qemu/hw/i386/pc.c
<<
>>
Prefs
   1/*
   2 * QEMU PC System Emulator
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "hw/i386/pc.h"
  27#include "hw/char/serial.h"
  28#include "hw/i386/apic.h"
  29#include "hw/i386/topology.h"
  30#include "sysemu/cpus.h"
  31#include "hw/block/fdc.h"
  32#include "hw/ide.h"
  33#include "hw/pci/pci.h"
  34#include "hw/pci/pci_bus.h"
  35#include "hw/nvram/fw_cfg.h"
  36#include "hw/timer/hpet.h"
  37#include "hw/smbios/smbios.h"
  38#include "hw/loader.h"
  39#include "elf.h"
  40#include "multiboot.h"
  41#include "hw/timer/mc146818rtc.h"
  42#include "hw/timer/i8254.h"
  43#include "hw/audio/pcspk.h"
  44#include "hw/pci/msi.h"
  45#include "hw/sysbus.h"
  46#include "sysemu/sysemu.h"
  47#include "sysemu/numa.h"
  48#include "sysemu/kvm.h"
  49#include "sysemu/qtest.h"
  50#include "kvm_i386.h"
  51#include "hw/xen/xen.h"
  52#include "sysemu/block-backend.h"
  53#include "hw/block/block.h"
  54#include "ui/qemu-spice.h"
  55#include "exec/memory.h"
  56#include "exec/address-spaces.h"
  57#include "sysemu/arch_init.h"
  58#include "qemu/bitmap.h"
  59#include "qemu/config-file.h"
  60#include "qemu/error-report.h"
  61#include "hw/acpi/acpi.h"
  62#include "hw/acpi/cpu_hotplug.h"
  63#include "hw/boards.h"
  64#include "hw/pci/pci_host.h"
  65#include "acpi-build.h"
  66#include "hw/mem/pc-dimm.h"
  67#include "qapi/visitor.h"
  68#include "qapi-visit.h"
  69#include "qom/cpu.h"
  70#include "hw/nmi.h"
  71
  72/* debug PC/ISA interrupts */
  73//#define DEBUG_IRQ
  74
  75#ifdef DEBUG_IRQ
  76#define DPRINTF(fmt, ...)                                       \
  77    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
  78#else
  79#define DPRINTF(fmt, ...)
  80#endif
  81
  82#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
  83#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
  84#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
  85#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
  86#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
  87
  88#define E820_NR_ENTRIES         16
  89
  90struct e820_entry {
  91    uint64_t address;
  92    uint64_t length;
  93    uint32_t type;
  94} QEMU_PACKED __attribute((__aligned__(4)));
  95
  96struct e820_table {
  97    uint32_t count;
  98    struct e820_entry entry[E820_NR_ENTRIES];
  99} QEMU_PACKED __attribute((__aligned__(4)));
 100
 101static struct e820_table e820_reserve;
 102static struct e820_entry *e820_table;
 103static unsigned e820_entries;
 104struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
 105
 106void gsi_handler(void *opaque, int n, int level)
 107{
 108    GSIState *s = opaque;
 109
 110    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
 111    if (n < ISA_NUM_IRQS) {
 112        qemu_set_irq(s->i8259_irq[n], level);
 113    }
 114    qemu_set_irq(s->ioapic_irq[n], level);
 115}
 116
 117static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
 118                           unsigned size)
 119{
 120}
 121
 122static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
 123{
 124    return 0xffffffffffffffffULL;
 125}
 126
 127/* MSDOS compatibility mode FPU exception support */
 128static qemu_irq ferr_irq;
 129
 130void pc_register_ferr_irq(qemu_irq irq)
 131{
 132    ferr_irq = irq;
 133}
 134
 135/* XXX: add IGNNE support */
 136void cpu_set_ferr(CPUX86State *s)
 137{
 138    qemu_irq_raise(ferr_irq);
 139}
 140
 141static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
 142                           unsigned size)
 143{
 144    qemu_irq_lower(ferr_irq);
 145}
 146
 147static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
 148{
 149    return 0xffffffffffffffffULL;
 150}
 151
 152/* TSC handling */
 153uint64_t cpu_get_tsc(CPUX86State *env)
 154{
 155    return cpu_get_ticks();
 156}
 157
 158/* IRQ handling */
 159int cpu_get_pic_interrupt(CPUX86State *env)
 160{
 161    X86CPU *cpu = x86_env_get_cpu(env);
 162    int intno;
 163
 164    intno = apic_get_interrupt(cpu->apic_state);
 165    if (intno >= 0) {
 166        return intno;
 167    }
 168    /* read the irq from the PIC */
 169    if (!apic_accept_pic_intr(cpu->apic_state)) {
 170        return -1;
 171    }
 172
 173    intno = pic_read_irq(isa_pic);
 174    return intno;
 175}
 176
 177static void pic_irq_request(void *opaque, int irq, int level)
 178{
 179    CPUState *cs = first_cpu;
 180    X86CPU *cpu = X86_CPU(cs);
 181
 182    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
 183    if (cpu->apic_state) {
 184        CPU_FOREACH(cs) {
 185            cpu = X86_CPU(cs);
 186            if (apic_accept_pic_intr(cpu->apic_state)) {
 187                apic_deliver_pic_intr(cpu->apic_state, level);
 188            }
 189        }
 190    } else {
 191        if (level) {
 192            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 193        } else {
 194            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 195        }
 196    }
 197}
 198
 199/* PC cmos mappings */
 200
 201#define REG_EQUIPMENT_BYTE          0x14
 202
 203int cmos_get_fd_drive_type(FloppyDriveType fd0)
 204{
 205    int val;
 206
 207    switch (fd0) {
 208    case FLOPPY_DRIVE_TYPE_144:
 209        /* 1.44 Mb 3"5 drive */
 210        val = 4;
 211        break;
 212    case FLOPPY_DRIVE_TYPE_288:
 213        /* 2.88 Mb 3"5 drive */
 214        val = 5;
 215        break;
 216    case FLOPPY_DRIVE_TYPE_120:
 217        /* 1.2 Mb 5"5 drive */
 218        val = 2;
 219        break;
 220    case FLOPPY_DRIVE_TYPE_NONE:
 221    default:
 222        val = 0;
 223        break;
 224    }
 225    return val;
 226}
 227
 228static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
 229                         int16_t cylinders, int8_t heads, int8_t sectors)
 230{
 231    rtc_set_memory(s, type_ofs, 47);
 232    rtc_set_memory(s, info_ofs, cylinders);
 233    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
 234    rtc_set_memory(s, info_ofs + 2, heads);
 235    rtc_set_memory(s, info_ofs + 3, 0xff);
 236    rtc_set_memory(s, info_ofs + 4, 0xff);
 237    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
 238    rtc_set_memory(s, info_ofs + 6, cylinders);
 239    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
 240    rtc_set_memory(s, info_ofs + 8, sectors);
 241}
 242
 243/* convert boot_device letter to something recognizable by the bios */
 244static int boot_device2nibble(char boot_device)
 245{
 246    switch(boot_device) {
 247    case 'a':
 248    case 'b':
 249        return 0x01; /* floppy boot */
 250    case 'c':
 251        return 0x02; /* hard drive boot */
 252    case 'd':
 253        return 0x03; /* CD-ROM boot */
 254    case 'n':
 255        return 0x04; /* Network boot */
 256    }
 257    return 0;
 258}
 259
 260static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
 261{
 262#define PC_MAX_BOOT_DEVICES 3
 263    int nbds, bds[3] = { 0, };
 264    int i;
 265
 266    nbds = strlen(boot_device);
 267    if (nbds > PC_MAX_BOOT_DEVICES) {
 268        error_setg(errp, "Too many boot devices for PC");
 269        return;
 270    }
 271    for (i = 0; i < nbds; i++) {
 272        bds[i] = boot_device2nibble(boot_device[i]);
 273        if (bds[i] == 0) {
 274            error_setg(errp, "Invalid boot device for PC: '%c'",
 275                       boot_device[i]);
 276            return;
 277        }
 278    }
 279    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
 280    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
 281}
 282
 283static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
 284{
 285    set_boot_dev(opaque, boot_device, errp);
 286}
 287
 288static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
 289{
 290    int val, nb, i;
 291    FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
 292                                   FLOPPY_DRIVE_TYPE_NONE };
 293
 294    /* floppy type */
 295    if (floppy) {
 296        for (i = 0; i < 2; i++) {
 297            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
 298        }
 299    }
 300    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
 301        cmos_get_fd_drive_type(fd_type[1]);
 302    rtc_set_memory(rtc_state, 0x10, val);
 303
 304    val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
 305    nb = 0;
 306    if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
 307        nb++;
 308    }
 309    if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
 310        nb++;
 311    }
 312    switch (nb) {
 313    case 0:
 314        break;
 315    case 1:
 316        val |= 0x01; /* 1 drive, ready for boot */
 317        break;
 318    case 2:
 319        val |= 0x41; /* 2 drives, ready for boot */
 320        break;
 321    }
 322    rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
 323}
 324
 325typedef struct pc_cmos_init_late_arg {
 326    ISADevice *rtc_state;
 327    BusState *idebus[2];
 328} pc_cmos_init_late_arg;
 329
 330typedef struct check_fdc_state {
 331    ISADevice *floppy;
 332    bool multiple;
 333} CheckFdcState;
 334
 335static int check_fdc(Object *obj, void *opaque)
 336{
 337    CheckFdcState *state = opaque;
 338    Object *fdc;
 339    uint32_t iobase;
 340    Error *local_err = NULL;
 341
 342    fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
 343    if (!fdc) {
 344        return 0;
 345    }
 346
 347    iobase = object_property_get_int(obj, "iobase", &local_err);
 348    if (local_err || iobase != 0x3f0) {
 349        error_free(local_err);
 350        return 0;
 351    }
 352
 353    if (state->floppy) {
 354        state->multiple = true;
 355    } else {
 356        state->floppy = ISA_DEVICE(obj);
 357    }
 358    return 0;
 359}
 360
 361static const char * const fdc_container_path[] = {
 362    "/unattached", "/peripheral", "/peripheral-anon"
 363};
 364
 365/*
 366 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
 367 * and ACPI objects.
