qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/numa.h"
  31#include "hw/hw.h"
  32#include "qemu/log.h"
  33#include "hw/fw-path-provider.h"
  34#include "elf.h"
  35#include "net/net.h"
  36#include "sysemu/device_tree.h"
  37#include "sysemu/block-backend.h"
  38#include "sysemu/cpus.h"
  39#include "sysemu/kvm.h"
  40#include "sysemu/device_tree.h"
  41#include "kvm_ppc.h"
  42#include "migration/migration.h"
  43#include "mmu-hash64.h"
  44#include "qom/cpu.h"
  45
  46#include "hw/boards.h"
  47#include "hw/ppc/ppc.h"
  48#include "hw/loader.h"
  49
  50#include "hw/ppc/spapr.h"
  51#include "hw/ppc/spapr_vio.h"
  52#include "hw/pci-host/spapr.h"
  53#include "hw/ppc/xics.h"
  54#include "hw/pci/msi.h"
  55
  56#include "hw/pci/pci.h"
  57#include "hw/scsi/scsi.h"
  58#include "hw/virtio/virtio-scsi.h"
  59
  60#include "exec/address-spaces.h"
  61#include "hw/usb.h"
  62#include "qemu/config-file.h"
  63#include "qemu/error-report.h"
  64#include "trace.h"
  65#include "hw/nmi.h"
  66
  67#include "hw/compat.h"
  68#include "qemu/cutils.h"
  69#include "hw/ppc/spapr_cpu_core.h"
  70#include "qmp-commands.h"
  71
  72#include <libfdt.h>
  73
  74/* SLOF memory layout:
  75 *
  76 * SLOF raw image loaded at 0, copies its romfs right below the flat
  77 * device-tree, then position SLOF itself 31M below that
  78 *
  79 * So we set FW_OVERHEAD to 40MB which should account for all of that
  80 * and more
  81 *
  82 * We load our kernel at 4M, leaving space for SLOF initial image
  83 */
  84#define FDT_MAX_SIZE            0x100000
  85#define RTAS_MAX_SIZE           0x10000
  86#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  87#define FW_MAX_SIZE             0x400000
  88#define FW_FILE_NAME            "slof.bin"
  89#define FW_OVERHEAD             0x2800000
  90#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  91
  92#define MIN_RMA_SLOF            128UL
  93
  94#define PHANDLE_XICP            0x00001111
  95
  96#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
  97
  98static XICSState *try_create_xics(const char *type, int nr_servers,
  99                                  int nr_irqs, Error **errp)
 100{
 101    Error *err = NULL;
 102    DeviceState *dev;
 103
 104    dev = qdev_create(NULL, type);
 105    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
 106    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
 107    object_property_set_bool(OBJECT(dev), true, "realized", &err);
 108    if (err) {
 109        error_propagate(errp, err);
 110        object_unparent(OBJECT(dev));
 111        return NULL;
 112    }
 113    return XICS_COMMON(dev);
 114}
 115
 116static XICSState *xics_system_init(MachineState *machine,
 117                                   int nr_servers, int nr_irqs, Error **errp)
 118{
 119    XICSState *xics = NULL;
 120
 121    if (kvm_enabled()) {
 122        Error *err = NULL;
 123
 124        if (machine_kernel_irqchip_allowed(machine)) {
 125            xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
 126                                   &err);
 127        }
 128        if (machine_kernel_irqchip_required(machine) && !xics) {
 129            error_reportf_err(err,
 130                              "kernel_irqchip requested but unavailable: ");
 131        } else {
 132            error_free(err);
 133        }
 134    }
 135
 136    if (!xics) {
 137        xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
 138    }
 139
 140    return xics;
 141}
 142
 143static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 144                                  int smt_threads)
 145{
 146    int i, ret = 0;
 147    uint32_t servers_prop[smt_threads];
 148    uint32_t gservers_prop[smt_threads * 2];
 149    int index = ppc_get_vcpu_dt_id(cpu);
 150
 151    if (cpu->cpu_version) {
 152        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
 153        if (ret < 0) {
 154            return ret;
 155        }
 156    }
 157
 158    /* Build interrupt servers and gservers properties */
 159    for (i = 0; i < smt_threads; i++) {
 160        servers_prop[i] = cpu_to_be32(index + i);
 161        /* Hack, direct the group queues back to cpu 0 */
 162        gservers_prop[i*2] = cpu_to_be32(index + i);
 163        gservers_prop[i*2 + 1] = 0;
 164    }
 165    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 166                      servers_prop, sizeof(servers_prop));
 167    if (ret < 0) {
 168        return ret;
 169    }
 170    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 171                      gservers_prop, sizeof(gservers_prop));
 172
 173    return ret;
 174}
 175
 176static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
 177{
 178    int ret = 0;
 179    PowerPCCPU *cpu = POWERPC_CPU(cs);
 180    int index = ppc_get_vcpu_dt_id(cpu);
 181    uint32_t associativity[] = {cpu_to_be32(0x5),
 182                                cpu_to_be32(0x0),
 183                                cpu_to_be32(0x0),
 184                                cpu_to_be32(0x0),
 185                                cpu_to_be32(cs->numa_node),
 186                                cpu_to_be32(index)};
 187
 188    /* Advertise NUMA via ibm,associativity */
 189    if (nb_numa_nodes > 1) {
 190        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 191                          sizeof(associativity));
 192    }
 193
 194    return ret;
 195}
 196
 197static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 198{
 199    int ret = 0, offset, cpus_offset;
 200    CPUState *cs;
 201    char cpu_model[32];
 202    int smt = kvmppc_smt_threads();
 203    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 204
 205    CPU_FOREACH(cs) {
 206        PowerPCCPU *cpu = POWERPC_CPU(cs);
 207        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 208        int index = ppc_get_vcpu_dt_id(cpu);
 209
 210        if ((index % smt) != 0) {
 211            continue;
 212        }
 213
 214        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 215
 216        cpus_offset = fdt_path_offset(fdt, "/cpus");
 217        if (cpus_offset < 0) {
 218            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
 219                                          "cpus");
 220            if (cpus_offset < 0) {
 221                return cpus_offset;
 222            }
 223        }
 224        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 225        if (offset < 0) {
 226            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 227            if (offset < 0) {
 228                return offset;
 229            }
 230        }
 231
 232        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 233                          pft_size_prop, sizeof(pft_size_prop));
 234        if (ret < 0) {
 235            return ret;
 236        }
 237
 238        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
 239        if (ret < 0) {
 240            return ret;
 241        }
 242
 243        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
 244                                     ppc_get_compat_smt_threads(cpu));
 245        if (ret < 0) {
 246            return ret;
 247        }
 248    }
 249    return ret;
 250}
 251
 252
 253static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
 254                                     size_t maxsize)
 255{
 256    size_t maxcells = maxsize / sizeof(uint32_t);
 257    int i, j, count;
 258    uint32_t *p = prop;
 259
 260    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 261        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
 262
 263        if (!sps->page_shift) {
 264            break;
 265        }
 266        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
 267            if (sps->enc[count].page_shift == 0) {
 268                break;
 269            }
 270        }
 271        if ((p - prop) >= (maxcells - 3 - count * 2)) {
 272            break;
 273        }
 274        *(p++) = cpu_to_be32(sps->page_shift);
 275        *(p++) = cpu_to_be32(sps->slb_enc);
 276        *(p++) = cpu_to_be32(count);
 277        for (j = 0; j < count; j++) {
 278            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
 279            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
 280        }
 281    }
 282
 283    return (p - prop) * sizeof(uint32_t);
 284}
 285
 286static hwaddr spapr_node0_size(void)
 287{
 288    MachineState *machine = MACHINE(qdev_get_machine());
 289
 290    if (nb_numa_nodes) {
 291        int i;
