    }
 423    if (vtd_try_collapse_fault(s, source_id)) {
 424        VTD_DPRINTF(FLOG, "new fault is not recorded due to "
 425                    "compression of faults");
 426        return;
 427    }
 428    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 429        VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
 430                    "new fault is not recorded, set PFO field");
 431        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 432        return;
 433    }
 434
 435    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 436
 437    if (fsts_reg & VTD_FSTS_PPF) {
 438        VTD_DPRINTF(FLOG, "there are pending faults already, "
 439                    "fault event is not generated");
 440        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 441        s->next_frcd_reg++;
 442        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 443            s->next_frcd_reg = 0;
 444        }
 445    } else {
 446        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 447                                VTD_FSTS_FRI(s->next_frcd_reg));
 448        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 449        s->next_frcd_reg++;
 450        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 451            s->next_frcd_reg = 0;
 452        }
 453        /* This case actually cause the PPF to be Set.
 454         * So generate fault event (interrupt).
 455         */
 456         vtd_generate_fault_event(s, fsts_reg);
 457    }
 458}
 459
 460/* Handle Invalidation Queue Errors of queued invalidation interface error
 461 * conditions.
 462 */
 463static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 464{
 465    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 466
 467    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 468    vtd_generate_fault_event(s, fsts_reg);
 469}
 470
 471/* Set the IWC field and try to generate an invalidation completion interrupt */
 472static void vtd_generate_completion_event(IntelIOMMUState *s)
 473{
 474    VTD_DPRINTF(INV, "completes an invalidation wait command with "
 475                "Interrupt Flag");
 476    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 477        VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
 478                    "serviced by software, "
 479                    "new invalidation event is not generated");
 480        return;
 481    }
 482    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 483    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 484    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 485        VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
 486                    "event is not generated");
 487        return;
 488    } else {
 489        /* Generate the interrupt event */
 490        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 491        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 492    }
 493}
 494
 495static inline bool vtd_root_entry_present(VTDRootEntry *root)
 496{
 497    return root->val & VTD_ROOT_ENTRY_P;
 498}
 499
 500static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 501                              VTDRootEntry *re)
 502{
 503    dma_addr_t addr;
 504
 505    addr = s->root + index * sizeof(*re);
 506    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 507        VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
 508                    " + %"PRIu8, s->root, index);
 509        re->val = 0;
 510        return -VTD_FR_ROOT_TABLE_INV;
 511    }
 512    re->val = le64_to_cpu(re->val);
 513    return 0;
 514}
 515
 516static inline bool vtd_context_entry_present(VTDContextEntry *context)
 517{
 518    return context->lo & VTD_CONTEXT_ENTRY_P;
 519}
 520
 521static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
 522                                           VTDContextEntry *ce)
 523{
 524    dma_addr_t addr;
 525
 526    if (!vtd_root_entry_present(root)) {
 527        VTD_DPRINTF(GENERAL, "error: root-entry is not present");
 528        return -VTD_FR_ROOT_ENTRY_P;
 529    }
 530    addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
 531    if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
 532        VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
 533                    " + %"PRIu8,
 534                    (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
 535        return -VTD_FR_CONTEXT_TABLE_INV;
 536    }
 537    ce->lo = le64_to_cpu(ce->lo);
 538    ce->hi = le64_to_cpu(ce->hi);
 539    return 0;
 540}
 541
 542static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
 543{
 544    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 545}
 546
 547static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
 548{
 549    return slpte & VTD_SL_PT_BASE_ADDR_MASK;
 550}
 551
 552/* Whether the pte indicates the address of the page frame */
 553static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 554{
 555    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 556}
 557
 558/* Get the content of a spte located in @base_addr[@index] */
 559static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 560{
 561    uint64_t slpte;
 562
 563    assert(index < VTD_SL_PT_ENTRY_NR);
 564
 565    if (dma_memory_read(&address_space_memory,
 566                        base_addr + index * sizeof(slpte), &slpte,
 567                        sizeof(slpte))) {
 568        slpte = (uint64_t)-1;
 569        return slpte;
 570    }
 571    slpte = le64_to_cpu(slpte);
 572    return slpte;
 573}
 574
 575/* Given a gpa and the level of paging structure, return the offset of current
 576 * level.
 577 */
 578static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
 579{
 580    return (gpa >> vtd_slpt_level_shift(level)) &
 581            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 582}
 583
 584/* Check Capability Register to see if the @level of page-table is supported */
 585static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 586{
 587    return VTD_CAP_SAGAW_MASK & s->cap &
 588           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 589}
 590
 591/* Get the page-table level that hardware should use for the second-level
 592 * page-table walk from the Address Width field of context-entry.
 593 */
 594static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
 595{
 596    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 597}
 598
 599static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
 600{
 601    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 602}
 603
 604static const uint64_t vtd_paging_entry_rsvd_field[] = {
 605    [0] = ~0ULL,
 606    /* For not large page */
 607    [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 608    [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 609    [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 610    [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 611    /* For large page */
 612    [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 613    [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 614    [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 615    [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 616};
 617
 618static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 619{
 620    if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
 621        /* Maybe large page */
 622        return slpte & vtd_paging_entry_rsvd_field[level + 4];
 623    } else {
 624        return slpte & vtd_paging_entry_rsvd_field[level];
 625    }
 626}
 627
 628/* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
 629 * of the translation, can be used for deciding the size of large page.
 630 */
 631static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
 632                            uint64_t *slptep, uint32_t *slpte_level,
 633                            bool *reads, bool *writes)
 634{
 635    dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
 636    uint32_t level = vtd_get_level_from_context_entry(ce);
 637    uint32_t offset;
 638    uint64_t slpte;
 639    uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
 640    uint64_t access_right_check;
 641
 642    /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
 643     * and AW in context-entry.