 368 */
 369ISADevice *pc_find_fdc0(void)
 370{
 371    int i;
 372    Object *container;
 373    CheckFdcState state = { 0 };
 374
 375    for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
 376        container = container_get(qdev_get_machine(), fdc_container_path[i]);
 377        object_child_foreach(container, check_fdc, &state);
 378    }
 379
 380    if (state.multiple) {
 381        error_report("warning: multiple floppy disk controllers with "
 382                     "iobase=0x3f0 have been found");
 383        error_printf("the one being picked for CMOS setup might not reflect "
 384                     "your intent\n");
 385    }
 386
 387    return state.floppy;
 388}
 389
 390static void pc_cmos_init_late(void *opaque)
 391{
 392    pc_cmos_init_late_arg *arg = opaque;
 393    ISADevice *s = arg->rtc_state;
 394    int16_t cylinders;
 395    int8_t heads, sectors;
 396    int val;
 397    int i, trans;
 398
 399    val = 0;
 400    if (ide_get_geometry(arg->idebus[0], 0,
 401                         &cylinders, &heads, &sectors) >= 0) {
 402        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
 403        val |= 0xf0;
 404    }
 405    if (ide_get_geometry(arg->idebus[0], 1,
 406                         &cylinders, &heads, &sectors) >= 0) {
 407        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
 408        val |= 0x0f;
 409    }
 410    rtc_set_memory(s, 0x12, val);
 411
 412    val = 0;
 413    for (i = 0; i < 4; i++) {
 414        /* NOTE: ide_get_geometry() returns the physical
 415           geometry.  It is always such that: 1 <= sects <= 63, 1
 416           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
 417           geometry can be different if a translation is done. */
 418        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
 419                             &cylinders, &heads, &sectors) >= 0) {
 420            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
 421            assert((trans & ~3) == 0);
 422            val |= trans << (i * 2);
 423        }
 424    }
 425    rtc_set_memory(s, 0x39, val);
 426
 427    pc_cmos_init_floppy(s, pc_find_fdc0());
 428
 429    qemu_unregister_reset(pc_cmos_init_late, opaque);
 430}
 431
 432void pc_cmos_init(PCMachineState *pcms,
 433                  BusState *idebus0, BusState *idebus1,
 434                  ISADevice *s)
 435{
 436    int val;
 437    static pc_cmos_init_late_arg arg;
 438
 439    /* various important CMOS locations needed by PC/Bochs bios */
 440
 441    /* memory size */
 442    /* base memory (first MiB) */
 443    val = MIN(pcms->below_4g_mem_size / 1024, 640);
 444    rtc_set_memory(s, 0x15, val);
 445    rtc_set_memory(s, 0x16, val >> 8);
 446    /* extended memory (next 64MiB) */
 447    if (pcms->below_4g_mem_size > 1024 * 1024) {
 448        val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
 449    } else {
 450        val = 0;
 451    }
 452    if (val > 65535)
 453        val = 65535;
 454    rtc_set_memory(s, 0x17, val);
 455    rtc_set_memory(s, 0x18, val >> 8);
 456    rtc_set_memory(s, 0x30, val);
 457    rtc_set_memory(s, 0x31, val >> 8);
 458    /* memory between 16MiB and 4GiB */
 459    if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
 460        val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
 461    } else {
 462        val = 0;
 463    }
 464    if (val > 65535)
 465        val = 65535;
 466    rtc_set_memory(s, 0x34, val);
 467    rtc_set_memory(s, 0x35, val >> 8);
 468    /* memory above 4GiB */
 469    val = pcms->above_4g_mem_size / 65536;
 470    rtc_set_memory(s, 0x5b, val);
 471    rtc_set_memory(s, 0x5c, val >> 8);
 472    rtc_set_memory(s, 0x5d, val >> 16);
 473
 474    object_property_add_link(OBJECT(pcms), "rtc_state",
 475                             TYPE_ISA_DEVICE,
 476                             (Object **)&pcms->rtc,
 477                             object_property_allow_set_link,
 478                             OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
 479    object_property_set_link(OBJECT(pcms), OBJECT(s),
 480                             "rtc_state", &error_abort);
 481
 482    set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
 483
 484    val = 0;
 485    val |= 0x02; /* FPU is there */
 486    val |= 0x04; /* PS/2 mouse installed */
 487    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
 488
 489    /* hard drives and FDC */
 490    arg.rtc_state = s;
 491    arg.idebus[0] = idebus0;
 492    arg.idebus[1] = idebus1;
 493    qemu_register_reset(pc_cmos_init_late, &arg);
 494}
 495
 496#define TYPE_PORT92 "port92"
 497#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
 498
 499/* port 92 stuff: could be split off */
 500typedef struct Port92State {
 501    ISADevice parent_obj;
 502
 503    MemoryRegion io;
 504    uint8_t outport;
 505    qemu_irq a20_out;
 506} Port92State;
 507
 508static void port92_write(void *opaque, hwaddr addr, uint64_t val,
 509                         unsigned size)
 510{
 511    Port92State *s = opaque;
 512    int oldval = s->outport;
 513
 514    DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
 515    s->outport = val;
 516    qemu_set_irq(s->a20_out, (val >> 1) & 1);
 517    if ((val & 1) && !(oldval & 1)) {
 518        qemu_system_reset_request();
 519    }
 520}
 521
 522static uint64_t port92_read(void *opaque, hwaddr addr,
 523                            unsigned size)
 524{
 525    Port92State *s = opaque;
 526    uint32_t ret;
 527
 528    ret = s->outport;
 529    DPRINTF("port92: read 0x%02x\n", ret);
 530    return ret;
 531}
 532
 533static void port92_init(ISADevice *dev, qemu_irq *a20_out)
 534{
 535    qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, *a20_out);
 536}
 537
 538static const VMStateDescription vmstate_port92_isa = {
 539    .name = "port92",
 540    .version_id = 1,
 541    .minimum_version_id = 1,
 542    .fields = (VMStateField[]) {
 543        VMSTATE_UINT8(outport, Port92State),
 544        VMSTATE_END_OF_LIST()
 545    }
 546};
 547
 548static void port92_reset(DeviceState *d)
 549{
 550    Port92State *s = PORT92(d);
 551
 552    s->outport &= ~1;
 553}
 554
 555static const MemoryRegionOps port92_ops = {
 556    .read = port92_read,
 557    .write = port92_write,
 558    .impl = {
 559        .min_access_size = 1,
 560        .max_access_size = 1,
 561    },
 562    .endianness = DEVICE_LITTLE_ENDIAN,
 563};
 564
 565static void port92_initfn(Object *obj)
 566{
 567    Port92State *s = PORT92(obj);
 568
 569    memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
 570
 571    s->outport = 0;
 572
 573    qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
 574}
 575
 576static void port92_realizefn(DeviceState *dev, Error **errp)
 577{
 578    ISADevice *isadev = ISA_DEVICE(dev);
 579    Port92State *s = PORT92(dev);
 580
 581    isa_register_ioport(isadev, &s->io, 0x92);
 582}
 583
 584static void port92_class_initfn(ObjectClass *klass, void *data)
 585{
 586    DeviceClass *dc = DEVICE_CLASS(klass);
 587
 588    dc->realize = port92_realizefn;
 589    dc->reset = port92_reset;
 590    dc->vmsd = &vmstate_port92_isa;
 591    /*
 592     * Reason: unlike ordinary ISA devices, this one needs additional
 593     * wiring: its A20 output line needs to be wired up by
 594     * port92_init().