 292        for (i = 0; i < nb_numa_nodes; ++i) {
 293            if (numa_info[i].node_mem) {
 294                return MIN(pow2floor(numa_info[i].node_mem),
 295                           machine->ram_size);
 296            }
 297        }
 298    }
 299    return machine->ram_size;
 300}
 301
 302#define _FDT(exp) \
 303    do { \
 304        int ret = (exp);                                           \
 305        if (ret < 0) {                                             \
 306            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
 307                    #exp, fdt_strerror(ret));                      \
 308            exit(1);                                               \
 309        }                                                          \
 310    } while (0)
 311
 312static void add_str(GString *s, const gchar *s1)
 313{
 314    g_string_append_len(s, s1, strlen(s1) + 1);
 315}
 316
 317static void *spapr_create_fdt_skel(hwaddr initrd_base,
 318                                   hwaddr initrd_size,
 319                                   hwaddr kernel_size,
 320                                   bool little_endian,
 321                                   const char *kernel_cmdline,
 322                                   uint32_t epow_irq)
 323{
 324    void *fdt;
 325    uint32_t start_prop = cpu_to_be32(initrd_base);
 326    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
 327    GString *hypertas = g_string_sized_new(256);
 328    GString *qemu_hypertas = g_string_sized_new(256);
 329    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
 330    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
 331    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
 332    char *buf;
 333
 334    add_str(hypertas, "hcall-pft");
 335    add_str(hypertas, "hcall-term");
 336    add_str(hypertas, "hcall-dabr");
 337    add_str(hypertas, "hcall-interrupt");
 338    add_str(hypertas, "hcall-tce");
 339    add_str(hypertas, "hcall-vio");
 340    add_str(hypertas, "hcall-splpar");
 341    add_str(hypertas, "hcall-bulk");
 342    add_str(hypertas, "hcall-set-mode");
 343    add_str(hypertas, "hcall-sprg0");
 344    add_str(hypertas, "hcall-copy");
 345    add_str(hypertas, "hcall-debug");
 346    add_str(qemu_hypertas, "hcall-memop1");
 347
 348    fdt = g_malloc0(FDT_MAX_SIZE);
 349    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
 350
 351    if (kernel_size) {
 352        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
 353    }
 354    if (initrd_size) {
 355        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
 356    }
 357    _FDT((fdt_finish_reservemap(fdt)));
 358
 359    /* Root node */
 360    _FDT((fdt_begin_node(fdt, "")));
 361    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
 362    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
 363    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
 364
 365    /*
 366     * Add info to guest to indentify which host is it being run on
 367     * and what is the uuid of the guest
 368     */
 369    if (kvmppc_get_host_model(&buf)) {
 370        _FDT((fdt_property_string(fdt, "host-model", buf)));
 371        g_free(buf);
 372    }
 373    if (kvmppc_get_host_serial(&buf)) {
 374        _FDT((fdt_property_string(fdt, "host-serial", buf)));
 375        g_free(buf);
 376    }
 377
 378    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
 379                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
 380                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
 381                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
 382                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
 383                          qemu_uuid[14], qemu_uuid[15]);
 384
 385    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
 386    if (qemu_uuid_set) {
 387        _FDT((fdt_property_string(fdt, "system-id", buf)));
 388    }
 389    g_free(buf);
 390
 391    if (qemu_get_vm_name()) {
 392        _FDT((fdt_property_string(fdt, "ibm,partition-name",
 393                                  qemu_get_vm_name())));
 394    }
 395
 396    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
 397    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
 398
 399    /* /chosen */
 400    _FDT((fdt_begin_node(fdt, "chosen")));
 401
 402    /* Set Form1_affinity */
 403    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
 404
 405    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
 406    _FDT((fdt_property(fdt, "linux,initrd-start",
 407                       &start_prop, sizeof(start_prop))));
 408    _FDT((fdt_property(fdt, "linux,initrd-end",
 409                       &end_prop, sizeof(end_prop))));
 410    if (kernel_size) {
 411        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 412                              cpu_to_be64(kernel_size) };
 413
 414        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
 415        if (little_endian) {
 416            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
 417        }
 418    }
 419    if (boot_menu) {
 420        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
 421    }
 422    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
 423    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
 424    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
 425
 426    _FDT((fdt_end_node(fdt)));
 427
 428    /* RTAS */
 429    _FDT((fdt_begin_node(fdt, "rtas")));
 430
 431    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 432        add_str(hypertas, "hcall-multi-tce");
 433    }
 434    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
 435                       hypertas->len)));
 436    g_string_free(hypertas, TRUE);
 437    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
 438                       qemu_hypertas->len)));
 439    g_string_free(qemu_hypertas, TRUE);
 440
 441    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
 442        refpoints, sizeof(refpoints))));
 443
 444    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
 445    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
 446                            RTAS_EVENT_SCAN_RATE)));
 447
 448    if (msi_nonbroken) {
 449        _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
 450    }
 451
 452    /*
 453     * According to PAPR, rtas ibm,os-term does not guarantee a return
 454     * back to the guest cpu.
 455     *
 456     * While an additional ibm,extended-os-term property indicates that
 457     * rtas call return will always occur. Set this property.
 458     */
 459    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
 460
 461    _FDT((fdt_end_node(fdt)));
 462
 463    /* interrupt controller */
 464    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
 465
 466    _FDT((fdt_property_string(fdt, "device_type",
 467                              "PowerPC-External-Interrupt-Presentation")));
 468    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
 469    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 470    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
 471                       interrupt_server_ranges_prop,
 472                       sizeof(interrupt_server_ranges_prop))));
 473    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
 474    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
 475    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
 476
 477    _FDT((fdt_end_node(fdt)));
 478
 479    /* vdevice */
 480    _FDT((fdt_begin_node(fdt, "vdevice")));
 481
 482    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
 483    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
 484    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
 485    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
 486    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
 487    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 488
 489    _FDT((fdt_end_node(fdt)));
 490
 491    /* event-sources */
 492    spapr_events_fdt_skel(fdt, epow_irq);
 493
 494    /* /hypervisor node */
 495    if (kvm_enabled()) {
 496        uint8_t hypercall[16];
 497
 498        /* indicate KVM hypercall interface */
 499        _FDT((fdt_begin_node(fdt, "hypervisor")));
 500        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
 501        if (kvmppc_has_cap_fixup_hcalls()) {
 502            /*
 503             * Older KVM versions with older guest kernels were broken with the
 504             * magic page, don't allow the guest to map it.