 644     */
 645    if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
 646        VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
 647        return -VTD_FR_ADDR_BEYOND_MGAW;
 648    }
 649
 650    /* FIXME: what is the Atomics request here? */
 651    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
 652
 653    while (true) {
 654        offset = vtd_gpa_level_offset(gpa, level);
 655        slpte = vtd_get_slpte(addr, offset);
 656
 657        if (slpte == (uint64_t)-1) {
 658            VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
 659                        "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
 660                        level, gpa);
 661            if (level == vtd_get_level_from_context_entry(ce)) {
 662                /* Invalid programming of context-entry */
 663                return -VTD_FR_CONTEXT_ENTRY_INV;
 664            } else {
 665                return -VTD_FR_PAGING_ENTRY_INV;
 666            }
 667        }
 668        *reads = (*reads) && (slpte & VTD_SL_R);
 669        *writes = (*writes) && (slpte & VTD_SL_W);
 670        if (!(slpte & access_right_check)) {
 671            VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
 672                        "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
 673                        (is_write ? "write" : "read"), gpa, slpte);
 674            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
 675        }
 676        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 677            VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
 678                        "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
 679                        level, slpte);
 680            return -VTD_FR_PAGING_ENTRY_RSVD;
 681        }
 682
 683        if (vtd_is_last_slpte(slpte, level)) {
 684            *slptep = slpte;
 685            *slpte_level = level;
 686            return 0;
 687        }
 688        addr = vtd_get_slpte_addr(slpte);
 689        level--;
 690    }
 691}
 692
 693/* Map a device to its corresponding domain (context-entry) */
 694static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
 695                                    uint8_t devfn, VTDContextEntry *ce)
 696{
 697    VTDRootEntry re;
 698    int ret_fr;
 699
 700    ret_fr = vtd_get_root_entry(s, bus_num, &re);
 701    if (ret_fr) {
 702        return ret_fr;
 703    }
 704
 705    if (!vtd_root_entry_present(&re)) {
 706        VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
 707                    bus_num);
 708        return -VTD_FR_ROOT_ENTRY_P;
 709    } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
 710        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
 711                    "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
 712        return -VTD_FR_ROOT_ENTRY_RSVD;
 713    }
 714
 715    ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
 716    if (ret_fr) {
 717        return ret_fr;
 718    }
 719
 720    if (!vtd_context_entry_present(ce)) {
 721        VTD_DPRINTF(GENERAL,
 722                    "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
 723                    "is not present", devfn, bus_num);
 724        return -VTD_FR_CONTEXT_ENTRY_P;
 725    } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
 726               (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
 727        VTD_DPRINTF(GENERAL,
 728                    "error: non-zero reserved field in context-entry "
 729                    "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
 730        return -VTD_FR_CONTEXT_ENTRY_RSVD;
 731    }
 732    /* Check if the programming of context-entry is valid */
 733    if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
 734        VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
 735                    "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
 736                    ce->hi, ce->lo);
 737        return -VTD_FR_CONTEXT_ENTRY_INV;
 738    } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
 739        VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
 740                    "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
 741                    ce->hi, ce->lo);
 742        return -VTD_FR_CONTEXT_ENTRY_INV;
 743    }
 744    return 0;
 745}
 746
 747static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
 748{
 749    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
 750}
 751
 752static const bool vtd_qualified_faults[] = {
 753    [VTD_FR_RESERVED] = false,
 754    [VTD_FR_ROOT_ENTRY_P] = false,
 755    [VTD_FR_CONTEXT_ENTRY_P] = true,
 756    [VTD_FR_CONTEXT_ENTRY_INV] = true,
 757    [VTD_FR_ADDR_BEYOND_MGAW] = true,
 758    [VTD_FR_WRITE] = true,
 759    [VTD_FR_READ] = true,
 760    [VTD_FR_PAGING_ENTRY_INV] = true,
 761    [VTD_FR_ROOT_TABLE_INV] = false,
 762    [VTD_FR_CONTEXT_TABLE_INV] = false,
 763    [VTD_FR_ROOT_ENTRY_RSVD] = false,
 764    [VTD_FR_PAGING_ENTRY_RSVD] = true,
 765    [VTD_FR_CONTEXT_ENTRY_TT] = true,
 766    [VTD_FR_RESERVED_ERR] = false,
 767    [VTD_FR_MAX] = false,
 768};
 769
 770/* To see if a fault condition is "qualified", which is reported to software
 771 * only if the FPD field in the context-entry used to process the faulting
 772 * request is 0.
 773 */
 774static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
 775{
 776    return vtd_qualified_faults[fault];
 777}
 778
 779static inline bool vtd_is_interrupt_addr(hwaddr addr)
 780{
 781    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
 782}
 783
 784/* Map dev to context-entry then do a paging-structures walk to do a iommu
 785 * translation.
 786 *
 787 * Called from RCU critical section.
 788 *
 789 * @bus_num: The bus number
 790 * @devfn: The devfn, which is the  combined of device and function number
 791 * @is_write: The access is a write operation
 792 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
 793 */
 794static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
 795                                   uint8_t devfn, hwaddr addr, bool is_write,
 796                                   IOMMUTLBEntry *entry)
 797{
 798    IntelIOMMUState *s = vtd_as->iommu_state;
 799    VTDContextEntry ce;
 800    uint8_t bus_num = pci_bus_num(bus);
 801    VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
 802    uint64_t slpte, page_mask;
 803    uint32_t level;
 804    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
 805    int ret_fr;
 806    bool is_fpd_set = false;
 807    bool reads = true;
 808    bool writes = true;
 809    VTDIOTLBEntry *iotlb_entry;
 810
 811    /* Check if the request is in interrupt address range */
 812    if (vtd_is_interrupt_addr(addr)) {
 813        if (is_write) {
 814            /* FIXME: since we don't know the length of the access here, we
 815             * treat Non-DWORD length write requests without PASID as
 816             * interrupt requests, too. Withoud interrupt remapping support,
 817             * we just use 1:1 mapping.
 818             */
 819            VTD_DPRINTF(MMU, "write request to interrupt address "
 820                        "gpa 0x%"PRIx64, addr);
 821            entry->iova = addr & VTD_PAGE_MASK_4K;
 822            entry->translated_addr = addr & VTD_PAGE_MASK_4K;
 823            entry->addr_mask = ~VTD_PAGE_MASK_4K;
 824            entry->perm = IOMMU_WO;
 825            return;
 826        } else {
 827            VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
 828                        "gpa 0x%"PRIx64, addr);
 829            vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
 830            return;
 831        }
 832    }
 833    /* Try to fetch slpte form IOTLB */
 834    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
 835    if (iotlb_entry) {
 836        VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
 837                    " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
 838                    iotlb_entry->slpte, iotlb_entry->domain_id);
 839        slpte = iotlb_entry->slpte;
 840        reads = iotlb_entry->read_flags;
 841        writes = iotlb_entry->write_flags;
 842        page_mask = iotlb_entry->mask;
 843        goto out;
 844    }
 845    /* Try to fetch context-entry from cache first */
 846    if (cc_entry->context_cache_gen == s->context_cache_gen) {
 847        VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
 848                    "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
 849                    bus_num, devfn, cc_entry->context_entry.hi,
 850                    cc_entry->context_entry.lo, cc_entry->context_cache_gen);
 851        ce = cc_entry->context_entry;
 852        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
 853    } else {
 854        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
 855        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
 856        if (ret_fr) {
 857            ret_fr = -ret_fr;
 858            if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
 859                VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
 860                            "requests through this context-entry "
 861                            "(with FPD Set)");
 862            } else {
 863                vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
 864            }
 865            return;
 866        }
 867        /* Update context-cache */
 868        VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
 869                    "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
 870                    bus_num, devfn, ce.hi, ce.lo,
 871                    cc_entry->context_cache_gen, s->context_cache_gen);
 872        cc_entry->context_entry = ce;
 873        cc_entry->context_cache_gen = s->context_cache_gen;
 874    }
 875
 876    ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
 877                              &reads, &writes);
 878    if (ret_fr) {
 879        ret_fr = -ret_fr;
 880        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
 881            VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
 882                        "through this context-entry (with FPD Set)");
 883        } else {
 884            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
 885        }
 886        return;
 887    }
 888
 889    page_mask = vtd_slpt_level_page_mask(level);
 890    vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
 891                     reads, writes, level);
 892out:
 893    entry->iova = addr & page_mask;
 894    entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
 895    entry->addr_mask = ~page_mask;
 896    entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
 897}
 898
 899static void vtd_root_table_setup(IntelIOMMUState *s)
 900{
 901    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 902    s->root_extended = s->root & VTD_RTADDR_RTT;
 903    s->root &= VTD_RTADDR_ADDR_MASK;
 904
 905    VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
 906                (s->root_extended ? "(extended)" : ""));
 907}
 908
 909static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
 910                               uint32_t index, uint32_t mask)
 911{
 912    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
 913}
 914
 915static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
 916{
 917    uint64_t value = 0;
 918    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
 919    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
 920    s->intr_root = value & VTD_IRTA_ADDR_MASK;
 921    s->intr_eime = value & VTD_IRTA_EIME;
 922
 923    /* Notify global invalidation */
 924    vtd_iec_notify_all(s, true, 0, 0);
 925
 926    VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
 927                s->intr_root, s->intr_size);
 928}
 929
 930static void vtd_context_global_invalidate(IntelIOMMUState *s)
 931{
 932    s->context_cache_gen++;
 933    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
 934        vtd_reset_context_cache(s);
 935    }
 936}
 937
 938
 939/* Find the VTD address space currently associated with a given bus number,
 940 */
 941static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 942{
 943    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 944    if (!vtd_bus) {
 945        /* Iterate over the registered buses to find the one
 946         * which currently hold this bus number, and update the bus_num lookup table:
 947         */
 948        GHashTableIter iter;
 949
 950        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 951        while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
 952            if (pci_bus_num(vtd_bus->bus) == bus_num) {
 953                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
 954                return vtd_bus;
 955            }
 956        }
 957    }
 958    return vtd_bus;
 959}
 960
 961/* Do a context-cache device-selective invalidation.