 595     */
 596    dc->cannot_instantiate_with_device_add_yet = true;
 597}
 598
 599static const TypeInfo port92_info = {
 600    .name          = TYPE_PORT92,
 601    .parent        = TYPE_ISA_DEVICE,
 602    .instance_size = sizeof(Port92State),
 603    .instance_init = port92_initfn,
 604    .class_init    = port92_class_initfn,
 605};
 606
 607static void port92_register_types(void)
 608{
 609    type_register_static(&port92_info);
 610}
 611
 612type_init(port92_register_types)
 613
 614static void handle_a20_line_change(void *opaque, int irq, int level)
 615{
 616    X86CPU *cpu = opaque;
 617
 618    /* XXX: send to all CPUs ? */
 619    /* XXX: add logic to handle multiple A20 line sources */
 620    x86_cpu_set_a20(cpu, level);
 621}
 622
 623int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
 624{
 625    int index = le32_to_cpu(e820_reserve.count);
 626    struct e820_entry *entry;
 627
 628    if (type != E820_RAM) {
 629        /* old FW_CFG_E820_TABLE entry -- reservations only */
 630        if (index >= E820_NR_ENTRIES) {
 631            return -EBUSY;
 632        }
 633        entry = &e820_reserve.entry[index++];
 634
 635        entry->address = cpu_to_le64(address);
 636        entry->length = cpu_to_le64(length);
 637        entry->type = cpu_to_le32(type);
 638
 639        e820_reserve.count = cpu_to_le32(index);
 640    }
 641
 642    /* new "etc/e820" file -- include ram too */
 643    e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
 644    e820_table[e820_entries].address = cpu_to_le64(address);
 645    e820_table[e820_entries].length = cpu_to_le64(length);
 646    e820_table[e820_entries].type = cpu_to_le32(type);
 647    e820_entries++;
 648
 649    return e820_entries;
 650}
 651
 652int e820_get_num_entries(void)
 653{
 654    return e820_entries;
 655}
 656
 657bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
 658{
 659    if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
 660        *address = le64_to_cpu(e820_table[idx].address);
 661        *length = le64_to_cpu(e820_table[idx].length);
 662        return true;
 663    }
 664    return false;
 665}
 666
 667/* Enables contiguous-apic-ID mode, for compatibility */
 668static bool compat_apic_id_mode;
 669
 670void enable_compat_apic_id_mode(void)
 671{
 672    compat_apic_id_mode = true;
 673}
 674
 675/* Calculates initial APIC ID for a specific CPU index
 676 *
 677 * Currently we need to be able to calculate the APIC ID from the CPU index
 678 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
 679 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
 680 * all CPUs up to max_cpus.
 681 */
 682static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
 683{
 684    uint32_t correct_id;
 685    static bool warned;
 686
 687    correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
 688    if (compat_apic_id_mode) {
 689        if (cpu_index != correct_id && !warned && !qtest_enabled()) {
 690            error_report("APIC IDs set in compatibility mode, "
 691                         "CPU topology won't match the configuration");
 692            warned = true;
 693        }
 694        return cpu_index;
 695    } else {
 696        return correct_id;
 697    }
 698}
 699
 700static void pc_build_smbios(FWCfgState *fw_cfg)
 701{
 702    uint8_t *smbios_tables, *smbios_anchor;
 703    size_t smbios_tables_len, smbios_anchor_len;
 704    struct smbios_phys_mem_area *mem_array;
 705    unsigned i, array_count;
 706
 707    smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
 708    if (smbios_tables) {
 709        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
 710                         smbios_tables, smbios_tables_len);
 711    }
 712
 713    /* build the array of physical mem area from e820 table */
 714    mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
 715    for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
 716        uint64_t addr, len;
 717
 718        if (e820_get_entry(i, E820_RAM, &addr, &len)) {
 719            mem_array[array_count].address = addr;
 720            mem_array[array_count].length = len;
 721            array_count++;
 722        }
 723    }
 724    smbios_get_tables(mem_array, array_count,
 725                      &smbios_tables, &smbios_tables_len,
 726                      &smbios_anchor, &smbios_anchor_len);
 727    g_free(mem_array);
 728
 729    if (smbios_anchor) {
 730        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
 731                        smbios_tables, smbios_tables_len);
 732        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
 733                        smbios_anchor, smbios_anchor_len);
 734    }
 735}
 736
 737static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
 738{
 739    FWCfgState *fw_cfg;
 740    uint64_t *numa_fw_cfg;
 741    int i, j;
 742
 743    fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
 744
 745    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
 746     *
 747     * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
 748     * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
 749     * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
 750     * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
 751     * may see".
 752     *
 753     * So, this means we must not use max_cpus, here, but the maximum possible
 754     * APIC ID value, plus one.
 755     *
 756     * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
 757     *     the APIC ID, not the "CPU index"
 758     */
 759    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
 760    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
 761    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
 762                     acpi_tables, acpi_tables_len);
 763    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
 764
 765    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
 766                     &e820_reserve, sizeof(e820_reserve));
 767    fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
 768                    sizeof(struct e820_entry) * e820_entries);
 769
 770    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
 771    /* allocate memory for the NUMA channel: one (64bit) word for the number
 772     * of nodes, one word for each VCPU->node and one word for each node to
 773     * hold the amount of memory.
 774     */
 775    numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
 776    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
 777    for (i = 0; i < max_cpus; i++) {
 778        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
 779        assert(apic_id < pcms->apic_id_limit);
 780        for (j = 0; j < nb_numa_nodes; j++) {
 781            if (test_bit(i, numa_info[j].node_cpu)) {
 782                numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
 783                break;
 784            }
 785        }
 786    }
 787    for (i = 0; i < nb_numa_nodes; i++) {
 788        numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
 789            cpu_to_le64(numa_info[i].node_mem);
 790    }
 791    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
 792                     (1 + pcms->apic_id_limit + nb_numa_nodes) *
 793                     sizeof(*numa_fw_cfg));
 794
 795    return fw_cfg;
 796}
 797
 798static long get_file_size(FILE *f)
 799{
 800    long where, size;
 801
 802    /* XXX: on Unix systems, using fstat() probably makes more sense */
 803
 804    where = ftell(f);
 805    fseek(f, 0, SEEK_END);
 806    size = ftell(f);
 807    fseek(f, where, SEEK_SET);
 808
 809    return size;
 810}
 811
 812/* setup_data types */
 813#define SETUP_NONE     0
 814#define SETUP_E820_EXT 1
 815#define SETUP_DTB      2
 816#define SETUP_PCI      3
 817#define SETUP_EFI      4
 818
 819struct setup_data {
 820    uint64_t next;
 821    uint32_t type;
 822    uint32_t len;
 823    uint8_t data[0];
 824} __attribute__((packed));
 825
 826static void load_linux(PCMachineState *pcms,
 827                       FWCfgState *fw_cfg)
 828{
 829    uint16_t protocol;
 830    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
 831    int dtb_size, setup_data_offset;
 832    uint32_t initrd_max;
 833    uint8_t header[8192], *setup, *kernel, *initrd_data;
 834    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
 835    FILE *f;
 836    char *vmode;
 837    MachineState *machine = MACHINE(pcms);
 838    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
 839    struct setup_data *setup_data;
 840    const char *kernel_filename = machine->kernel_filename;
 841    const char *initrd_filename = machine->initrd_filename;
 842    const char *dtb_filename = machine->dtb;
 843    const char *kernel_cmdline = machine->kernel_cmdline;
 844
 845    /* Align to 16 bytes as a paranoia measure */
 846    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
 847
 848    /* load the kernel header */
 849    f = fopen(kernel_filename, "rb");
 850    if (!f || !(kernel_size = get_file_size(f)) ||
 851        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
 852        MIN(ARRAY_SIZE(header), kernel_size)) {
 853        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
 854                kernel_filename, strerror(errno));
 855        exit(1);
 856    }
 857
 858    /* kernel protocol version */
 859#if 0
 860    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
 861#endif
 862    if (ldl_p(header+0x202) == 0x53726448) {
 863        protocol = lduw_p(header+0x206);
 864    } else {
 865        /* This looks like a multiboot kernel. If it is, let's stop
 866           treating it like a Linux kernel. */
 867        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
 868                           kernel_cmdline, kernel_size, header)) {
 869            return;
 870        }
 871        protocol = 0;
 872    }
 873
 874    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
 875        /* Low kernel */
 876        real_addr    = 0x90000;
 877        cmdline_addr = 0x9a000 - cmdline_size;
 878        prot_addr    = 0x10000;
 879    } else if (protocol < 0x202) {
 880        /* High but ancient kernel */
 881        real_addr    = 0x90000;
 882        cmdline_addr = 0x9a000 - cmdline_size;
 883        prot_addr    = 0x100000;
 884    } else {
 885        /* High and recent kernel */
 886        real_addr    = 0x10000;
 887        cmdline_addr = 0x20000;
 888        prot_addr    = 0x100000;
 889    }
 890
 891#if 0
 892    fprintf(stderr,
 893            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
 894            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
 895            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
 896            real_addr,
 897            cmdline_addr,
 898            prot_addr);
 899#endif
 900
 901    /* highest address for loading the initrd */
 902    if (protocol >= 0x203) {
 903        initrd_max = ldl_p(header+0x22c);
 904    } else {
 905        initrd_max = 0x37ffffff;
 906    }
 907
 908    if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
 909        initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
 910    }
 911
 912    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
 913    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
 914    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
 915
 916    if (protocol >= 0x202) {
 917        stl_p(header+0x228, cmdline_addr);
 918    } else {
 919        stw_p(header+0x20, 0xA33F);
 920        stw_p(header+0x22, cmdline_addr-real_addr);
 921    }
 922
 923    /* handle vga= parameter */
 924    vmode = strstr(kernel_cmdline, "vga=");
 925    if (vmode) {
 926        unsigned int video_mode;
 927        /* skip "vga=" */
 928        vmode += 4;
 929        if (!strncmp(vmode, "normal", 6)) {
 930            video_mode = 0xffff;
 931        } else if (!strncmp(vmode, "ext", 3)) {
 932            video_mode = 0xfffe;
 933        } else if (!strncmp(vmode, "ask", 3)) {
 934            video_mode = 0xfffd;
 935        } else {
 936            video_mode = strtol(vmode, NULL, 0);
 937        }
 938        stw_p(header+0x1fa, video_mode);
 939    }
 940
 941    /* loader type */
 942    /* High nybble = B reserved for QEMU; low nybble is revision number.