 505             */
 506            if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
 507                                      sizeof(hypercall))) {
 508                _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
 509                                   sizeof(hypercall))));
 510            }
 511        }
 512        _FDT((fdt_end_node(fdt)));
 513    }
 514
 515    _FDT((fdt_end_node(fdt))); /* close root node */
 516    _FDT((fdt_finish(fdt)));
 517
 518    return fdt;
 519}
 520
 521static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 522                                       hwaddr size)
 523{
 524    uint32_t associativity[] = {
 525        cpu_to_be32(0x4), /* length */
 526        cpu_to_be32(0x0), cpu_to_be32(0x0),
 527        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 528    };
 529    char mem_name[32];
 530    uint64_t mem_reg_property[2];
 531    int off;
 532
 533    mem_reg_property[0] = cpu_to_be64(start);
 534    mem_reg_property[1] = cpu_to_be64(size);
 535
 536    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 537    off = fdt_add_subnode(fdt, 0, mem_name);
 538    _FDT(off);
 539    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 540    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 541                      sizeof(mem_reg_property))));
 542    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 543                      sizeof(associativity))));
 544    return off;
 545}
 546
 547static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 548{
 549    MachineState *machine = MACHINE(spapr);
 550    hwaddr mem_start, node_size;
 551    int i, nb_nodes = nb_numa_nodes;
 552    NodeInfo *nodes = numa_info;
 553    NodeInfo ramnode;
 554
 555    /* No NUMA nodes, assume there is just one node with whole RAM */
 556    if (!nb_numa_nodes) {
 557        nb_nodes = 1;
 558        ramnode.node_mem = machine->ram_size;
 559        nodes = &ramnode;
 560    }
 561
 562    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 563        if (!nodes[i].node_mem) {
 564            continue;
 565        }
 566        if (mem_start >= machine->ram_size) {
 567            node_size = 0;
 568        } else {
 569            node_size = nodes[i].node_mem;
 570            if (node_size > machine->ram_size - mem_start) {
 571                node_size = machine->ram_size - mem_start;
 572            }
 573        }
 574        if (!mem_start) {
 575            /* ppc_spapr_init() checks for rma_size <= node0_size already */
 576            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 577            mem_start += spapr->rma_size;
 578            node_size -= spapr->rma_size;
 579        }
 580        for ( ; node_size; ) {
 581            hwaddr sizetmp = pow2floor(node_size);
 582
 583            /* mem_start != 0 here */
 584            if (ctzl(mem_start) < ctzl(sizetmp)) {
 585                sizetmp = 1ULL << ctzl(mem_start);
 586            }
 587
 588            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 589            node_size -= sizetmp;
 590            mem_start += sizetmp;
 591        }
 592    }
 593
 594    return 0;
 595}
 596
 597static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 598                                  sPAPRMachineState *spapr)
 599{
 600    PowerPCCPU *cpu = POWERPC_CPU(cs);
 601    CPUPPCState *env = &cpu->env;
 602    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 603    int index = ppc_get_vcpu_dt_id(cpu);
 604    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 605                       0xffffffff, 0xffffffff};
 606    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 607        : SPAPR_TIMEBASE_FREQ;
 608    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 609    uint32_t page_sizes_prop[64];
 610    size_t page_sizes_prop_size;
 611    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 612    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 613    sPAPRDRConnector *drc;
 614    sPAPRDRConnectorClass *drck;
 615    int drc_index;
 616
 617    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
 618    if (drc) {
 619        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 620        drc_index = drck->get_index(drc);
 621        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 622    }
 623
 624    /* Note: we keep CI large pages off for now because a 64K capable guest
 625     * provisioned with large pages might otherwise try to map a qemu
 626     * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 627     * even if that qemu runs on a 4k host.
 628     *
 629     * We can later add this bit back when we are confident this is not
 630     * an issue (!HV KVM or 64K host)
 631     */
 632    uint8_t pa_features_206[] = { 6, 0,
 633        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 634    uint8_t pa_features_207[] = { 24, 0,
 635        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 636        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 637        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 638        0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
 639    uint8_t *pa_features;
 640    size_t pa_size;
 641
 642    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 643    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 644
 645    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 646    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 647                           env->dcache_line_size)));
 648    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 649                           env->dcache_line_size)));
 650    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 651                           env->icache_line_size)));
 652    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 653                           env->icache_line_size)));
 654
 655    if (pcc->l1_dcache_size) {
 656        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 657                               pcc->l1_dcache_size)));
 658    } else {
 659        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
 660    }
 661    if (pcc->l1_icache_size) {
 662        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 663                               pcc->l1_icache_size)));
 664    } else {
 665        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
 666    }
 667
 668    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 669    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 670    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 671    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 672    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 673    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 674
 675    if (env->spr_cb[SPR_PURR].oea_read) {
 676        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 677    }
 678
 679    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 680        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 681                          segs, sizeof(segs))));
 682    }
 683
 684    /* Advertise VMX/VSX (vector extensions) if available
 685     *   0 / no property == no vector extensions
 686     *   1               == VMX / Altivec available
 687     *   2               == VSX available */
 688    if (env->insns_flags & PPC_ALTIVEC) {
 689        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 690
 691        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 692    }
 693
 694    /* Advertise DFP (Decimal Floating Point) if available
 695     *   0 / no property == no DFP
 696     *   1               == DFP available */
 697    if (env->insns_flags2 & PPC2_DFP) {
 698        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 699    }
 700
 701    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
 702                                                  sizeof(page_sizes_prop));
 703    if (page_sizes_prop_size) {
 704        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 705                          page_sizes_prop, page_sizes_prop_size)));
 706    }
 707
 708    /* Do the ibm,pa-features property, adjust it for ci-large-pages */
 709    if (env->mmu_model == POWERPC_MMU_2_06) {
 710        pa_features = pa_features_206;
 711        pa_size = sizeof(pa_features_206);
 712    } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
 713        pa_features = pa_features_207;
 714        pa_size = sizeof(pa_features_207);
 715    }
 716    if (env->ci_large_pages) {
 717        pa_features[3] |= 0x20;
 718    }
 719    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 720
 721    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 722                           cs->cpu_index / vcpus_per_socket)));
 723
 724    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 725                      pft_size_prop, sizeof(pft_size_prop))));
 726
 727    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
 728
 729    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
 730                                ppc_get_compat_smt_threads(cpu)));
 731}
 732
 733static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 734{
 735    CPUState *cs;
 736    int cpus_offset;
 737    char *nodename;
 738    int smt = kvmppc_smt_threads();
 739
 740    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 741    _FDT(cpus_offset);
 742    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 743    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 744
 745    /*
 746     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 747     * created by fdt_add_subnode() end up in the right order in FDT
 748     * for the guest kernel the enumerate the CPUs correctly.
 749     */
 750    CPU_FOREACH_REVERSE(cs) {
 751        PowerPCCPU *cpu = POWERPC_CPU(cs);
 752        int index = ppc_get_vcpu_dt_id(cpu);
 753        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 754        int offset;
 755
 756        if ((index % smt) != 0) {
 757            continue;
 758        }
 759
 760        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 761        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 762        g_free(nodename);
 763        _FDT(offset);
 764        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 765    }
 766
 767}
 768
 769/*
 770 * Adds ibm,dynamic-reconfiguration-memory node.
 771 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 772 * of this device tree node.