 962 * @func_mask: FM field after shifting
 963 */
 964static void vtd_context_device_invalidate(IntelIOMMUState *s,
 965                                          uint16_t source_id,
 966                                          uint16_t func_mask)
 967{
 968    uint16_t mask;
 969    VTDBus *vtd_bus;
 970    VTDAddressSpace *vtd_as;
 971    uint16_t devfn;
 972    uint16_t devfn_it;
 973
 974    switch (func_mask & 3) {
 975    case 0:
 976        mask = 0;   /* No bits in the SID field masked */
 977        break;
 978    case 1:
 979        mask = 4;   /* Mask bit 2 in the SID field */
 980        break;
 981    case 2:
 982        mask = 6;   /* Mask bit 2:1 in the SID field */
 983        break;
 984    case 3:
 985        mask = 7;   /* Mask bit 2:0 in the SID field */
 986        break;
 987    }
 988    VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
 989                    " mask %"PRIu16, source_id, mask);
 990    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
 991    if (vtd_bus) {
 992        devfn = VTD_SID_TO_DEVFN(source_id);
 993        for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
 994            vtd_as = vtd_bus->dev_as[devfn_it];
 995            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
 996                VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
 997                            devfn_it);
 998                vtd_as->context_cache_entry.context_cache_gen = 0;
 999            }
1000        }
1001    }
1002}
1003
1004/* Context-cache invalidation
1005 * Returns the Context Actual Invalidation Granularity.
1006 * @val: the content of the CCMD_REG
1007 */
1008static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1009{
1010    uint64_t caig;
1011    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1012
1013    switch (type) {
1014    case VTD_CCMD_DOMAIN_INVL:
1015        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1016                    (uint16_t)VTD_CCMD_DID(val));
1017        /* Fall through */
1018    case VTD_CCMD_GLOBAL_INVL:
1019        VTD_DPRINTF(INV, "global invalidation");
1020        caig = VTD_CCMD_GLOBAL_INVL_A;
1021        vtd_context_global_invalidate(s);
1022        break;
1023
1024    case VTD_CCMD_DEVICE_INVL:
1025        caig = VTD_CCMD_DEVICE_INVL_A;
1026        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1027        break;
1028
1029    default:
1030        VTD_DPRINTF(GENERAL, "error: invalid granularity");
1031        caig = 0;
1032    }
1033    return caig;
1034}
1035
1036static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1037{
1038    vtd_reset_iotlb(s);
1039}
1040
1041static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1042{
1043    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1044                                &domain_id);
1045}
1046
1047static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1048                                      hwaddr addr, uint8_t am)
1049{
1050    VTDIOTLBPageInvInfo info;
1051
1052    assert(am <= VTD_MAMV);
1053    info.domain_id = domain_id;
1054    info.addr = addr;
1055    info.mask = ~((1 << am) - 1);
1056    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1057}
1058
1059/* Flush IOTLB
1060 * Returns the IOTLB Actual Invalidation Granularity.
1061 * @val: the content of the IOTLB_REG
1062 */
1063static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1064{
1065    uint64_t iaig;
1066    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1067    uint16_t domain_id;
1068    hwaddr addr;
1069    uint8_t am;
1070
1071    switch (type) {
1072    case VTD_TLB_GLOBAL_FLUSH:
1073        VTD_DPRINTF(INV, "global invalidation");
1074        iaig = VTD_TLB_GLOBAL_FLUSH_A;
1075        vtd_iotlb_global_invalidate(s);
1076        break;
1077
1078    case VTD_TLB_DSI_FLUSH:
1079        domain_id = VTD_TLB_DID(val);
1080        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1081                    domain_id);
1082        iaig = VTD_TLB_DSI_FLUSH_A;
1083        vtd_iotlb_domain_invalidate(s, domain_id);
1084        break;
1085
1086    case VTD_TLB_PSI_FLUSH:
1087        domain_id = VTD_TLB_DID(val);
1088        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1089        am = VTD_IVA_AM(addr);
1090        addr = VTD_IVA_ADDR(addr);
1091        VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1092                    " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1093        if (am > VTD_MAMV) {
1094            VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1095                        "%"PRIu8, (uint8_t)VTD_MAMV);
1096            iaig = 0;
1097            break;
1098        }
1099        iaig = VTD_TLB_PSI_FLUSH_A;
1100        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1101        break;
1102
1103    default:
1104        VTD_DPRINTF(GENERAL, "error: invalid granularity");
1105        iaig = 0;
1106    }
1107    return iaig;
1108}
1109
1110static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1111{
1112    return s->iq_tail == 0;
1113}
1114
1115static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1116{
1117    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1118           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1119}
1120
1121static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1122{
1123    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1124
1125    VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1126    if (en) {
1127        if (vtd_queued_inv_enable_check(s)) {
1128            s->iq = iqa_val & VTD_IQA_IQA_MASK;
1129            /* 2^(x+8) entries */
1130            s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1131            s->qi_enabled = true;
1132            VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1133            VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1134                        s->iq, s->iq_size);
1135            /* Ok - report back to driver */
1136            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1137        } else {
1138            VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1139                        "tail %"PRIu16, s->iq_tail);
1140        }
1141    } else {
1142        if (vtd_queued_inv_disable_check(s)) {
1143            /* disable Queued Invalidation */
1144            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1145            s->iq_head = 0;
1146            s->qi_enabled = false;
1147            /* Ok - report back to driver */
1148            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1149        } else {
1150            VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1151                        "head %"PRIu16 ", tail %"PRIu16
1152                        ", last_descriptor %"PRIu8,
1153                        s->iq_head, s->iq_tail, s->iq_last_desc_type);
1154        }
1155    }
1156}
1157
1158/* Set Root Table Pointer */
1159static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1160{
1161    VTD_DPRINTF(CSR, "set Root Table Pointer");
1162
1163    vtd_root_table_setup(s);
1164    /* Ok - report back to driver */
1165    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1166}
1167
1168/* Set Interrupt Remap Table Pointer */
1169static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1170{
1171    VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1172
1173    vtd_interrupt_remap_table_setup(s);
1174    /* Ok - report back to driver */
1175    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1176}
1177
1178/* Handle Translation Enable/Disable */
1179static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1180{
1181    VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1182
1183    if (en) {
1184        s->dmar_enabled = true;
1185        /* Ok - report back to driver */
1186        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1187    } else {
1188        s->dmar_enabled = false;
1189
1190        /* Clear the index of Fault Recording Register */
1191        s->next_frcd_reg = 0;
1192        /* Ok - report back to driver */
1193        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1194    }
1195}
1196
1197/* Handle Interrupt Remap Enable/Disable */
1198static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1199{
1200    VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1201
1202    if (en) {
1203        s->intr_enabled = true;
1204        /* Ok - report back to driver */
1205        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1206    } else {
1207        s->intr_enabled = false;
1208        /* Ok - report back to driver */
1209        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1210    }
1211}
1212
1213/* Handle write to Global Command Register */
1214static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1215{
1216    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1217    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1218    uint32_t changed = status ^ val;
1219
1220    VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1221    if (changed & VTD_GCMD_TE) {
1222        /* Translation enable/disable */
1223        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1224    }
1225    if (val & VTD_GCMD_SRTP) {
1226        /* Set/update the root-table pointer */
1227        vtd_handle_gcmd_srtp(s);
1228    }
1229    if (changed & VTD_GCMD_QIE) {
1230        /* Queued Invalidation Enable */
1231        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1232    }
1233    if (val & VTD_GCMD_SIRTP) {
1234        /* Set/update the interrupt remapping root-table pointer */
1235        vtd_handle_gcmd_sirtp(s);
1236    }
1237    if (changed & VTD_GCMD_IRE) {
1238        /* Interrupt remap enable/disable */
1239        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1240    }
1241}
1242
1243/* Handle write to Context Command Register */
1244static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1245{
1246    uint64_t ret;
1247    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1248
1249    /* Context-cache invalidation request */
1250    if (val & VTD_CCMD_ICC) {
1251        if (s->qi_enabled) {
1252            VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1253                        "should not use register-based invalidation");
1254            return;
1255        }
1256        ret = vtd_context_cache_invalidate(s, val);
1257        /* Invalidation completed. Change something to show */
1258        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1259        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1260                                      ret);
1261        VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1262    }
1263}
1264
1265/* Handle write to IOTLB Invalidation Register */
1266static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1267{
1268    uint64_t ret;
1269    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1270
1271    /* IOTLB invalidation request */
1272    if (val & VTD_TLB_IVT) {
1273        if (s->qi_enabled) {