 943       If this code is substantially changed, you may want to consider
 944       incrementing the revision. */
 945    if (protocol >= 0x200) {
 946        header[0x210] = 0xB0;
 947    }
 948    /* heap */
 949    if (protocol >= 0x201) {
 950        header[0x211] |= 0x80;  /* CAN_USE_HEAP */
 951        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
 952    }
 953
 954    /* load initrd */
 955    if (initrd_filename) {
 956        if (protocol < 0x200) {
 957            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
 958            exit(1);
 959        }
 960
 961        initrd_size = get_image_size(initrd_filename);
 962        if (initrd_size < 0) {
 963            fprintf(stderr, "qemu: error reading initrd %s: %s\n",
 964                    initrd_filename, strerror(errno));
 965            exit(1);
 966        }
 967
 968        initrd_addr = (initrd_max-initrd_size) & ~4095;
 969
 970        initrd_data = g_malloc(initrd_size);
 971        load_image(initrd_filename, initrd_data);
 972
 973        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
 974        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
 975        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
 976
 977        stl_p(header+0x218, initrd_addr);
 978        stl_p(header+0x21c, initrd_size);
 979    }
 980
 981    /* load kernel and setup */
 982    setup_size = header[0x1f1];
 983    if (setup_size == 0) {
 984        setup_size = 4;
 985    }
 986    setup_size = (setup_size+1)*512;
 987    if (setup_size > kernel_size) {
 988        fprintf(stderr, "qemu: invalid kernel header\n");
 989        exit(1);
 990    }
 991    kernel_size -= setup_size;
 992
 993    setup  = g_malloc(setup_size);
 994    kernel = g_malloc(kernel_size);
 995    fseek(f, 0, SEEK_SET);
 996    if (fread(setup, 1, setup_size, f) != setup_size) {
 997        fprintf(stderr, "fread() failed\n");
 998        exit(1);
 999    }
1000    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1001        fprintf(stderr, "fread() failed\n");
1002        exit(1);
1003    }
1004    fclose(f);
1005
1006    /* append dtb to kernel */
1007    if (dtb_filename) {
1008        if (protocol < 0x209) {
1009            fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1010            exit(1);
1011        }
1012
1013        dtb_size = get_image_size(dtb_filename);
1014        if (dtb_size <= 0) {
1015            fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1016                    dtb_filename, strerror(errno));
1017            exit(1);
1018        }
1019
1020        setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1021        kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1022        kernel = g_realloc(kernel, kernel_size);
1023
1024        stq_p(header+0x250, prot_addr + setup_data_offset);
1025
1026        setup_data = (struct setup_data *)(kernel + setup_data_offset);
1027        setup_data->next = 0;
1028        setup_data->type = cpu_to_le32(SETUP_DTB);
1029        setup_data->len = cpu_to_le32(dtb_size);
1030
1031        load_image_size(dtb_filename, setup_data->data, dtb_size);
1032    }
1033
1034    memcpy(setup, header, MIN(sizeof(header), setup_size));
1035
1036    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1037    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1038    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1039
1040    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1041    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1042    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1043
1044    if (fw_cfg_dma_enabled(fw_cfg)) {
1045        option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1046        option_rom[nb_option_roms].bootindex = 0;
1047    } else {
1048        option_rom[nb_option_roms].name = "linuxboot.bin";
1049        option_rom[nb_option_roms].bootindex = 0;
1050    }
1051    nb_option_roms++;
1052}
1053
1054#define NE2000_NB_MAX 6
1055
1056static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1057                                              0x280, 0x380 };
1058static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1059
1060void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1061{
1062    static int nb_ne2k = 0;
1063
1064    if (nb_ne2k == NE2000_NB_MAX)
1065        return;
1066    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1067                    ne2000_irq[nb_ne2k], nd);
1068    nb_ne2k++;
1069}
1070
1071DeviceState *cpu_get_current_apic(void)
1072{
1073    if (current_cpu) {
1074        X86CPU *cpu = X86_CPU(current_cpu);
1075        return cpu->apic_state;
1076    } else {
1077        return NULL;
1078    }
1079}
1080
1081void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1082{
1083    X86CPU *cpu = opaque;
1084
1085    if (level) {
1086        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1087    }
1088}
1089
1090static int pc_present_cpus_count(PCMachineState *pcms)
1091{
1092    int i, boot_cpus = 0;
1093    for (i = 0; i < pcms->possible_cpus->len; i++) {
1094        if (pcms->possible_cpus->cpus[i].cpu) {
1095            boot_cpus++;
1096        }
1097    }
1098    return boot_cpus;
1099}
1100
1101static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1102                          Error **errp)
1103{
1104    X86CPU *cpu = NULL;
1105    Error *local_err = NULL;
1106
1107    cpu = X86_CPU(object_new(typename));
1108
1109    object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1110    object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1111
1112    if (local_err) {
1113        error_propagate(errp, local_err);
1114        object_unref(OBJECT(cpu));
1115        cpu = NULL;
1116    }
1117    return cpu;
1118}
1119
1120void pc_hot_add_cpu(const int64_t id, Error **errp)
1121{
1122    X86CPU *cpu;
1123    ObjectClass *oc;
1124    PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1125    int64_t apic_id = x86_cpu_apic_id_from_index(id);
1126    Error *local_err = NULL;
1127
1128    if (id < 0) {
1129        error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1130        return;
1131    }
1132
1133    if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1134        error_setg(errp, "Unable to add CPU: %" PRIi64
1135                   ", resulting APIC ID (%" PRIi64 ") is too large",
1136                   id, apic_id);
1137        return;
1138    }
1139
1140    assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1141    oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1142    cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1143    if (local_err) {
1144        error_propagate(errp, local_err);
1145        return;
1146    }
1147    object_unref(OBJECT(cpu));
1148}
1149
1150void pc_cpus_init(PCMachineState *pcms)
1151{
1152    int i;
1153    CPUClass *cc;
1154    ObjectClass *oc;
1155    const char *typename;
1156    gchar **model_pieces;
1157    X86CPU *cpu = NULL;
1158    MachineState *machine = MACHINE(pcms);
1159
1160    /* init CPUs */
1161    if (machine->cpu_model == NULL) {
1162#ifdef TARGET_X86_64
1163        machine->cpu_model = "qemu64";
1164#else
1165        machine->cpu_model = "qemu32";
1166#endif
1167    }
1168
1169    model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1170    if (!model_pieces[0]) {
1171        error_report("Invalid/empty CPU model name");
1172        exit(1);
1173    }
1174
1175    oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1176    if (oc == NULL) {
1177        error_report("Unable to find CPU definition: %s", model_pieces[0]);
1178        exit(1);
1179    }
1180    typename = object_class_get_name(oc);
1181    cc = CPU_CLASS(oc);
1182    cc->parse_features(typename, model_pieces[1], &error_fatal);
1183    g_strfreev(model_pieces);
1184
1185    /* Calculates the limit to CPU APIC ID values
1186     *
1187     * Limit for the APIC ID value, so that all
1188     * CPU APIC IDs are < pcms->apic_id_limit.