 773 */
 774static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 775{
 776    MachineState *machine = MACHINE(spapr);
 777    int ret, i, offset;
 778    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 779    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 780    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
 781    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
 782                       memory_region_size(&spapr->hotplug_memory.mr)) /
 783                       lmb_size;
 784    uint32_t *int_buf, *cur_index, buf_len;
 785    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 786
 787    /*
 788     * Don't create the node if there is no hotpluggable memory
 789     */
 790    if (machine->ram_size == machine->maxram_size) {
 791        return 0;
 792    }
 793
 794    /*
 795     * Allocate enough buffer size to fit in ibm,dynamic-memory
 796     * or ibm,associativity-lookup-arrays
 797     */
 798    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 799              * sizeof(uint32_t);
 800    cur_index = int_buf = g_malloc0(buf_len);
 801
 802    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 803
 804    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 805                    sizeof(prop_lmb_size));
 806    if (ret < 0) {
 807        goto out;
 808    }
 809
 810    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 811    if (ret < 0) {
 812        goto out;
 813    }
 814
 815    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 816    if (ret < 0) {
 817        goto out;
 818    }
 819
 820    /* ibm,dynamic-memory */
 821    int_buf[0] = cpu_to_be32(nr_lmbs);
 822    cur_index++;
 823    for (i = 0; i < nr_lmbs; i++) {
 824        uint64_t addr = i * lmb_size;
 825        uint32_t *dynamic_memory = cur_index;
 826
 827        if (i >= hotplug_lmb_start) {
 828            sPAPRDRConnector *drc;
 829            sPAPRDRConnectorClass *drck;
 830
 831            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
 832            g_assert(drc);
 833            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 834
 835            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 836            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 837            dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
 838            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 839            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
 840            if (memory_region_present(get_system_memory(), addr)) {
 841                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 842            } else {
 843                dynamic_memory[5] = cpu_to_be32(0);
 844            }
 845        } else {
 846            /*
 847             * LMB information for RMA, boot time RAM and gap b/n RAM and
 848             * hotplug memory region -- all these are marked as reserved
 849             * and as having no valid DRC.
 850             */
 851            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 852            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 853            dynamic_memory[2] = cpu_to_be32(0);
 854            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 855            dynamic_memory[4] = cpu_to_be32(-1);
 856            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 857                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 858        }
 859
 860        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 861    }
 862    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 863    if (ret < 0) {
 864        goto out;
 865    }
 866
 867    /* ibm,associativity-lookup-arrays */
 868    cur_index = int_buf;
 869    int_buf[0] = cpu_to_be32(nr_nodes);
 870    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 871    cur_index += 2;
 872    for (i = 0; i < nr_nodes; i++) {
 873        uint32_t associativity[] = {
 874            cpu_to_be32(0x0),
 875            cpu_to_be32(0x0),
 876            cpu_to_be32(0x0),
 877            cpu_to_be32(i)
 878        };
 879        memcpy(cur_index, associativity, sizeof(associativity));
 880        cur_index += 4;
 881    }
 882    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 883            (cur_index - int_buf) * sizeof(uint32_t));
 884out:
 885    g_free(int_buf);
 886    return ret;
 887}
 888
 889int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 890                                 target_ulong addr, target_ulong size,
 891                                 bool cpu_update, bool memory_update)
 892{
 893    void *fdt, *fdt_skel;
 894    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 895    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
 896
 897    size -= sizeof(hdr);
 898
 899    /* Create sceleton */
 900    fdt_skel = g_malloc0(size);
 901    _FDT((fdt_create(fdt_skel, size)));
 902    _FDT((fdt_begin_node(fdt_skel, "")));
 903    _FDT((fdt_end_node(fdt_skel)));
 904    _FDT((fdt_finish(fdt_skel)));
 905    fdt = g_malloc0(size);
 906    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 907    g_free(fdt_skel);
 908
 909    /* Fixup cpu nodes */
 910    if (cpu_update) {
 911        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 912    }
 913
 914    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 915    if (memory_update && smc->dr_lmb_enabled) {
 916        _FDT((spapr_populate_drconf_memory(spapr, fdt)));
 917    }
 918
 919    /* Pack resulting tree */
 920    _FDT((fdt_pack(fdt)));
 921
 922    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 923        trace_spapr_cas_failed(size);
 924        return -1;
 925    }
 926
 927    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 928    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 929    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 930    g_free(fdt);
 931
 932    return 0;
 933}
 934
 935static void spapr_finalize_fdt(sPAPRMachineState *spapr,
 936                               hwaddr fdt_addr,
 937                               hwaddr rtas_addr,
 938                               hwaddr rtas_size)
 939{
 940    MachineState *machine = MACHINE(qdev_get_machine());
 941    MachineClass *mc = MACHINE_GET_CLASS(machine);
 942    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 943    const char *boot_device = machine->boot_order;
 944    int ret, i;
 945    size_t cb = 0;
 946    char *bootlist;
 947    void *fdt;
 948    sPAPRPHBState *phb;
 949
 950    fdt = g_malloc(FDT_MAX_SIZE);
 951
 952    /* open out the base tree into a temp buffer for the final tweaks */
 953    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
 954
 955    ret = spapr_populate_memory(spapr, fdt);
 956    if (ret < 0) {
 957        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
 958        exit(1);
 959    }
 960
 961    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
 962    if (ret < 0) {
 963        fprintf(stderr, "couldn't setup vio devices in fdt\n");
 964        exit(1);
 965    }
 966
 967    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
 968        ret = spapr_rng_populate_dt(fdt);
 969        if (ret < 0) {
 970            fprintf(stderr, "could not set up rng device in the fdt\n");
 971            exit(1);
 972        }
 973    }
 974
 975    QLIST_FOREACH(phb, &spapr->phbs, list) {
 976        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
 977        if (ret < 0) {
 978            error_report("couldn't setup PCI devices in fdt");
 979            exit(1);
 980        }
 981    }
 982
 983    /* RTAS */
 984    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
 985    if (ret < 0) {
 986        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
 987    }
 988
 989    /* cpus */
 990    spapr_populate_cpus_dt_node(fdt, spapr);
 991
 992    bootlist = get_boot_devices_list(&cb, true);
 993    if (cb && bootlist) {
 994        int offset = fdt_path_offset(fdt, "/chosen");
 995        if (offset < 0) {
 996            exit(1);
 997        }
 998        for (i = 0; i < cb; i++) {
 999            if (bootlist[i] == '\n') {
1000                bootlist[i] = ' ';
1001            }
1002
1003        }
1004        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
1005    }
1006
1007    if (boot_device && strlen(boot_device)) {
1008        int offset = fdt_path_offset(fdt, "/chosen");
1009
1010        if (offset < 0) {
1011            exit(1);
1012        }
1013        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
1014    }
1015
1016    if (!spapr->has_graphics) {
1017        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
1018    }
1019
1020    if (smc->dr_lmb_enabled) {
1021        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1022    }
1023
1024    if (mc->query_hotpluggable_cpus) {
1025        int offset = fdt_path_offset(fdt, "/cpus");
1026        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1027                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1028        if (ret < 0) {
1029            error_report("Couldn't set up CPU DR device tree properties");
1030            exit(1);
1031        }
1032    }
1033
1034    _FDT((fdt_pack(fdt)));
1035