1274            VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1275                        "should not use register-based invalidation");
1276            return;
1277        }
1278        ret = vtd_iotlb_flush(s, val);
1279        /* Invalidation completed. Change something to show */
1280        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1281        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1282                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1283        VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1284    }
1285}
1286
1287/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1288static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1289                             VTDInvDesc *inv_desc)
1290{
1291    dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1292    if (dma_memory_read(&address_space_memory, addr, inv_desc,
1293        sizeof(*inv_desc))) {
1294        VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1295                    "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1296        inv_desc->lo = 0;
1297        inv_desc->hi = 0;
1298
1299        return false;
1300    }
1301    inv_desc->lo = le64_to_cpu(inv_desc->lo);
1302    inv_desc->hi = le64_to_cpu(inv_desc->hi);
1303    return true;
1304}
1305
1306static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1307{
1308    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1309        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1310        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1311                    "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1312                    inv_desc->hi, inv_desc->lo);
1313        return false;
1314    }
1315    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1316        /* Status Write */
1317        uint32_t status_data = (uint32_t)(inv_desc->lo >>
1318                               VTD_INV_DESC_WAIT_DATA_SHIFT);
1319
1320        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1321
1322        /* FIXME: need to be masked with HAW? */
1323        dma_addr_t status_addr = inv_desc->hi;
1324        VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1325                    status_data, status_addr);
1326        status_data = cpu_to_le32(status_data);
1327        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1328                             sizeof(status_data))) {
1329            VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1330            return false;
1331        }
1332    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1333        /* Interrupt flag */
1334        VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1335        vtd_generate_completion_event(s);
1336    } else {
1337        VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1338                    "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1339        return false;
1340    }
1341    return true;
1342}
1343
1344static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1345                                           VTDInvDesc *inv_desc)
1346{
1347    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1348        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1349                    "Invalidate Descriptor");
1350        return false;
1351    }
1352    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1353    case VTD_INV_DESC_CC_DOMAIN:
1354        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1355                    (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1356        /* Fall through */
1357    case VTD_INV_DESC_CC_GLOBAL:
1358        VTD_DPRINTF(INV, "global invalidation");
1359        vtd_context_global_invalidate(s);
1360        break;
1361
1362    case VTD_INV_DESC_CC_DEVICE:
1363        vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1364                                      VTD_INV_DESC_CC_FM(inv_desc->lo));
1365        break;
1366
1367    default:
1368        VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1369                    "Invalidate Descriptor hi 0x%"PRIx64  " lo 0x%"PRIx64,
1370                    inv_desc->hi, inv_desc->lo);
1371        return false;
1372    }
1373    return true;
1374}
1375
1376static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1377{
1378    uint16_t domain_id;
1379    uint8_t am;
1380    hwaddr addr;
1381
1382    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1383        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1384        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1385                    "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1386                    inv_desc->hi, inv_desc->lo);
1387        return false;
1388    }
1389
1390    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1391    case VTD_INV_DESC_IOTLB_GLOBAL:
1392        VTD_DPRINTF(INV, "global invalidation");
1393        vtd_iotlb_global_invalidate(s);
1394        break;
1395
1396    case VTD_INV_DESC_IOTLB_DOMAIN:
1397        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1398        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1399                    domain_id);
1400        vtd_iotlb_domain_invalidate(s, domain_id);
1401        break;
1402
1403    case VTD_INV_DESC_IOTLB_PAGE:
1404        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1405        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1406        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1407        VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1408                    " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1409        if (am > VTD_MAMV) {
1410            VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1411                        "%"PRIu8, (uint8_t)VTD_MAMV);
1412            return false;
1413        }
1414        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1415        break;
1416
1417    default:
1418        VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1419                    "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1420                    inv_desc->hi, inv_desc->lo);
1421        return false;
1422    }
1423    return true;
1424}
1425
1426static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1427                                     VTDInvDesc *inv_desc)
1428{
1429    VTD_DPRINTF(INV, "inv ir glob %d index %d mask %d",
1430                inv_desc->iec.granularity,
1431                inv_desc->iec.index,
1432                inv_desc->iec.index_mask);
1433
1434    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1435                       inv_desc->iec.index,
1436                       inv_desc->iec.index_mask);
1437
1438    return true;
1439}
1440
1441static bool vtd_process_inv_desc(IntelIOMMUState *s)
1442{
1443    VTDInvDesc inv_desc;
1444    uint8_t desc_type;
1445
1446    VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1447    if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1448        s->iq_last_desc_type = VTD_INV_DESC_NONE;
1449        return false;
1450    }
1451    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1452    /* FIXME: should update at first or at last? */
1453    s->iq_last_desc_type = desc_type;
1454
1455    switch (desc_type) {
1456    case VTD_INV_DESC_CC:
1457        VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1458                    " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1459        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1460            return false;
1461        }
1462        break;
1463
1464    case VTD_INV_DESC_IOTLB:
1465        VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1466                    " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1467        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1468            return false;
1469        }
1470        break;
1471
1472    case VTD_INV_DESC_WAIT:
1473        VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1474                    " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1475        if (!vtd_process_wait_desc(s, &inv_desc)) {
1476            return false;
1477        }
1478        break;
1479
1480    case VTD_INV_DESC_IEC:
1481        VTD_DPRINTF(INV, "Invalidation Interrupt Entry Cache "
1482                    "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1483                    inv_desc.hi, inv_desc.lo);
1484        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1485            return false;
1486        }
1487        break;
1488
1489    default:
1490        VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1491                    "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1492                    inv_desc.hi, inv_desc.lo, desc_type);
1493        return false;
1494    }
1495    s->iq_head++;
1496    if (s->iq_head == s->iq_size) {
1497        s->iq_head = 0;
1498    }
1499    return true;
1500}
1501
1502/* Try to fetch and process more Invalidation Descriptors */
1503static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1504{
1505    VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1506    if (s->iq_tail >= s->iq_size) {
1507        /* Detects an invalid Tail pointer */
1508        VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1509                    " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1510        vtd_handle_inv_queue_error(s);
1511        return;
1512    }
1513    while (s->iq_head != s->iq_tail) {
1514        if (!vtd_process_inv_desc(s)) {
1515            /* Invalidation Queue Errors */
1516            vtd_handle_inv_queue_error(s);
1517            break;
1518        }
1519        /* Must update the IQH_REG in time */
1520        vtd_set_quad_raw(s, DMAR_IQH_REG,
1521                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1522                         VTD_IQH_QH_MASK);
1523    }
1524}
1525
1526/* Handle write to Invalidation Queue Tail Register */
1527static void vtd_handle_iqt_write(IntelIOMMUState *s)
1528{
1529    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1530
1531    s->iq_tail = VTD_IQT_QT(val);
1532    VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1533    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1534        /* Process Invalidation Queue here */
1535        vtd_fetch_inv_desc(s);
1536    }
1537}
1538
1539static void vtd_handle_fsts_write(IntelIOMMUState *s)
1540{
1541    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1542    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1543    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1544
1545    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1546        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1547        VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1548                    "IP field of FECTL_REG");
1549    }
1550    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1551     * Descriptors if there are any when Queued Invalidation is enabled?