1189     *
1190     * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1191     */
1192    pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1193    if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1194        error_report("max_cpus is too large. APIC ID of last CPU is %u",
1195                     pcms->apic_id_limit - 1);
1196        exit(1);
1197    }
1198
1199    pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1200                                    sizeof(CPUArchId) * max_cpus);
1201    for (i = 0; i < max_cpus; i++) {
1202        pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1203        pcms->possible_cpus->len++;
1204        if (i < smp_cpus) {
1205            cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1206                             &error_fatal);
1207            object_unref(OBJECT(cpu));
1208        }
1209    }
1210
1211    /* tell smbios about cpuid version and features */
1212    smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1213}
1214
1215static void pc_build_feature_control_file(PCMachineState *pcms)
1216{
1217    X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1218    CPUX86State *env = &cpu->env;
1219    uint32_t unused, ecx, edx;
1220    uint64_t feature_control_bits = 0;
1221    uint64_t *val;
1222
1223    cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1224    if (ecx & CPUID_EXT_VMX) {
1225        feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1226    }
1227
1228    if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1229        (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1230        (env->mcg_cap & MCG_LMCE_P)) {
1231        feature_control_bits |= FEATURE_CONTROL_LMCE;
1232    }
1233
1234    if (!feature_control_bits) {
1235        return;
1236    }
1237
1238    val = g_malloc(sizeof(*val));
1239    *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1240    fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1241}
1242
1243static
1244void pc_machine_done(Notifier *notifier, void *data)
1245{
1246    PCMachineState *pcms = container_of(notifier,
1247                                        PCMachineState, machine_done);
1248    PCIBus *bus = pcms->bus;
1249
1250    /* set the number of CPUs */
1251    rtc_set_memory(pcms->rtc, 0x5f, pc_present_cpus_count(pcms) - 1);
1252
1253    if (bus) {
1254        int extra_hosts = 0;
1255
1256        QLIST_FOREACH(bus, &bus->child, sibling) {
1257            /* look for expander root buses */
1258            if (pci_bus_is_root(bus)) {
1259                extra_hosts++;
1260            }
1261        }
1262        if (extra_hosts && pcms->fw_cfg) {
1263            uint64_t *val = g_malloc(sizeof(*val));
1264            *val = cpu_to_le64(extra_hosts);
1265            fw_cfg_add_file(pcms->fw_cfg,
1266                    "etc/extra-pci-roots", val, sizeof(*val));
1267        }
1268    }
1269
1270    acpi_setup();
1271    if (pcms->fw_cfg) {
1272        pc_build_smbios(pcms->fw_cfg);
1273        pc_build_feature_control_file(pcms);
1274    }
1275}
1276
1277void pc_guest_info_init(PCMachineState *pcms)
1278{
1279    int i;
1280
1281    pcms->apic_xrupt_override = kvm_allows_irq0_override();
1282    pcms->numa_nodes = nb_numa_nodes;
1283    pcms->node_mem = g_malloc0(pcms->numa_nodes *
1284                                    sizeof *pcms->node_mem);
1285    for (i = 0; i < nb_numa_nodes; i++) {
1286        pcms->node_mem[i] = numa_info[i].node_mem;
1287    }
1288
1289    pcms->machine_done.notify = pc_machine_done;
1290    qemu_add_machine_init_done_notifier(&pcms->machine_done);
1291}
1292
1293/* setup pci memory address space mapping into system address space */
1294void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1295                            MemoryRegion *pci_address_space)
1296{
1297    /* Set to lower priority than RAM */
1298    memory_region_add_subregion_overlap(system_memory, 0x0,
1299                                        pci_address_space, -1);
1300}
1301
1302void pc_acpi_init(const char *default_dsdt)
1303{
1304    char *filename;
1305
1306    if (acpi_tables != NULL) {
1307        /* manually set via -acpitable, leave it alone */
1308        return;
1309    }
1310
1311    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1312    if (filename == NULL) {
1313        fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1314    } else {
1315        QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1316                                          &error_abort);
1317        Error *err = NULL;
1318
1319        qemu_opt_set(opts, "file", filename, &error_abort);
1320
1321        acpi_table_add_builtin(opts, &err);
1322        if (err) {
1323            error_reportf_err(err, "WARNING: failed to load %s: ",
1324                              filename);
1325        }
1326        g_free(filename);
1327    }
1328}
1329
1330void xen_load_linux(PCMachineState *pcms)
1331{
1332    int i;
1333    FWCfgState *fw_cfg;
1334
1335    assert(MACHINE(pcms)->kernel_filename != NULL);
1336
1337    fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1338    rom_set_fw(fw_cfg);
1339
1340    load_linux(pcms, fw_cfg);
1341    for (i = 0; i < nb_option_roms; i++) {
1342        assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1343               !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1344               !strcmp(option_rom[i].name, "multiboot.bin"));
1345        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1346    }
1347    pcms->fw_cfg = fw_cfg;
1348}
1349
1350void pc_memory_init(PCMachineState *pcms,
1351                    MemoryRegion *system_memory,
1352                    MemoryRegion *rom_memory,
1353                    MemoryRegion **ram_memory)
1354{
1355    int linux_boot, i;
1356    MemoryRegion *ram, *option_rom_mr;
1357    MemoryRegion *ram_below_4g, *ram_above_4g;
1358    FWCfgState *fw_cfg;
1359    MachineState *machine = MACHINE(pcms);
1360    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1361
1362    assert(machine->ram_size == pcms->below_4g_mem_size +
1363                                pcms->above_4g_mem_size);
1364
1365    linux_boot = (machine->kernel_filename != NULL);
1366
1367    /* Allocate RAM.  We allocate it as a single memory region and use
1368     * aliases to address portions of it, mostly for backwards compatibility
1369     * with older qemus that used qemu_ram_alloc().