1036    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1037        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1038                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1039        exit(1);
1040    }
1041
1042    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1043    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1044
1045    g_free(bootlist);
1046    g_free(fdt);
1047}
1048
1049static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1050{
1051    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1052}
1053
1054static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1055{
1056    CPUPPCState *env = &cpu->env;
1057
1058    if (msr_pr) {
1059        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1060        env->gpr[3] = H_PRIVILEGE;
1061    } else {
1062        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1063    }
1064}
1065
1066#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1067#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1068#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1069#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1070#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1071
1072/*
1073 * Get the fd to access the kernel htab, re-opening it if necessary
1074 */
1075static int get_htab_fd(sPAPRMachineState *spapr)
1076{
1077    if (spapr->htab_fd >= 0) {
1078        return spapr->htab_fd;
1079    }
1080
1081    spapr->htab_fd = kvmppc_get_htab_fd(false);
1082    if (spapr->htab_fd < 0) {
1083        error_report("Unable to open fd for reading hash table from KVM: %s",
1084                     strerror(errno));
1085    }
1086
1087    return spapr->htab_fd;
1088}
1089
1090static void close_htab_fd(sPAPRMachineState *spapr)
1091{
1092    if (spapr->htab_fd >= 0) {
1093        close(spapr->htab_fd);
1094    }
1095    spapr->htab_fd = -1;
1096}
1097
1098static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1099{
1100    int shift;
1101
1102    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1103     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1104     * that's much more than is needed for Linux guests */
1105    shift = ctz64(pow2ceil(ramsize)) - 7;
1106    shift = MAX(shift, 18); /* Minimum architected size */
1107    shift = MIN(shift, 46); /* Maximum architected size */
1108    return shift;
1109}
1110
1111static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1112                                 Error **errp)
1113{
1114    long rc;
1115
1116    /* Clean up any HPT info from a previous boot */
1117    g_free(spapr->htab);
1118    spapr->htab = NULL;
1119    spapr->htab_shift = 0;
1120    close_htab_fd(spapr);
1121
1122    rc = kvmppc_reset_htab(shift);
1123    if (rc < 0) {
1124        /* kernel-side HPT needed, but couldn't allocate one */
1125        error_setg_errno(errp, errno,
1126                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1127                         shift);
1128        /* This is almost certainly fatal, but if the caller really
1129         * wants to carry on with shift == 0, it's welcome to try */
1130    } else if (rc > 0) {
1131        /* kernel-side HPT allocated */
1132        if (rc != shift) {
1133            error_setg(errp,
1134                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1135                       shift, rc);
1136        }
1137
1138        spapr->htab_shift = shift;
1139        spapr->htab = NULL;
1140    } else {
1141        /* kernel-side HPT not needed, allocate in userspace instead */
1142        size_t size = 1ULL << shift;
1143        int i;
1144
1145        spapr->htab = qemu_memalign(size, size);
1146        if (!spapr->htab) {
1147            error_setg_errno(errp, errno,
1148                             "Could not allocate HPT of order %d", shift);
1149            return;
1150        }
1151
1152        memset(spapr->htab, 0, size);
1153        spapr->htab_shift = shift;
1154
1155        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1156            DIRTY_HPTE(HPTE(spapr->htab, i));
1157        }
1158    }
1159}
1160
1161static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1162{
1163    bool matched = false;
1164
1165    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1166        matched = true;
1167    }
1168
1169    if (!matched) {
1170        error_report("Device %s is not supported by this machine yet.",
1171                     qdev_fw_name(DEVICE(sbdev)));
1172        exit(1);
1173    }
1174
1175    return 0;
1176}
1177
1178static void ppc_spapr_reset(void)
1179{
1180    MachineState *machine = MACHINE(qdev_get_machine());
1181    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1182    PowerPCCPU *first_ppc_cpu;
1183    uint32_t rtas_limit;
1184
1185    /* Check for unknown sysbus devices */
1186    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1187
1188    /* Allocate and/or reset the hash page table */
1189    spapr_reallocate_hpt(spapr,
1190                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
1191                         &error_fatal);
1192
1193    /* Update the RMA size if necessary */
1194    if (spapr->vrma_adjust) {
1195        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1196                                          spapr->htab_shift);
1197    }
1198
1199    qemu_devices_reset();
1200
1201    /*
1202     * We place the device tree and RTAS just below either the top of the RMA,
1203     * or just below 2GB, whichever is lowere, so that it can be
1204     * processed with 32-bit real mode code if necessary
1205     */
1206    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1207    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1208    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1209
1210    /* Load the fdt */
1211    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1212                       spapr->rtas_size);
1213
1214    /* Copy RTAS over */
1215    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1216                              spapr->rtas_size);
1217
1218    /* Set up the entry state */
1219    first_ppc_cpu = POWERPC_CPU(first_cpu);
1220    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1221    first_ppc_cpu->env.gpr[5] = 0;
1222    first_cpu->halted = 0;
1223    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1224
1225}
1226
1227static void spapr_create_nvram(sPAPRMachineState *spapr)
1228{
1229    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1230    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1231
1232    if (dinfo) {
1233        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1234                            &error_fatal);
1235    }
1236
1237    qdev_init_nofail(dev);
1238
1239    spapr->nvram = (struct sPAPRNVRAM *)dev;
1240}
1241
1242static void spapr_rtc_create(sPAPRMachineState *spapr)
1243{
1244    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1245
1246    qdev_init_nofail(dev);
1247    spapr->rtc = dev;
1248
1249    object_property_add_alias(qdev_get_machine(), "rtc-time",
1250                              OBJECT(spapr->rtc), "date", NULL);
1251}
1252
1253/* Returns whether we want to use VGA or not */
1254static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1255{
1256    switch (vga_interface_type) {
1257    case VGA_NONE:
1258        return false;
1259    case VGA_DEVICE:
1260        return true;
1261    case VGA_STD:
1262    case VGA_VIRTIO:
1263        return pci_vga_init(pci_bus) != NULL;
1264    default:
1265        error_setg(errp,
1266                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1267        return false;
1268    }
1269}
1270
1271static int spapr_post_load(void *opaque, int version_id)
1272{
1273    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1274    int err = 0;
1275
1276    /* In earlier versions, there was no separate qdev for the PAPR
1277     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1278     * So when migrating from those versions, poke the incoming offset
1279     * value into the RTC device */
1280    if (version_id < 3) {
1281        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1282    }
1283
1284    return err;
1285}
1286
1287static bool version_before_3(void *opaque, int version_id)
1288{
1289    return version_id < 3;
1290}
1291
1292static const VMStateDescription vmstate_spapr = {
1293    .name = "spapr",
1294    .version_id = 3,
1295    .minimum_version_id = 1,
1296    .post_load = spapr_post_load,
1297    .fields = (VMStateField[]) {
1298        /* used to be @next_irq */
1299        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1300
1301        /* RTC offset */
1302        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1303
1304        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1305        VMSTATE_END_OF_LIST()
1306    },
1307};
1308
1309static int htab_save_setup(QEMUFile *f, void *opaque)
1310{
1311    sPAPRMachineState *spapr = opaque;
1312
1313    /* "Iteration" header */
1314    qemu_put_be32(f, spapr->htab_shift);
1315
1316    if (spapr->htab) {
1317        spapr->htab_save_index = 0;
1318        spapr->htab_first_pass = true;
1319    } else {
1320        assert(kvm_enabled());
1321    }
1322
1323
1324    return 0;
1325}
1326
1327static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1328                                 int64_t max_ns)
1329{