1552     */
1553}
1554
1555static void vtd_handle_fectl_write(IntelIOMMUState *s)
1556{
1557    uint32_t fectl_reg;
1558    /* FIXME: when software clears the IM field, check the IP field. But do we
1559     * need to compare the old value and the new value to conclude that
1560     * software clears the IM field? Or just check if the IM field is zero?
1561     */
1562    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1563    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1564        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1565        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1566        VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1567                    "fault event interrupt");
1568    }
1569}
1570
1571static void vtd_handle_ics_write(IntelIOMMUState *s)
1572{
1573    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1574    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1575
1576    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1577        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1578        VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1579                    "clear IP field of IECTL_REG");
1580    }
1581}
1582
1583static void vtd_handle_iectl_write(IntelIOMMUState *s)
1584{
1585    uint32_t iectl_reg;
1586    /* FIXME: when software clears the IM field, check the IP field. But do we
1587     * need to compare the old value and the new value to conclude that
1588     * software clears the IM field? Or just check if the IM field is zero?
1589     */
1590    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1591    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1592        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1593        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1594        VTD_DPRINTF(INV, "IM field is cleared, generate "
1595                    "invalidation event interrupt");
1596    }
1597}
1598
1599static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1600{
1601    IntelIOMMUState *s = opaque;
1602    uint64_t val;
1603
1604    if (addr + size > DMAR_REG_SIZE) {
1605        VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1606                    ", got 0x%"PRIx64 " %d",
1607                    (uint64_t)DMAR_REG_SIZE, addr, size);
1608        return (uint64_t)-1;
1609    }
1610
1611    switch (addr) {
1612    /* Root Table Address Register, 64-bit */
1613    case DMAR_RTADDR_REG:
1614        if (size == 4) {
1615            val = s->root & ((1ULL << 32) - 1);
1616        } else {
1617            val = s->root;
1618        }
1619        break;
1620
1621    case DMAR_RTADDR_REG_HI:
1622        assert(size == 4);
1623        val = s->root >> 32;
1624        break;
1625
1626    /* Invalidation Queue Address Register, 64-bit */
1627    case DMAR_IQA_REG:
1628        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1629        if (size == 4) {
1630            val = val & ((1ULL << 32) - 1);
1631        }
1632        break;
1633
1634    case DMAR_IQA_REG_HI:
1635        assert(size == 4);
1636        val = s->iq >> 32;
1637        break;
1638
1639    default:
1640        if (size == 4) {
1641            val = vtd_get_long(s, addr);
1642        } else {
1643            val = vtd_get_quad(s, addr);
1644        }
1645    }
1646    VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1647                addr, size, val);
1648    return val;
1649}
1650
1651static void vtd_mem_write(void *opaque, hwaddr addr,
1652                          uint64_t val, unsigned size)
1653{
1654    IntelIOMMUState *s = opaque;
1655
1656    if (addr + size > DMAR_REG_SIZE) {
1657        VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1658                    ", got 0x%"PRIx64 " %d",
1659                    (uint64_t)DMAR_REG_SIZE, addr, size);
1660        return;
1661    }
1662
1663    switch (addr) {
1664    /* Global Command Register, 32-bit */
1665    case DMAR_GCMD_REG:
1666        VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1667                    ", size %d, val 0x%"PRIx64, addr, size, val);
1668        vtd_set_long(s, addr, val);
1669        vtd_handle_gcmd_write(s);
1670        break;
1671
1672    /* Context Command Register, 64-bit */
1673    case DMAR_CCMD_REG:
1674        VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1675                    ", size %d, val 0x%"PRIx64, addr, size, val);
1676        if (size == 4) {
1677            vtd_set_long(s, addr, val);
1678        } else {
1679            vtd_set_quad(s, addr, val);
1680            vtd_handle_ccmd_write(s);
1681        }
1682        break;
1683
1684    case DMAR_CCMD_REG_HI:
1685        VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1686                    ", size %d, val 0x%"PRIx64, addr, size, val);
1687        assert(size == 4);
1688        vtd_set_long(s, addr, val);
1689        vtd_handle_ccmd_write(s);
1690        break;
1691
1692    /* IOTLB Invalidation Register, 64-bit */
1693    case DMAR_IOTLB_REG:
1694        VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1695                    ", size %d, val 0x%"PRIx64, addr, size, val);
1696        if (size == 4) {
1697            vtd_set_long(s, addr, val);
1698        } else {
1699            vtd_set_quad(s, addr, val);
1700            vtd_handle_iotlb_write(s);
1701        }
1702        break;
1703
1704    case DMAR_IOTLB_REG_HI:
1705        VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1706                    ", size %d, val 0x%"PRIx64, addr, size, val);
1707        assert(size == 4);
1708        vtd_set_long(s, addr, val);
1709        vtd_handle_iotlb_write(s);
1710        break;
1711
1712    /* Invalidate Address Register, 64-bit */
1713    case DMAR_IVA_REG:
1714        VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1715                    ", size %d, val 0x%"PRIx64, addr, size, val);
1716        if (size == 4) {
1717            vtd_set_long(s, addr, val);
1718        } else {
1719            vtd_set_quad(s, addr, val);
1720        }
1721        break;
1722
1723    case DMAR_IVA_REG_HI:
1724        VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1725                    ", size %d, val 0x%"PRIx64, addr, size, val);
1726        assert(size == 4);
1727        vtd_set_long(s, addr, val);
1728        break;
1729
1730    /* Fault Status Register, 32-bit */
1731    case DMAR_FSTS_REG:
1732        VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1733                    ", size %d, val 0x%"PRIx64, addr, size, val);
1734        assert(size == 4);
1735        vtd_set_long(s, addr, val);
1736        vtd_handle_fsts_write(s);
1737        break;
1738
1739    /* Fault Event Control Register, 32-bit */
1740    case DMAR_FECTL_REG:
1741        VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1742                    ", size %d, val 0x%"PRIx64, addr, size, val);
1743        assert(size == 4);
1744        vtd_set_long(s, addr, val);
1745        vtd_handle_fectl_write(s);
1746        break;
1747
1748    /* Fault Event Data Register, 32-bit */
1749    case DMAR_FEDATA_REG:
1750        VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1751                    ", size %d, val 0x%"PRIx64, addr, size, val);
1752        assert(size == 4);
1753        vtd_set_long(s, addr, val);
1754        break;
1755
1756    /* Fault Event Address Register, 32-bit */
1757    case DMAR_FEADDR_REG:
1758        VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1759                    ", size %d, val 0x%"PRIx64, addr, size, val);
1760        assert(size == 4);
1761        vtd_set_long(s, addr, val);
1762        break;
1763
1764    /* Fault Event Upper Address Register, 32-bit */
1765    case DMAR_FEUADDR_REG:
1766        VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1767                    ", size %d, val 0x%"PRIx64, addr, size, val);
1768        assert(size == 4);
1769        vtd_set_long(s, addr, val);
1770        break;
1771
1772    /* Protected Memory Enable Register, 32-bit */
1773    case DMAR_PMEN_REG:
1774        VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1775                    ", size %d, val 0x%"PRIx64, addr, size, val);
1776        assert(size == 4);