1370     */
1371    ram = g_malloc(sizeof(*ram));
1372    memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1373                                         machine->ram_size);
1374    *ram_memory = ram;
1375    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1376    memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1377                             0, pcms->below_4g_mem_size);
1378    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1379    e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1380    if (pcms->above_4g_mem_size > 0) {
1381        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1382        memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1383                                 pcms->below_4g_mem_size,
1384                                 pcms->above_4g_mem_size);
1385        memory_region_add_subregion(system_memory, 0x100000000ULL,
1386                                    ram_above_4g);
1387        e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1388    }
1389
1390    if (!pcmc->has_reserved_memory &&
1391        (machine->ram_slots ||
1392         (machine->maxram_size > machine->ram_size))) {
1393        MachineClass *mc = MACHINE_GET_CLASS(machine);
1394
1395        error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1396                     mc->name);
1397        exit(EXIT_FAILURE);
1398    }
1399
1400    /* initialize hotplug memory address space */
1401    if (pcmc->has_reserved_memory &&
1402        (machine->ram_size < machine->maxram_size)) {
1403        ram_addr_t hotplug_mem_size =
1404            machine->maxram_size - machine->ram_size;
1405
1406        if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1407            error_report("unsupported amount of memory slots: %"PRIu64,
1408                         machine->ram_slots);
1409            exit(EXIT_FAILURE);
1410        }
1411
1412        if (QEMU_ALIGN_UP(machine->maxram_size,
1413                          TARGET_PAGE_SIZE) != machine->maxram_size) {
1414            error_report("maximum memory size must by aligned to multiple of "
1415                         "%d bytes", TARGET_PAGE_SIZE);
1416            exit(EXIT_FAILURE);
1417        }
1418
1419        pcms->hotplug_memory.base =
1420            ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1421
1422        if (pcmc->enforce_aligned_dimm) {
1423            /* size hotplug region assuming 1G page max alignment per slot */
1424            hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1425        }
1426
1427        if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1428            hotplug_mem_size) {
1429            error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1430                         machine->maxram_size);
1431            exit(EXIT_FAILURE);
1432        }
1433
1434        memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1435                           "hotplug-memory", hotplug_mem_size);
1436        memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1437                                    &pcms->hotplug_memory.mr);
1438    }
1439
1440    /* Initialize PC system firmware */
1441    pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1442
1443    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1444    memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1445                           &error_fatal);
1446    vmstate_register_ram_global(option_rom_mr);
1447    memory_region_add_subregion_overlap(rom_memory,
1448                                        PC_ROM_MIN_VGA,
1449                                        option_rom_mr,
1450                                        1);
1451
1452    fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1453
1454    rom_set_fw(fw_cfg);
1455
1456    if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1457        uint64_t *val = g_malloc(sizeof(*val));
1458        PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1459        uint64_t res_mem_end = pcms->hotplug_memory.base;
1460
1461        if (!pcmc->broken_reserved_end) {
1462            res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1463        }
1464        *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1465        fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1466    }
1467
1468    if (linux_boot) {
1469        load_linux(pcms, fw_cfg);
1470    }
1471
1472    for (i = 0; i < nb_option_roms; i++) {
1473        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1474    }
1475    pcms->fw_cfg = fw_cfg;
1476
1477    /* Init default IOAPIC address space */
1478    pcms->ioapic_as = &address_space_memory;
1479}
1480
1481qemu_irq pc_allocate_cpu_irq(void)
1482{
1483    return qemu_allocate_irq(pic_irq_request, NULL, 0);
1484}
1485
1486DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1487{
1488    DeviceState *dev = NULL;
1489
1490    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1491    if (pci_bus) {
1492        PCIDevice *pcidev = pci_vga_init(pci_bus);
1493        dev = pcidev ? &pcidev->qdev : NULL;
1494    } else if (isa_bus) {
1495        ISADevice *isadev = isa_vga_init(isa_bus);
1496        dev = isadev ? DEVICE(isadev) : NULL;
1497    }
1498    rom_reset_order_override();
1499    return dev;
1500}
1501
1502static const MemoryRegionOps ioport80_io_ops = {
1503    .write = ioport80_write,
1504    .read = ioport80_read,
1505    .endianness = DEVICE_NATIVE_ENDIAN,
1506    .impl = {
1507        .min_access_size = 1,
1508        .max_access_size = 1,
1509    },
1510};
1511
1512static const MemoryRegionOps ioportF0_io_ops = {
1513    .write = ioportF0_write,
1514    .read = ioportF0_read,
1515    .endianness = DEVICE_NATIVE_ENDIAN,
1516    .impl = {
1517        .min_access_size = 1,
1518        .max_access_size = 1,
1519    },
1520};
1521
1522void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1523                          ISADevice **rtc_state,
1524                          bool create_fdctrl,
1525                          bool no_vmport,
1526                          uint32_t hpet_irqs)
1527{
1528    int i;
1529    DriveInfo *fd[MAX_FD];
1530    DeviceState *hpet = NULL;
1531    int pit_isa_irq = 0;
1532    qemu_irq pit_alt_irq = NULL;
1533    qemu_irq rtc_irq = NULL;
1534    qemu_irq *a20_line;
1535    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1536    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1537    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1538
1539    memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1540    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1541
1542    memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1543    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1544
1545    /*
1546     * Check if an HPET shall be created.
1547     *
1548     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1549     * when the HPET wants to take over. Thus we have to disable the latter.
1550     */
1551    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1552        /* In order to set property, here not using sysbus_try_create_simple */
1553        hpet = qdev_try_create(NULL, TYPE_HPET);
1554        if (hpet) {
1555            /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1556             * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1557             * IRQ8 and IRQ2.
1558             */
1559            uint8_t compat = object_property_get_int(OBJECT(hpet),
1560                    HPET_INTCAP, NULL);
1561            if (!compat) {
1562                qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1563            }
1564            qdev_init_nofail(hpet);
1565            sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1566
1567            for (i = 0; i < GSI_NUM_PINS; i++) {
1568                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1569            }
1570            pit_isa_irq = -1;
1571            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1572            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1573        }
1574    }
1575    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1576
1577    qemu_register_boot_set(pc_boot_set, *rtc_state);
1578
1579    if (!xen_enabled()) {
1580        if (kvm_pit_in_kernel()) {
1581            pit = kvm_pit_init(isa_bus, 0x40);
1582        } else {
1583            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1584        }
1585        if (hpet) {
1586            /* connect PIT to output control line of the HPET */
1587            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1588        }
1589        pcspk_init(isa_bus, pit);
1590    }
1591
1592    serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1593    parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1594
1595    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1596    i8042 = isa_create_simple(isa_bus, "i8042");
1597    i8042_setup_a20_line(i8042, &a20_line[0]);
1598    if (!no_vmport) {
1599        vmport_init(isa_bus);
1600        vmmouse = isa_try_create(isa_bus, "vmmouse");
1601    } else {
1602        vmmouse = NULL;
1603    }
1604    if (vmmouse) {
1605        DeviceState *dev = DEVICE(vmmouse);
1606        qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1607        qdev_init_nofail(dev);
1608    }
1609    port92 = isa_create_simple(isa_bus, "port92");
1610    port92_init(port92, &a20_line[1]);
1611
1612    DMA_init(isa_bus, 0);
1613
1614    for(i = 0; i < MAX_FD; i++) {
1615        fd[i] = drive_get(IF_FLOPPY, 0, i);
1616        create_fdctrl |= !!fd[i];
1617    }
1618    if (create_fdctrl) {
1619        fdctrl_init_isa(isa_bus, fd);
1620    }
1621}
1622
1623void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1624{
1625    int i;
1626
1627    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1628    for (i = 0; i < nb_nics; i++) {
1629        NICInfo *nd = &nd_table[i];
1630
1631        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1632            pc_init_ne2k_isa(isa_bus, nd);
1633        } else {
1634            pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1635        }
1636    }
1637    rom_reset_order_override();
1638}
1639
1640void pc_pci_device_init(PCIBus *pci_bus)
1641{
1642    int max_bus;
1643    int bus;
1644
1645    max_bus = drive_get_max_bus(IF_SCSI);
1646    for (bus = 0; bus <= max_bus; bus++) {
1647        pci_create_simple(pci_bus, -1, "lsi53c895a");
1648    }
1649}
1650
1651void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1652{
1653    DeviceState *dev;
1654    SysBusDevice *d;
1655    unsigned int i;
1656
1657    if (kvm_ioapic_in_kernel()) {
1658        dev = qdev_create(NULL, "kvm-ioapic");
1659    } else {
1660        dev = qdev_create(NULL, "ioapic");
1661    }
1662    if (parent_name) {
1663        object_property_add_child(object_resolve_path(parent_name, NULL),
1664                                  "ioapic", OBJECT(dev), NULL);
1665    }
1666    qdev_init_nofail(dev);
1667    d = SYS_BUS_DEVICE(dev);
1668    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1669
1670    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1671        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1672    }
1673}
1674
1675static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1676                         DeviceState *dev, Error **errp)
1677{
1678    HotplugHandlerClass *hhc;
1679    Error *local_err = NULL;
1680    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1681    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1682    PCDIMMDevice *dimm = PC_DIMM(dev);
1683    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1684    MemoryRegion *mr = ddc->get_memory_region(dimm);
1685    uint64_t align = TARGET_PAGE_SIZE;
1686
1687    if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1688        align = memory_region_get_alignment(mr);
1689    }
1690
1691    if (!pcms->acpi_dev) {
1692        error_setg(&local_err,
1693                   "memory hotplug is not enabled: missing acpi device");
1694        goto out;
1695    }
1696
1697    pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1698    if (local_err) {
1699        goto out;
1700    }
1701
1702    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1703    hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1704out:
1705    error_propagate(errp, local_err);
1706}
1707
1708static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1709                                   DeviceState *dev, Error **errp)
1710{
1711    HotplugHandlerClass *hhc;
1712    Error *local_err = NULL;
1713    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1714
1715    if (!pcms->acpi_dev) {
1716        error_setg(&local_err,
1717                   "memory hotplug is not enabled: missing acpi device");
1718        goto out;
1719    }
1720
1721    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1722    hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1723
1724out:
1725    error_propagate(errp, local_err);
1726}
1727
1728static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1729                           DeviceState *dev, Error **errp)
1730{
1731    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1732    PCDIMMDevice *dimm = PC_DIMM(dev);
1733    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1734    MemoryRegion *mr = ddc->get_memory_region(dimm);
1735    HotplugHandlerClass *hhc;
1736    Error *local_err = NULL;
1737
1738    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1739    hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1740
1741    if (local_err) {
1742        goto out;
1743    }
1744
1745    pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1746    object_unparent(OBJECT(dev));
1747
1748 out:
1749    error_propagate(errp, local_err);
1750}
1751
1752static int pc_apic_cmp(const void *a, const void *b)
1753{
1754   CPUArchId *apic_a = (CPUArchId *)a;
1755   CPUArchId *apic_b = (CPUArchId *)b;
1756
1757   return apic_a->arch_id - apic_b->arch_id;
1758}
1759
1760/* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1761 * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1762 * entry correponding to CPU's apic_id returns NULL.