1330    bool has_timeout = max_ns != -1;
1331    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1332    int index = spapr->htab_save_index;
1333    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1334
1335    assert(spapr->htab_first_pass);
1336
1337    do {
1338        int chunkstart;
1339
1340        /* Consume invalid HPTEs */
1341        while ((index < htabslots)
1342               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1343            index++;
1344            CLEAN_HPTE(HPTE(spapr->htab, index));
1345        }
1346
1347        /* Consume valid HPTEs */
1348        chunkstart = index;
1349        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1350               && HPTE_VALID(HPTE(spapr->htab, index))) {
1351            index++;
1352            CLEAN_HPTE(HPTE(spapr->htab, index));
1353        }
1354
1355        if (index > chunkstart) {
1356            int n_valid = index - chunkstart;
1357
1358            qemu_put_be32(f, chunkstart);
1359            qemu_put_be16(f, n_valid);
1360            qemu_put_be16(f, 0);
1361            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1362                            HASH_PTE_SIZE_64 * n_valid);
1363
1364            if (has_timeout &&
1365                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1366                break;
1367            }
1368        }
1369    } while ((index < htabslots) && !qemu_file_rate_limit(f));
1370
1371    if (index >= htabslots) {
1372        assert(index == htabslots);
1373        index = 0;
1374        spapr->htab_first_pass = false;
1375    }
1376    spapr->htab_save_index = index;
1377}
1378
1379static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1380                                int64_t max_ns)
1381{
1382    bool final = max_ns < 0;
1383    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1384    int examined = 0, sent = 0;
1385    int index = spapr->htab_save_index;
1386    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1387
1388    assert(!spapr->htab_first_pass);
1389
1390    do {
1391        int chunkstart, invalidstart;
1392
1393        /* Consume non-dirty HPTEs */
1394        while ((index < htabslots)
1395               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1396            index++;
1397            examined++;
1398        }
1399
1400        chunkstart = index;
1401        /* Consume valid dirty HPTEs */
1402        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1403               && HPTE_DIRTY(HPTE(spapr->htab, index))
1404               && HPTE_VALID(HPTE(spapr->htab, index))) {
1405            CLEAN_HPTE(HPTE(spapr->htab, index));
1406            index++;
1407            examined++;
1408        }
1409
1410        invalidstart = index;
1411        /* Consume invalid dirty HPTEs */
1412        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1413               && HPTE_DIRTY(HPTE(spapr->htab, index))
1414               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1415            CLEAN_HPTE(HPTE(spapr->htab, index));
1416            index++;
1417            examined++;
1418        }
1419
1420        if (index > chunkstart) {
1421            int n_valid = invalidstart - chunkstart;
1422            int n_invalid = index - invalidstart;
1423
1424            qemu_put_be32(f, chunkstart);
1425            qemu_put_be16(f, n_valid);
1426            qemu_put_be16(f, n_invalid);
1427            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1428                            HASH_PTE_SIZE_64 * n_valid);
1429            sent += index - chunkstart;
1430
1431            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1432                break;
1433            }
1434        }
1435
1436        if (examined >= htabslots) {
1437            break;
1438        }
1439
1440        if (index >= htabslots) {
1441            assert(index == htabslots);
1442            index = 0;
1443        }
1444    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1445
1446    if (index >= htabslots) {
1447        assert(index == htabslots);
1448        index = 0;
1449    }
1450
1451    spapr->htab_save_index = index;
1452
1453    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1454}
1455
1456#define MAX_ITERATION_NS    5000000 /* 5 ms */
1457#define MAX_KVM_BUF_SIZE    2048
1458
1459static int htab_save_iterate(QEMUFile *f, void *opaque)
1460{
1461    sPAPRMachineState *spapr = opaque;
1462    int fd;
1463    int rc = 0;
1464
1465    /* Iteration header */
1466    qemu_put_be32(f, 0);
1467
1468    if (!spapr->htab) {
1469        assert(kvm_enabled());
1470
1471        fd = get_htab_fd(spapr);
1472        if (fd < 0) {
1473            return fd;
1474        }
1475
1476        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1477        if (rc < 0) {
1478            return rc;
1479        }
1480    } else  if (spapr->htab_first_pass) {
1481        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1482    } else {
1483        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1484    }
1485
1486    /* End marker */
1487    qemu_put_be32(f, 0);
1488    qemu_put_be16(f, 0);
1489    qemu_put_be16(f, 0);
1490
1491    return rc;
1492}
1493
1494static int htab_save_complete(QEMUFile *f, void *opaque)
1495{
1496    sPAPRMachineState *spapr = opaque;
1497    int fd;
1498
1499    /* Iteration header */
1500    qemu_put_be32(f, 0);
1501
1502    if (!spapr->htab) {
1503        int rc;
1504
1505        assert(kvm_enabled());
1506
1507        fd = get_htab_fd(spapr);
1508        if (fd < 0) {
1509            return fd;
1510        }
1511
1512        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1513        if (rc < 0) {
1514            return rc;
1515        }
1516    } else {
1517        if (spapr->htab_first_pass) {
1518            htab_save_first_pass(f, spapr, -1);
1519        }
1520        htab_save_later_pass(f, spapr, -1);
1521    }
1522
1523    /* End marker */
1524    qemu_put_be32(f, 0);
1525    qemu_put_be16(f, 0);
1526    qemu_put_be16(f, 0);
1527
1528    return 0;
1529}
1530
1531static int htab_load(QEMUFile *f, void *opaque, int version_id)
1532{
1533    sPAPRMachineState *spapr = opaque;
1534    uint32_t section_hdr;
1535    int fd = -1;
1536
1537    if (version_id < 1 || version_id > 1) {
1538        error_report("htab_load() bad version");
1539        return -EINVAL;
1540    }
1541
1542    section_hdr = qemu_get_be32(f);
1543
1544    if (section_hdr) {
1545        Error *local_err = NULL;
1546
1547        /* First section gives the htab size */
1548        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1549        if (local_err) {
1550            error_report_err(local_err);
1551            return -EINVAL;
1552        }
1553        return 0;
1554    }
1555
1556    if (!spapr->htab) {
1557        assert(kvm_enabled());
1558
1559        fd = kvmppc_get_htab_fd(true);
1560        if (fd < 0) {
1561            error_report("Unable to open fd to restore KVM hash table: %s",
1562                         strerror(errno));
1563        }
1564    }
1565
1566    while (true) {
1567        uint32_t index;
1568        uint16_t n_valid, n_invalid;
1569
1570        index = qemu_get_be32(f);
1571        n_valid = qemu_get_be16(f);
1572        n_invalid = qemu_get_be16(f);
1573
1574        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1575            /* End of Stream */
1576            break;
1577        }
1578
1579        if ((index + n_valid + n_invalid) >
1580            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1581            /* Bad index in stream */
1582            error_report(
1583                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1584                index, n_valid, n_invalid, spapr->htab_shift);
1585            return -EINVAL;
1586        }
1587
1588        if (spapr->htab) {
1589            if (n_valid) {
1590                qemu_get_buffer(f, HPTE(spapr->htab, index),
1591                                HASH_PTE_SIZE_64 * n_valid);
1592            }
1593            if (n_invalid) {
1594                memset(HPTE(spapr->htab, index + n_valid), 0,
1595                       HASH_PTE_SIZE_64 * n_invalid);
1596            }
1597        } else {
1598            int rc;
1599
1600            assert(fd >= 0);
1601
1602            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1603            if (rc < 0) {
1604                return rc;
1605            }
1606        }
1607    }
1608
1609    if (!spapr->htab) {
1610        assert(fd >= 0);
1611        close(fd);
1612    }
1613
1614    return 0;
1615}
1616
1617static void htab_cleanup(void *opaque)
1618{
1619    sPAPRMachineState *spapr = opaque;
1620
1621    close_htab_fd(spapr);
1622}
1623
1624static SaveVMHandlers savevm_htab_handlers = {
1625    .save_live_setup = htab_save_setup,
1626    .save_live_iterate = htab_save_iterate,
1627    .save_live_complete_precopy = htab_save_complete,
1628    .cleanup = htab_cleanup,
1629    .load_state = htab_load,
1630};
1631
1632static void spapr_boot_set(void *opaque, const char *boot_device,
1633                           Error **errp)
1634{
1635    MachineState *machine = MACHINE(qdev_get_machine());
1636    machine->boot_order = g_strdup(boot_device);
1637}
1638
1639/*
1640 * Reset routine for LMB DR devices.