1777        vtd_set_long(s, addr, val);
1778        break;
1779
1780    /* Root Table Address Register, 64-bit */
1781    case DMAR_RTADDR_REG:
1782        VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1783                    ", size %d, val 0x%"PRIx64, addr, size, val);
1784        if (size == 4) {
1785            vtd_set_long(s, addr, val);
1786        } else {
1787            vtd_set_quad(s, addr, val);
1788        }
1789        break;
1790
1791    case DMAR_RTADDR_REG_HI:
1792        VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1793                    ", size %d, val 0x%"PRIx64, addr, size, val);
1794        assert(size == 4);
1795        vtd_set_long(s, addr, val);
1796        break;
1797
1798    /* Invalidation Queue Tail Register, 64-bit */
1799    case DMAR_IQT_REG:
1800        VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1801                    ", size %d, val 0x%"PRIx64, addr, size, val);
1802        if (size == 4) {
1803            vtd_set_long(s, addr, val);
1804        } else {
1805            vtd_set_quad(s, addr, val);
1806        }
1807        vtd_handle_iqt_write(s);
1808        break;
1809
1810    case DMAR_IQT_REG_HI:
1811        VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1812                    ", size %d, val 0x%"PRIx64, addr, size, val);
1813        assert(size == 4);
1814        vtd_set_long(s, addr, val);
1815        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1816        break;
1817
1818    /* Invalidation Queue Address Register, 64-bit */
1819    case DMAR_IQA_REG:
1820        VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1821                    ", size %d, val 0x%"PRIx64, addr, size, val);
1822        if (size == 4) {
1823            vtd_set_long(s, addr, val);
1824        } else {
1825            vtd_set_quad(s, addr, val);
1826        }
1827        break;
1828
1829    case DMAR_IQA_REG_HI:
1830        VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1831                    ", size %d, val 0x%"PRIx64, addr, size, val);
1832        assert(size == 4);
1833        vtd_set_long(s, addr, val);
1834        break;
1835
1836    /* Invalidation Completion Status Register, 32-bit */
1837    case DMAR_ICS_REG:
1838        VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1839                    ", size %d, val 0x%"PRIx64, addr, size, val);
1840        assert(size == 4);
1841        vtd_set_long(s, addr, val);
1842        vtd_handle_ics_write(s);
1843        break;
1844
1845    /* Invalidation Event Control Register, 32-bit */
1846    case DMAR_IECTL_REG:
1847        VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1848                    ", size %d, val 0x%"PRIx64, addr, size, val);
1849        assert(size == 4);
1850        vtd_set_long(s, addr, val);
1851        vtd_handle_iectl_write(s);
1852        break;
1853
1854    /* Invalidation Event Data Register, 32-bit */
1855    case DMAR_IEDATA_REG:
1856        VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1857                    ", size %d, val 0x%"PRIx64, addr, size, val);
1858        assert(size == 4);
1859        vtd_set_long(s, addr, val);
1860        break;
1861
1862    /* Invalidation Event Address Register, 32-bit */
1863    case DMAR_IEADDR_REG:
1864        VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1865                    ", size %d, val 0x%"PRIx64, addr, size, val);
1866        assert(size == 4);
1867        vtd_set_long(s, addr, val);
1868        break;
1869
1870    /* Invalidation Event Upper Address Register, 32-bit */
1871    case DMAR_IEUADDR_REG:
1872        VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1873                    ", size %d, val 0x%"PRIx64, addr, size, val);
1874        assert(size == 4);
1875        vtd_set_long(s, addr, val);
1876        break;
1877
1878    /* Fault Recording Registers, 128-bit */
1879    case DMAR_FRCD_REG_0_0:
1880        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1881                    ", size %d, val 0x%"PRIx64, addr, size, val);
1882        if (size == 4) {
1883            vtd_set_long(s, addr, val);
1884        } else {
1885            vtd_set_quad(s, addr, val);
1886        }
1887        break;
1888
1889    case DMAR_FRCD_REG_0_1:
1890        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1891                    ", size %d, val 0x%"PRIx64, addr, size, val);
1892        assert(size == 4);
1893        vtd_set_long(s, addr, val);
1894        break;
1895
1896    case DMAR_FRCD_REG_0_2:
1897        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1898                    ", size %d, val 0x%"PRIx64, addr, size, val);
1899        if (size == 4) {
1900            vtd_set_long(s, addr, val);
1901        } else {
1902            vtd_set_quad(s, addr, val);
1903            /* May clear bit 127 (Fault), update PPF */
1904            vtd_update_fsts_ppf(s);
1905        }
1906        break;
1907
1908    case DMAR_FRCD_REG_0_3:
1909        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1910                    ", size %d, val 0x%"PRIx64, addr, size, val);
1911        assert(size == 4);
1912        vtd_set_long(s, addr, val);
1913        /* May clear bit 127 (Fault), update PPF */
1914        vtd_update_fsts_ppf(s);
1915        break;
1916
1917    case DMAR_IRTA_REG:
1918        VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
1919                    ", size %d, val 0x%"PRIx64, addr, size, val);
1920        if (size == 4) {
1921            vtd_set_long(s, addr, val);
1922        } else {
1923            vtd_set_quad(s, addr, val);
1924        }
1925        break;
1926
1927    case DMAR_IRTA_REG_HI:
1928        VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
1929                    ", size %d, val 0x%"PRIx64, addr, size, val);
1930        assert(size == 4);
1931        vtd_set_long(s, addr, val);
1932        break;
1933
1934    default:
1935        VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1936                    ", size %d, val 0x%"PRIx64, addr, size, val);
1937        if (size == 4) {
1938            vtd_set_long(s, addr, val);
1939        } else {
1940            vtd_set_quad(s, addr, val);
1941        }
1942    }
1943}
1944
1945static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1946                                         bool is_write)
1947{
1948    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1949    IntelIOMMUState *s = vtd_as->iommu_state;
1950    IOMMUTLBEntry ret = {
1951        .target_as = &address_space_memory,
1952        .iova = addr,
1953        .translated_addr = 0,
1954        .addr_mask = ~(hwaddr)0,
1955        .perm = IOMMU_NONE,
1956    };
1957
1958    if (!s->dmar_enabled) {
1959        /* DMAR disabled, passthrough, use 4k-page*/
1960        ret.iova = addr & VTD_PAGE_MASK_4K;
1961        ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1962        ret.addr_mask = ~VTD_PAGE_MASK_4K;
1963        ret.perm = IOMMU_RW;
1964        return ret;
1965    }
1966
1967    vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1968                           is_write, &ret);
1969    VTD_DPRINTF(MMU,
1970                "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1971                " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1972                VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1973                vtd_as->devfn, addr, ret.translated_addr);
1974    return ret;
1975}
1976
1977static void vtd_iommu_notify_started(MemoryRegion *iommu)
1978{
1979    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1980
1981    hw_error("Device at bus %s addr %02x.%d requires iommu notifier which "
1982             "is currently not supported by intel-iommu emulation",
1983             vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1984             PCI_FUNC(vtd_as->devfn));
1985}
1986
1987static const VMStateDescription vtd_vmstate = {
1988    .name = "iommu-intel",
1989    .unmigratable = 1,
1990};
1991
1992static const MemoryRegionOps vtd_mem_ops = {
1993    .read = vtd_mem_read,
1994    .write = vtd_mem_write,
1995    .endianness = DEVICE_LITTLE_ENDIAN,
1996    .impl = {
1997        .min_access_size = 4,
1998        .max_access_size = 8,