1763 */
1764static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1765                                   int *idx)
1766{
1767    CPUClass *cc = CPU_GET_CLASS(cpu);
1768    CPUArchId apic_id, *found_cpu;
1769
1770    apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1771    found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1772        pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1773        pc_apic_cmp);
1774    if (found_cpu && idx) {
1775        *idx = found_cpu - pcms->possible_cpus->cpus;
1776    }
1777    return found_cpu;
1778}
1779
1780static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1781                        DeviceState *dev, Error **errp)
1782{
1783    CPUArchId *found_cpu;
1784    HotplugHandlerClass *hhc;
1785    Error *local_err = NULL;
1786    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1787
1788    if (pcms->acpi_dev) {
1789        hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1790        hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1791        if (local_err) {
1792            goto out;
1793        }
1794    }
1795
1796    if (dev->hotplugged) {
1797        /* increment the number of CPUs */
1798        rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1799    }
1800
1801    found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1802    found_cpu->cpu = CPU(dev);
1803out:
1804    error_propagate(errp, local_err);
1805}
1806static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1807                                     DeviceState *dev, Error **errp)
1808{
1809    int idx = -1;
1810    HotplugHandlerClass *hhc;
1811    Error *local_err = NULL;
1812    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1813
1814    pc_find_cpu_slot(pcms, CPU(dev), &idx);
1815    assert(idx != -1);
1816    if (idx == 0) {
1817        error_setg(&local_err, "Boot CPU is unpluggable");
1818        goto out;
1819    }
1820
1821    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1822    hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1823
1824    if (local_err) {
1825        goto out;
1826    }
1827
1828 out:
1829    error_propagate(errp, local_err);
1830
1831}
1832
1833static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1834                             DeviceState *dev, Error **errp)
1835{
1836    CPUArchId *found_cpu;
1837    HotplugHandlerClass *hhc;
1838    Error *local_err = NULL;
1839    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1840
1841    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1842    hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1843
1844    if (local_err) {
1845        goto out;
1846    }
1847
1848    found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1849    found_cpu->cpu = NULL;
1850    object_unparent(OBJECT(dev));
1851
1852    rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) - 1);
1853 out:
1854    error_propagate(errp, local_err);
1855}
1856
1857static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1858                            DeviceState *dev, Error **errp)
1859{
1860    int idx;
1861    CPUState *cs;
1862    CPUArchId *cpu_slot;
1863    X86CPUTopoInfo topo;
1864    X86CPU *cpu = X86_CPU(dev);
1865    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1866
1867    /* if APIC ID is not set, set it based on socket/core/thread properties */
1868    if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1869        int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1870
1871        if (cpu->socket_id < 0) {
1872            error_setg(errp, "CPU socket-id is not set");
1873            return;
1874        } else if (cpu->socket_id > max_socket) {
1875            error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1876                       cpu->socket_id, max_socket);
1877            return;
1878        }
1879        if (cpu->core_id < 0) {
1880            error_setg(errp, "CPU core-id is not set");
1881            return;
1882        } else if (cpu->core_id > (smp_cores - 1)) {
1883            error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1884                       cpu->core_id, smp_cores - 1);
1885            return;
1886        }
1887        if (cpu->thread_id < 0) {
1888            error_setg(errp, "CPU thread-id is not set");
1889            return;
1890        } else if (cpu->thread_id > (smp_threads - 1)) {
1891            error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1892                       cpu->thread_id, smp_threads - 1);
1893            return;
1894        }
1895
1896        topo.pkg_id = cpu->socket_id;
1897        topo.core_id = cpu->core_id;
1898        topo.smt_id = cpu->thread_id;
1899        cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1900    }
1901
1902    cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1903    if (!cpu_slot) {
1904        x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1905        error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1906                  " APIC ID %" PRIu32 ", valid index range 0:%d",
1907                   topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1908                   pcms->possible_cpus->len - 1);
1909        return;
1910    }
1911
1912    if (cpu_slot->cpu) {
1913        error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1914                   idx, cpu->apic_id);
1915        return;
1916    }
1917
1918    /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1919     * so that query_hotpluggable_cpus would show correct values
1920     */
1921    /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1922     * once -smp refactoring is complete and there will be CPU private
1923     * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1924    x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1925    if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1926        error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1927            " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1928        return;
1929    }
1930    cpu->socket_id = topo.pkg_id;
1931
1932    if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1933        error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1934            " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1935        return;
1936    }
1937    cpu->core_id = topo.core_id;
1938
1939    if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1940        error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1941            " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1942        return;
1943    }
1944    cpu->thread_id = topo.smt_id;
1945
1946    cs = CPU(cpu);
1947    cs->cpu_index = idx;
1948}
1949
1950static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1951                                          DeviceState *dev, Error **errp)
1952{
1953    if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1954        pc_cpu_pre_plug(hotplug_dev, dev, errp);
1955    }
1956}
1957
1958static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1959                                      DeviceState *dev, Error **errp)
1960{
1961    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1962        pc_dimm_plug(hotplug_dev, dev, errp);
1963    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1964        pc_cpu_plug(hotplug_dev, dev, errp);
1965    }
1966}
1967
1968static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1969                                                DeviceState *dev, Error **errp)
1970{
1971    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1972        pc_dimm_unplug_request(hotplug_dev, dev, errp);
1973    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1974        pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
1975    } else {
1976        error_setg(errp, "acpi: device unplug request for not supported device"
1977                   " type: %s", object_get_typename(OBJECT(dev)));
1978    }
1979}
1980
1981static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1982                                        DeviceState *dev, Error **errp)
1983{
1984    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1985        pc_dimm_unplug(hotplug_dev, dev, errp);
1986    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1987        pc_cpu_unplug_cb(hotplug_dev, dev, errp);
1988    } else {
1989        error_setg(errp, "acpi: device unplug for not supported device"
1990                   " type: %s", object_get_typename(OBJECT(dev)));
1991    }
1992}
1993
1994static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1995                                             DeviceState *dev)
1996{
1997    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1998
1999    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2000        object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2001        return HOTPLUG_HANDLER(machine);
2002    }
2003
2004    return pcmc->get_hotplug_handler ?