1641 *
1642 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1643 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1644 * when it walks all its children devices. LMB devices reset occurs
1645 * as part of spapr_ppc_reset().
1646 */
1647static void spapr_drc_reset(void *opaque)
1648{
1649    sPAPRDRConnector *drc = opaque;
1650    DeviceState *d = DEVICE(drc);
1651
1652    if (d) {
1653        device_reset(d);
1654    }
1655}
1656
1657static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1658{
1659    MachineState *machine = MACHINE(spapr);
1660    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1661    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1662    int i;
1663
1664    for (i = 0; i < nr_lmbs; i++) {
1665        sPAPRDRConnector *drc;
1666        uint64_t addr;
1667
1668        addr = i * lmb_size + spapr->hotplug_memory.base;
1669        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1670                                     addr/lmb_size);
1671        qemu_register_reset(spapr_drc_reset, drc);
1672    }
1673}
1674
1675/*
1676 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1677 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1678 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1679 */
1680static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1681{
1682    int i;
1683
1684    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1685        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1686                   " is not aligned to %llu MiB",
1687                   machine->ram_size,
1688                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1689        return;
1690    }
1691
1692    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1693        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1694                   " is not aligned to %llu MiB",
1695                   machine->ram_size,
1696                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1697        return;
1698    }
1699
1700    for (i = 0; i < nb_numa_nodes; i++) {
1701        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1702            error_setg(errp,
1703                       "Node %d memory size 0x%" PRIx64
1704                       " is not aligned to %llu MiB",
1705                       i, numa_info[i].node_mem,
1706                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1707            return;
1708        }
1709    }
1710}
1711
1712/* pSeries LPAR / sPAPR hardware init */
1713static void ppc_spapr_init(MachineState *machine)
1714{
1715    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1716    MachineClass *mc = MACHINE_GET_CLASS(machine);
1717    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1718    const char *kernel_filename = machine->kernel_filename;
1719    const char *kernel_cmdline = machine->kernel_cmdline;
1720    const char *initrd_filename = machine->initrd_filename;
1721    PCIHostState *phb;
1722    int i;
1723    MemoryRegion *sysmem = get_system_memory();
1724    MemoryRegion *ram = g_new(MemoryRegion, 1);
1725    MemoryRegion *rma_region;
1726    void *rma = NULL;
1727    hwaddr rma_alloc_size;
1728    hwaddr node0_size = spapr_node0_size();
1729    uint32_t initrd_base = 0;
1730    long kernel_size = 0, initrd_size = 0;
1731    long load_limit, fw_size;
1732    bool kernel_le = false;
1733    char *filename;
1734    int smt = kvmppc_smt_threads();
1735    int spapr_cores = smp_cpus / smp_threads;
1736    int spapr_max_cores = max_cpus / smp_threads;
1737
1738    if (mc->query_hotpluggable_cpus) {
1739        if (smp_cpus % smp_threads) {
1740            error_report("smp_cpus (%u) must be multiple of threads (%u)",
1741                         smp_cpus, smp_threads);
1742            exit(1);
1743        }
1744        if (max_cpus % smp_threads) {
1745            error_report("max_cpus (%u) must be multiple of threads (%u)",
1746                         max_cpus, smp_threads);
1747            exit(1);
1748        }
1749    }
1750
1751    msi_nonbroken = true;
1752
1753    QLIST_INIT(&spapr->phbs);
1754
1755    cpu_ppc_hypercall = emulate_spapr_hypercall;
1756
1757    /* Allocate RMA if necessary */
1758    rma_alloc_size = kvmppc_alloc_rma(&rma);
1759
1760    if (rma_alloc_size == -1) {
1761        error_report("Unable to create RMA");
1762        exit(1);
1763    }
1764
1765    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1766        spapr->rma_size = rma_alloc_size;
1767    } else {
1768        spapr->rma_size = node0_size;
1769
1770        /* With KVM, we don't actually know whether KVM supports an
1771         * unbounded RMA (PR KVM) or is limited by the hash table size
1772         * (HV KVM using VRMA), so we always assume the latter
1773         *
1774         * In that case, we also limit the initial allocations for RTAS
1775         * etc... to 256M since we have no way to know what the VRMA size
1776         * is going to be as it depends on the size of the hash table
1777         * isn't determined yet.
1778         */
1779        if (kvm_enabled()) {
1780            spapr->vrma_adjust = 1;
1781            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1782        }
1783
1784        /* Actually we don't support unbounded RMA anymore since we
1785         * added proper emulation of HV mode. The max we can get is
1786         * 16G which also happens to be what we configure for PAPR
1787         * mode so make sure we don't do anything bigger than that
1788         */
1789        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1790    }
1791
1792    if (spapr->rma_size > node0_size) {
1793        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1794                     spapr->rma_size);
1795        exit(1);
1796    }
1797
1798    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1799    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1800
1801    /* Set up Interrupt Controller before we create the VCPUs */
1802    spapr->xics = xics_system_init(machine,
1803                                   DIV_ROUND_UP(max_cpus * smt, smp_threads),
1804                                   XICS_IRQS_SPAPR, &error_fatal);
1805
1806    if (smc->dr_lmb_enabled) {
1807        spapr_validate_node_memory(machine, &error_fatal);
1808    }
1809
1810    /* init CPUs */
1811    if (machine->cpu_model == NULL) {
1812        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1813    }
1814
1815    ppc_cpu_parse_features(machine->cpu_model);
1816
1817    if (mc->query_hotpluggable_cpus) {
1818        char *type = spapr_get_cpu_core_type(machine->cpu_model);
1819
1820        if (type == NULL) {
1821            error_report("Unable to find sPAPR CPU Core definition");
1822            exit(1);
1823        }
1824
1825        spapr->cores = g_new0(Object *, spapr_max_cores);
1826        for (i = 0; i < spapr_max_cores; i++) {
1827            int core_id = i * smp_threads;
1828            sPAPRDRConnector *drc =
1829                spapr_dr_connector_new(OBJECT(spapr),
1830                                       SPAPR_DR_CONNECTOR_TYPE_CPU,
1831                                       (core_id / smp_threads) * smt);
1832
1833            qemu_register_reset(spapr_drc_reset, drc);
1834
1835            if (i < spapr_cores) {
1836                Object *core  = object_new(type);
1837                object_property_set_int(core, smp_threads, "nr-threads",
1838                                        &error_fatal);
1839                object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1840                                        &error_fatal);
1841                object_property_set_bool(core, true, "realized", &error_fatal);
1842            }
1843        }
1844        g_free(type);
1845    } else {
1846        for (i = 0; i < smp_cpus; i++) {
1847            PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1848            if (cpu == NULL) {
1849                error_report("Unable to find PowerPC CPU definition");
1850                exit(1);
1851            }
1852            spapr_cpu_init(spapr, cpu, &error_fatal);
1853       }
1854    }
1855
1856    if (kvm_enabled()) {
1857        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1858        kvmppc_enable_logical_ci_hcalls();
1859        kvmppc_enable_set_mode_hcall();
1860    }
1861
1862    /* allocate RAM */
1863    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1864                                         machine->ram_size);
1865    memory_region_add_subregion(sysmem, 0, ram);
1866
1867    if (rma_alloc_size && rma) {
1868        rma_region = g_new(MemoryRegion, 1);
1869        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1870                                   rma_alloc_size, rma);
1871        vmstate_register_ram_global(rma_region);
1872        memory_region_add_subregion(sysmem, 0, rma_region);
1873    }
1874
1875    /* initialize hotplug memory address space */
1876    if (machine->ram_size < machine->maxram_size) {
1877        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1878        /*
1879         * Limit the number of hotpluggable memory slots to half the number
1880         * slots that KVM supports, leaving the other half for PCI and other
1881         * devices. However ensure that number of slots doesn't drop below 32.