1999    },
2000    .valid = {
2001        .min_access_size = 4,
2002        .max_access_size = 8,
2003    },
2004};
2005
2006static Property vtd_properties[] = {
2007    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2008    DEFINE_PROP_END_OF_LIST(),
2009};
2010
2011/* Read IRTE entry with specific index */
2012static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2013                        VTD_IR_TableEntry *entry, uint16_t sid)
2014{
2015    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2016        {0xffff, 0xfffb, 0xfff9, 0xfff8};
2017    dma_addr_t addr = 0x00;
2018    uint16_t mask, source_id;
2019    uint8_t bus, bus_max, bus_min;
2020
2021    addr = iommu->intr_root + index * sizeof(*entry);
2022    if (dma_memory_read(&address_space_memory, addr, entry,
2023                        sizeof(*entry))) {
2024        VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
2025                    " + %"PRIu16, iommu->intr_root, index);
2026        return -VTD_FR_IR_ROOT_INVAL;
2027    }
2028
2029    if (!entry->irte.present) {
2030        VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2031                    " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2032                    index, le64_to_cpu(entry->data[1]),
2033                    le64_to_cpu(entry->data[0]));
2034        return -VTD_FR_IR_ENTRY_P;
2035    }
2036
2037    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2038        entry->irte.__reserved_2) {
2039        VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2040                    " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2041                    index, le64_to_cpu(entry->data[1]),
2042                    le64_to_cpu(entry->data[0]));
2043        return -VTD_FR_IR_IRTE_RSVD;
2044    }
2045
2046    if (sid != X86_IOMMU_SID_INVALID) {
2047        /* Validate IRTE SID */
2048        source_id = le32_to_cpu(entry->irte.source_id);
2049        switch (entry->irte.sid_vtype) {
2050        case VTD_SVT_NONE:
2051            VTD_DPRINTF(IR, "No SID validation for IRTE index %d", index);
2052            break;
2053
2054        case VTD_SVT_ALL:
2055            mask = vtd_svt_mask[entry->irte.sid_q];
2056            if ((source_id & mask) != (sid & mask)) {
2057                VTD_DPRINTF(GENERAL, "SID validation for IRTE index "
2058                            "%d failed (reqid 0x%04x sid 0x%04x)", index,
2059                            sid, source_id);
2060                return -VTD_FR_IR_SID_ERR;
2061            }
2062            break;
2063
2064        case VTD_SVT_BUS:
2065            bus_max = source_id >> 8;
2066            bus_min = source_id & 0xff;
2067            bus = sid >> 8;
2068            if (bus > bus_max || bus < bus_min) {
2069                VTD_DPRINTF(GENERAL, "SID validation for IRTE index %d "
2070                            "failed (bus %d outside %d-%d)", index, bus,
2071                            bus_min, bus_max);
2072                return -VTD_FR_IR_SID_ERR;
2073            }
2074            break;
2075
2076        default:
2077            VTD_DPRINTF(GENERAL, "Invalid SVT bits (0x%x) in IRTE index "
2078                        "%d", entry->irte.sid_vtype, index);
2079            /* Take this as verification failure. */
2080            return -VTD_FR_IR_SID_ERR;
2081            break;
2082        }
2083    }
2084
2085    return 0;
2086}
2087
2088/* Fetch IRQ information of specific IR index */
2089static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2090                             VTDIrq *irq, uint16_t sid)
2091{
2092    VTD_IR_TableEntry irte = {};
2093    int ret = 0;
2094
2095    ret = vtd_irte_get(iommu, index, &irte, sid);
2096    if (ret) {
2097        return ret;
2098    }
2099
2100    irq->trigger_mode = irte.irte.trigger_mode;
2101    irq->vector = irte.irte.vector;
2102    irq->delivery_mode = irte.irte.delivery_mode;
2103    irq->dest = le32_to_cpu(irte.irte.dest_id);
2104    if (!iommu->intr_eime) {
2105#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2106#define  VTD_IR_APIC_DEST_SHIFT        (8)
2107        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2108            VTD_IR_APIC_DEST_SHIFT;
2109    }
2110    irq->dest_mode = irte.irte.dest_mode;
2111    irq->redir_hint = irte.irte.redir_hint;
2112
2113    VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2114                "deliver:%u,dest:%u,dest_mode:%u", index,
2115                irq->trigger_mode, irq->vector, irq->delivery_mode,
2116                irq->dest, irq->dest_mode);
2117
2118    return 0;
2119}
2120
2121/* Generate one MSI message from VTDIrq info */
2122static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2123{
2124    VTD_MSIMessage msg = {};
2125
2126    /* Generate address bits */
2127    msg.dest_mode = irq->dest_mode;
2128    msg.redir_hint = irq->redir_hint;
2129    msg.dest = irq->dest;
2130    msg.__addr_head = cpu_to_le32(0xfee);
2131    /* Keep this from original MSI address bits */
2132    msg.__not_used = irq->msi_addr_last_bits;
2133
2134    /* Generate data bits */
2135    msg.vector = irq->vector;
2136    msg.delivery_mode = irq->delivery_mode;
2137    msg.level = 1;
2138    msg.trigger_mode = irq->trigger_mode;
2139
2140    msg_out->address = msg.msi_addr;
2141    msg_out->data = msg.msi_data;
2142}
2143
2144/* Interrupt remapping for MSI/MSI-X entry */
2145static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2146                                   MSIMessage *origin,
2147                                   MSIMessage *translated,
2148                                   uint16_t sid)
2149{
2150    int ret = 0;
2151    VTD_IR_MSIAddress addr;
2152    uint16_t index;
2153    VTDIrq irq = {};
2154
2155    assert(origin && translated);
2156
2157    if (!iommu || !iommu->intr_enabled) {
2158        goto do_not_translate;
2159    }
2160
2161    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2162        VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2163                    " during interrupt remapping: 0x%"PRIx32,
2164                    (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2165                    VTD_MSI_ADDR_HI_SHIFT));
2166        return -VTD_FR_IR_REQ_RSVD;
2167    }
2168
2169    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2170    if (le16_to_cpu(addr.addr.__head) != 0xfee) {
2171        VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2172                    "0x%"PRIx32, addr.data);
2173        return -VTD_FR_IR_REQ_RSVD;
2174    }
2175
2176    /* This is compatible mode. */
2177    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2178        goto do_not_translate;
2179    }
2180
2181    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2182
2183#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2184#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2185
2186    if (addr.addr.sub_valid) {
2187        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2188        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2189    }
2190
2191    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2192    if (ret) {
2193        return ret;
2194    }
2195
2196    if (addr.addr.sub_valid) {
2197        VTD_DPRINTF(IR, "received MSI interrupt");
2198        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2199            VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2200                        "interrupt remappable entry: 0x%"PRIx32,
2201                        origin->data);
2202            return -VTD_FR_IR_REQ_RSVD;
2203        }
2204    } else {
2205        uint8_t vector = origin->data & 0xff;
2206        VTD_DPRINTF(IR, "received IOAPIC interrupt");
2207        /* IOAPIC entry vector should be aligned with IRTE vector
2208         * (see vt-d spec 5.1.5.1). */
2209        if (vector != irq.vector) {
2210            VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2211                        "entry: %d, IRTE: %d, index: %d",
2212                        vector, irq.vector, index);
2213        }
2214    }
2215
2216    /*
2217     * We'd better keep the last two bits, assuming that guest OS
2218     * might modify it. Keep it does not hurt after all.