2005        pcmc->get_hotplug_handler(machine, dev) : NULL;
2006}
2007
2008static void
2009pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2010                                          const char *name, void *opaque,
2011                                          Error **errp)
2012{
2013    PCMachineState *pcms = PC_MACHINE(obj);
2014    int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2015
2016    visit_type_int(v, name, &value, errp);
2017}
2018
2019static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2020                                            const char *name, void *opaque,
2021                                            Error **errp)
2022{
2023    PCMachineState *pcms = PC_MACHINE(obj);
2024    uint64_t value = pcms->max_ram_below_4g;
2025
2026    visit_type_size(v, name, &value, errp);
2027}
2028
2029static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2030                                            const char *name, void *opaque,
2031                                            Error **errp)
2032{
2033    PCMachineState *pcms = PC_MACHINE(obj);
2034    Error *error = NULL;
2035    uint64_t value;
2036
2037    visit_type_size(v, name, &value, &error);
2038    if (error) {
2039        error_propagate(errp, error);
2040        return;
2041    }
2042    if (value > (1ULL << 32)) {
2043        error_setg(&error,
2044                   "Machine option 'max-ram-below-4g=%"PRIu64
2045                   "' expects size less than or equal to 4G", value);
2046        error_propagate(errp, error);
2047        return;
2048    }
2049
2050    if (value < (1ULL << 20)) {
2051        error_report("Warning: small max_ram_below_4g(%"PRIu64
2052                     ") less than 1M.  BIOS may not work..",
2053                     value);
2054    }
2055
2056    pcms->max_ram_below_4g = value;
2057}
2058
2059static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2060                                  void *opaque, Error **errp)
2061{
2062    PCMachineState *pcms = PC_MACHINE(obj);
2063    OnOffAuto vmport = pcms->vmport;
2064
2065    visit_type_OnOffAuto(v, name, &vmport, errp);
2066}
2067
2068static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2069                                  void *opaque, Error **errp)
2070{
2071    PCMachineState *pcms = PC_MACHINE(obj);
2072
2073    visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2074}
2075
2076bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2077{
2078    bool smm_available = false;
2079
2080    if (pcms->smm == ON_OFF_AUTO_OFF) {
2081        return false;
2082    }
2083
2084    if (tcg_enabled() || qtest_enabled()) {
2085        smm_available = true;
2086    } else if (kvm_enabled()) {
2087        smm_available = kvm_has_smm();
2088    }
2089
2090    if (smm_available) {
2091        return true;
2092    }
2093
2094    if (pcms->smm == ON_OFF_AUTO_ON) {
2095        error_report("System Management Mode not supported by this hypervisor.");
2096        exit(1);
2097    }
2098    return false;
2099}
2100
2101static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2102                               void *opaque, Error **errp)
2103{
2104    PCMachineState *pcms = PC_MACHINE(obj);
2105    OnOffAuto smm = pcms->smm;
2106
2107    visit_type_OnOffAuto(v, name, &smm, errp);
2108}
2109
2110static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2111                               void *opaque, Error **errp)
2112{
2113    PCMachineState *pcms = PC_MACHINE(obj);
2114
2115    visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2116}
2117
2118static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2119{
2120    PCMachineState *pcms = PC_MACHINE(obj);
2121
2122    return pcms->acpi_nvdimm_state.is_enabled;
2123}
2124
2125static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2126{
2127    PCMachineState *pcms = PC_MACHINE(obj);
2128
2129    pcms->acpi_nvdimm_state.is_enabled = value;
2130}
2131
2132static void pc_machine_initfn(Object *obj)
2133{
2134    PCMachineState *pcms = PC_MACHINE(obj);
2135
2136    object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2137                        pc_machine_get_hotplug_memory_region_size,
2138                        NULL, NULL, NULL, &error_abort);
2139
2140    pcms->max_ram_below_4g = 0; /* use default */
2141    object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2142                        pc_machine_get_max_ram_below_4g,
2143                        pc_machine_set_max_ram_below_4g,
2144                        NULL, NULL, &error_abort);
2145    object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
2146                                    "Maximum ram below the 4G boundary (32bit boundary)",
2147                                    &error_abort);
2148
2149    pcms->smm = ON_OFF_AUTO_AUTO;
2150    object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
2151                        pc_machine_get_smm,
2152                        pc_machine_set_smm,
2153                        NULL, NULL, &error_abort);
2154    object_property_set_description(obj, PC_MACHINE_SMM,
2155                                    "Enable SMM (pc & q35)",
2156                                    &error_abort);
2157
2158    pcms->vmport = ON_OFF_AUTO_AUTO;
2159    object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
2160                        pc_machine_get_vmport,
2161                        pc_machine_set_vmport,
2162                        NULL, NULL, &error_abort);
2163    object_property_set_description(obj, PC_MACHINE_VMPORT,
2164                                    "Enable vmport (pc & q35)",
2165                                    &error_abort);
2166
2167    /* nvdimm is disabled on default. */
2168    pcms->acpi_nvdimm_state.is_enabled = false;
2169    object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
2170                             pc_machine_set_nvdimm, &error_abort);
2171}
2172
2173static void pc_machine_reset(void)
2174{
2175    CPUState *cs;
2176    X86CPU *cpu;
2177
2178    qemu_devices_reset();
2179
2180    /* Reset APIC after devices have been reset to cancel
2181     * any changes that qemu_devices_reset() might have done.
2182     */
2183    CPU_FOREACH(cs) {
2184        cpu = X86_CPU(cs);
2185
2186        if (cpu->apic_state) {
2187            device_reset(cpu->apic_state);
2188        }
2189    }
2190}
2191
2192static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2193{
2194    X86CPUTopoInfo topo;
2195    x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2196                          &topo);
2197    return topo.pkg_id;
2198}
2199
2200static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2201{
2202    PCMachineState *pcms = PC_MACHINE(machine);
2203    int len = sizeof(CPUArchIdList) +
2204              sizeof(CPUArchId) * (pcms->possible_cpus->len);
2205    CPUArchIdList *list = g_malloc(len);
2206
2207    memcpy(list, pcms->possible_cpus, len);
2208    return list;
2209}
2210
2211static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2212{
2213    int i;
2214    CPUState *cpu;
2215    HotpluggableCPUList *head = NULL;
2216    PCMachineState *pcms = PC_MACHINE(machine);
2217    const char *cpu_type;
2218
2219    cpu = pcms->possible_cpus->cpus[0].cpu;
2220    assert(cpu); /* BSP is always present */
2221    cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2222
2223    for (i = 0; i < pcms->possible_cpus->len; i++) {
2224        X86CPUTopoInfo topo;
2225        HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2226        HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2227        CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2228        const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2229
2230        x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2231
2232        cpu_item->type = g_strdup(cpu_type);
2233        cpu_item->vcpus_count = 1;
2234        cpu_props->has_socket_id = true;
2235        cpu_props->socket_id = topo.pkg_id;
2236        cpu_props->has_core_id = true;
2237        cpu_props->core_id = topo.core_id;
2238        cpu_props->has_thread_id = true;
2239        cpu_props->thread_id = topo.smt_id;
2240        cpu_item->props = cpu_props;
2241
2242        cpu = pcms->possible_cpus->cpus[i].cpu;
2243        if (cpu) {
2244            cpu_item->has_qom_path = true;
2245            cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2246        }
2247
2248        list_item->value = cpu_item;
2249        list_item->next = head;
2250        head = list_item;
2251    }
2252    return head;
2253}
2254
2255static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2256{
2257    /* cpu index isn't used */
2258    CPUState *cs;
2259
2260    CPU_FOREACH(cs) {
2261        X86CPU *cpu = X86_CPU(cs);
2262
2263        if (!cpu->apic_state) {
2264            cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2265        } else {
2266            apic_deliver_nmi(cpu->apic_state);
2267        }
2268    }
2269}
2270
2271static void pc_machine_class_init(ObjectClass *oc, void *data)
2272{
2273    MachineClass *mc = MACHINE_CLASS(oc);
2274    PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2275    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2276    NMIClass *nc = NMI_CLASS(oc);
2277
2278    pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2279    pcmc->pci_enabled = true;
2280    pcmc->has_acpi_build = true;
2281    pcmc->rsdp_in_ram = true;
2282    pcmc->smbios_defaults = true;
2283    pcmc->smbios_uuid_encoded = true;
2284    pcmc->gigabyte_align = true;
2285    pcmc->has_reserved_memory = true;
2286    pcmc->kvmclock_enabled = true;
2287    pcmc->enforce_aligned_dimm = true;
2288    /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2289     * to be used at the moment, 32K should be enough for a while.  */
2290    pcmc->acpi_data_size = 0x20000 + 0x8000;
2291    pcmc->save_tsc_khz = true;
2292    mc->get_hotplug_handler = pc_get_hotpug_handler;
2293    mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2294    mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2295    mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2296    mc->default_boot_order = "cad";
2297    mc->hot_add_cpu = pc_hot_add_cpu;
2298    mc->max_cpus = 255;
2299    mc->reset = pc_machine_reset;
2300    hc->pre_plug = pc_machine_device_pre_plug_cb;
2301    hc->plug = pc_machine_device_plug_cb;
2302    hc->unplug_request = pc_machine_device_unplug_request_cb;
2303    hc->unplug = pc_machine_device_unplug_cb;
2304    nc->nmi_monitor_handler = x86_nmi;
2305}
2306
2307static const TypeInfo pc_machine_info = {
2308    .name = TYPE_PC_MACHINE,
2309    .parent = TYPE_MACHINE,
2310    .abstract = true,
2311    .instance_size = sizeof(PCMachineState),
2312    .instance_init = pc_machine_initfn,
2313    .class_size = sizeof(PCMachineClass),
2314    .class_init = pc_machine_class_init,
2315    .interfaces = (InterfaceInfo[]) {
2316         { TYPE_HOTPLUG_HANDLER },
2317         { TYPE_NMI },
2318         { }
2319    },
2320};
2321
2322static void pc_machine_register_types(void)
2323{
2324    type_register_static(&pc_machine_info);
2325}
2326
2327type_init(pc_machine_register_types)
2328