2219     */
2220    irq.msi_addr_last_bits = addr.addr.__not_care;
2221
2222    /* Translate VTDIrq to MSI message */
2223    vtd_generate_msi_message(&irq, translated);
2224
2225    VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2226                "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2227                translated->address, translated->data);
2228    return 0;
2229
2230do_not_translate:
2231    memcpy(translated, origin, sizeof(*origin));
2232    return 0;
2233}
2234
2235static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2236                         MSIMessage *dst, uint16_t sid)
2237{
2238    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2239                                   src, dst, sid);
2240}
2241
2242static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2243                                   uint64_t *data, unsigned size,
2244                                   MemTxAttrs attrs)
2245{
2246    return MEMTX_OK;
2247}
2248
2249static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2250                                    uint64_t value, unsigned size,
2251                                    MemTxAttrs attrs)
2252{
2253    int ret = 0;
2254    MSIMessage from = {}, to = {};
2255    uint16_t sid = X86_IOMMU_SID_INVALID;
2256
2257    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2258    from.data = (uint32_t) value;
2259
2260    if (!attrs.unspecified) {
2261        /* We have explicit Source ID */
2262        sid = attrs.requester_id;
2263    }
2264
2265    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2266    if (ret) {
2267        /* TODO: report error */
2268        VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2269                    " data 0x%"PRIx32, from.address, from.data);
2270        /* Drop this interrupt */
2271        return MEMTX_ERROR;
2272    }
2273
2274    VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2275                " for device sid 0x%04x",
2276                to.address, to.data, sid);
2277
2278    if (dma_memory_write(&address_space_memory, to.address,
2279                         &to.data, size)) {
2280        VTD_DPRINTF(GENERAL, "error: fail to write 0x%"PRIx64
2281                    " value 0x%"PRIx32, to.address, to.data);
2282    }
2283
2284    return MEMTX_OK;
2285}
2286
2287static const MemoryRegionOps vtd_mem_ir_ops = {
2288    .read_with_attrs = vtd_mem_ir_read,
2289    .write_with_attrs = vtd_mem_ir_write,
2290    .endianness = DEVICE_LITTLE_ENDIAN,
2291    .impl = {
2292        .min_access_size = 4,
2293        .max_access_size = 4,
2294    },
2295    .valid = {
2296        .min_access_size = 4,
2297        .max_access_size = 4,
2298    },
2299};
2300
2301VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2302{
2303    uintptr_t key = (uintptr_t)bus;
2304    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2305    VTDAddressSpace *vtd_dev_as;
2306
2307    if (!vtd_bus) {
2308        /* No corresponding free() */
2309        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2310                            X86_IOMMU_PCI_DEVFN_MAX);
2311        vtd_bus->bus = bus;
2312        key = (uintptr_t)bus;
2313        g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
2314    }
2315
2316    vtd_dev_as = vtd_bus->dev_as[devfn];
2317
2318    if (!vtd_dev_as) {
2319        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2320
2321        vtd_dev_as->bus = bus;
2322        vtd_dev_as->devfn = (uint8_t)devfn;
2323        vtd_dev_as->iommu_state = s;
2324        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2325        memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2326                                 &s->iommu_ops, "intel_iommu", UINT64_MAX);
2327        memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2328                              &vtd_mem_ir_ops, s, "intel_iommu_ir",
2329                              VTD_INTERRUPT_ADDR_SIZE);
2330        memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2331                                    &vtd_dev_as->iommu_ir);
2332        address_space_init(&vtd_dev_as->as,
2333                           &vtd_dev_as->iommu, "intel_iommu");
2334    }
2335    return vtd_dev_as;
2336}
2337
2338/* Do the initialization. It will also be called when reset, so pay
2339 * attention when adding new initialization stuff.
2340 */
2341static void vtd_init(IntelIOMMUState *s)
2342{
2343    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2344
2345    memset(s->csr, 0, DMAR_REG_SIZE);
2346    memset(s->wmask, 0, DMAR_REG_SIZE);
2347    memset(s->w1cmask, 0, DMAR_REG_SIZE);
2348    memset(s->womask, 0, DMAR_REG_SIZE);
2349
2350    s->iommu_ops.translate = vtd_iommu_translate;
2351    s->iommu_ops.notify_started = vtd_iommu_notify_started;
2352    s->root = 0;
2353    s->root_extended = false;
2354    s->dmar_enabled = false;
2355    s->iq_head = 0;
2356    s->iq_tail = 0;
2357    s->iq = 0;
2358    s->iq_size = 0;
2359    s->qi_enabled = false;
2360    s->iq_last_desc_type = VTD_INV_DESC_NONE;
2361    s->next_frcd_reg = 0;
2362    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2363             VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2364    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2365
2366    if (x86_iommu->intr_supported) {
2367        s->ecap |= VTD_ECAP_IR | VTD_ECAP_EIM | VTD_ECAP_MHMV;
2368    }
2369
2370    vtd_reset_context_cache(s);
2371    vtd_reset_iotlb(s);
2372
2373    /* Define registers with default values and bit semantics */
2374    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2375    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2376    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2377    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2378    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2379    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2380    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2381    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2382    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2383
2384    /* Advanced Fault Logging not supported */
2385    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2386    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2387    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2388    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2389
2390    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2391     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2392     */
2393    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2394
2395    /* Treated as RO for implementations that PLMR and PHMR fields reported
2396     * as Clear in the CAP_REG.
2397     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2398     */
2399    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2400
2401    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2402    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2403    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2404    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2405    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2406    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2407    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2408    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2409    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2410
2411    /* IOTLB registers */
2412    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2413    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2414    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2415
2416    /* Fault Recording Registers, 128-bit */
2417    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2418    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2419
2420    /*
2421     * Interrupt remapping registers.
2422     */
2423    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2424}
2425
2426/* Should not reset address_spaces when reset because devices will still use
2427 * the address space they got at first (won't ask the bus again).
2428 */
2429static void vtd_reset(DeviceState *dev)
2430{
2431    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2432
2433    VTD_DPRINTF(GENERAL, "");
2434    vtd_init(s);
2435}
2436
2437static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2438{
2439    IntelIOMMUState *s = opaque;
2440    VTDAddressSpace *vtd_as;
2441
2442    assert(0 <= devfn && devfn <= X86_IOMMU_PCI_DEVFN_MAX);
2443
2444    vtd_as = vtd_find_add_as(s, bus, devfn);
2445    return &vtd_as->as;
2446}
2447
2448static void vtd_realize(DeviceState *dev, Error **errp)
2449{
2450    PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2451    PCIBus *bus = pcms->bus;
2452    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2453    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
2454
2455    VTD_DPRINTF(GENERAL, "");
2456    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2457    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2458                          "intel_iommu", DMAR_REG_SIZE);
2459    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2460    /* No corresponding destroy */
2461    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2462                                     g_free, g_free);
2463    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2464                                              g_free, g_free);
2465    vtd_init(s);
2466    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2467    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2468    /* Pseudo address space under root PCI bus. */
2469    pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2470
2471    /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2472    if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2473        !kvm_irqchip_is_split()) {
2474        error_report("Intel Interrupt Remapping cannot work with "
2475                     "kernel-irqchip=on, please use 'split|off'.");
2476        exit(1);
2477    }
2478}
2479
2480static void vtd_class_init(ObjectClass *klass, void *data)
2481{
2482    DeviceClass *dc = DEVICE_CLASS(klass);
2483    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2484
2485    dc->reset = vtd_reset;
2486    dc->vmsd = &vtd_vmstate;
2487    dc->props = vtd_properties;
2488    dc->hotpluggable = false;
2489    x86_class->realize = vtd_realize;
2490    x86_class->int_remap = vtd_int_remap;
2491}
2492
2493static const TypeInfo vtd_info = {
2494    .name          = TYPE_INTEL_IOMMU_DEVICE,
2495    .parent        = TYPE_X86_IOMMU_DEVICE,
2496    .instance_size = sizeof(IntelIOMMUState),
2497    .class_init    = vtd_class_init,
2498};
2499
2500static void vtd_register_types(void)
2501{
2502    VTD_DPRINTF(GENERAL, "");
2503    type_register_static(&vtd_info);
2504}
2505
2506type_init(vtd_register_types)
2507