1882         */
1883        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1884                           SPAPR_MAX_RAM_SLOTS;
1885
1886        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1887            max_memslots = SPAPR_MAX_RAM_SLOTS;
1888        }
1889        if (machine->ram_slots > max_memslots) {
1890            error_report("Specified number of memory slots %"
1891                         PRIu64" exceeds max supported %d",
1892                         machine->ram_slots, max_memslots);
1893            exit(1);
1894        }
1895
1896        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1897                                              SPAPR_HOTPLUG_MEM_ALIGN);
1898        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1899                           "hotplug-memory", hotplug_mem_size);
1900        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1901                                    &spapr->hotplug_memory.mr);
1902    }
1903
1904    if (smc->dr_lmb_enabled) {
1905        spapr_create_lmb_dr_connectors(spapr);
1906    }
1907
1908    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1909    if (!filename) {
1910        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1911        exit(1);
1912    }
1913    spapr->rtas_size = get_image_size(filename);
1914    if (spapr->rtas_size < 0) {
1915        error_report("Could not get size of LPAR rtas '%s'", filename);
1916        exit(1);
1917    }
1918    spapr->rtas_blob = g_malloc(spapr->rtas_size);
1919    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1920        error_report("Could not load LPAR rtas '%s'", filename);
1921        exit(1);
1922    }
1923    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1924        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1925                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1926        exit(1);
1927    }
1928    g_free(filename);
1929
1930    /* Set up EPOW events infrastructure */
1931    spapr_events_init(spapr);
1932
1933    /* Set up the RTC RTAS interfaces */
1934    spapr_rtc_create(spapr);
1935
1936    /* Set up VIO bus */
1937    spapr->vio_bus = spapr_vio_bus_init();
1938
1939    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1940        if (serial_hds[i]) {
1941            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1942        }
1943    }
1944
1945    /* We always have at least the nvram device on VIO */
1946    spapr_create_nvram(spapr);
1947
1948    /* Set up PCI */
1949    spapr_pci_rtas_init();
1950
1951    phb = spapr_create_phb(spapr, 0);
1952
1953    for (i = 0; i < nb_nics; i++) {
1954        NICInfo *nd = &nd_table[i];
1955
1956        if (!nd->model) {
1957            nd->model = g_strdup("ibmveth");
1958        }
1959
1960        if (strcmp(nd->model, "ibmveth") == 0) {
1961            spapr_vlan_create(spapr->vio_bus, nd);
1962        } else {
1963            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1964        }
1965    }
1966
1967    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1968        spapr_vscsi_create(spapr->vio_bus);
1969    }
1970
1971    /* Graphics */
1972    if (spapr_vga_init(phb->bus, &error_fatal)) {
1973        spapr->has_graphics = true;
1974        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1975    }
1976
1977    if (machine->usb) {
1978        if (smc->use_ohci_by_default) {
1979            pci_create_simple(phb->bus, -1, "pci-ohci");
1980        } else {
1981            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1982        }
1983
1984        if (spapr->has_graphics) {
1985            USBBus *usb_bus = usb_bus_find(-1);
1986
1987            usb_create_simple(usb_bus, "usb-kbd");
1988            usb_create_simple(usb_bus, "usb-mouse");
1989        }
1990    }
1991
1992    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1993        error_report(
1994            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1995            MIN_RMA_SLOF);
1996        exit(1);
1997    }
1998
1999    if (kernel_filename) {
2000        uint64_t lowaddr = 0;
2001
2002        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
2003                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
2004                               0, 0);
2005        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2006            kernel_size = load_elf(kernel_filename,
2007                                   translate_kernel_address, NULL,
2008                                   NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2009                                   0, 0);
2010            kernel_le = kernel_size > 0;
2011        }
2012        if (kernel_size < 0) {
2013            error_report("error loading %s: %s",
2014                         kernel_filename, load_elf_strerror(kernel_size));
2015            exit(1);
2016        }
2017
2018        /* load initrd */
2019        if (initrd_filename) {
2020            /* Try to locate the initrd in the gap between the kernel
2021             * and the firmware. Add a bit of space just in case
2022             */
2023            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
2024            initrd_size = load_image_targphys(initrd_filename, initrd_base,
2025                                              load_limit - initrd_base);
2026            if (initrd_size < 0) {
2027                error_report("could not load initial ram disk '%s'",
2028                             initrd_filename);
2029                exit(1);
2030            }
2031        } else {
2032            initrd_base = 0;
2033            initrd_size = 0;
2034        }
2035    }
2036
2037    if (bios_name == NULL) {
2038        bios_name = FW_FILE_NAME;
2039    }
2040    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2041    if (!filename) {
2042        error_report("Could not find LPAR firmware '%s'", bios_name);
2043        exit(1);
2044    }
2045    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2046    if (fw_size <= 0) {
2047        error_report("Could not load LPAR firmware '%s'", filename);
2048        exit(1);
2049    }
2050    g_free(filename);
2051
2052    /* FIXME: Should register things through the MachineState's qdev
2053     * interface, this is a legacy from the sPAPREnvironment structure
2054     * which predated MachineState but had a similar function */
2055    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2056    register_savevm_live(NULL, "spapr/htab", -1, 1,
2057                         &savevm_htab_handlers, spapr);
2058
2059    /* Prepare the device tree */
2060    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2061                                            kernel_size, kernel_le,
2062                                            kernel_cmdline,
2063                                            spapr->check_exception_irq);
2064    assert(spapr->fdt_skel != NULL);
2065
2066    /* used by RTAS */
2067    QTAILQ_INIT(&spapr->ccs_list);
2068    qemu_register_reset(spapr_ccs_reset_hook, spapr);
2069
2070    qemu_register_boot_set(spapr_boot_set, spapr);
2071}
2072
2073static int spapr_kvm_type(const char *vm_type)
2074{
2075    if (!vm_type) {
2076        return 0;
2077    }
2078
2079    if (!strcmp(vm_type, "HV")) {
2080        return 1;
2081    }
2082
2083    if (!strcmp(vm_type, "PR")) {
2084        return 2;
2085    }
2086
2087    error_report("Unknown kvm-type specified '%s'", vm_type);
2088    exit(1);
2089}
2090
2091/*
2092 * Implementation of an interface to adjust firmware path
2093 * for the bootindex property handling.
2094 */
2095static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2096                                   DeviceState *dev)
2097{
2098#define CAST(type, obj, name) \
2099    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2100    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2101    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2102
2103    if (d) {
2104        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2105        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2106        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2107
2108        if (spapr) {
2109            /*
2110             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2111             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2112             * in the top 16 bits of the 64-bit LUN
2113             */
2114            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2115            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2116                                   (uint64_t)id << 48);
2117        } else if (virtio) {
2118            /*
2119             * We use SRP luns of the form 01000000 | (target << 8) | lun
2120             * in the top 32 bits of the 64-bit LUN
2121             * Note: the quote above is from SLOF and it is wrong,
2122             * the actual binding is:
2123             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2124             */
2125            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2126            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2127                                   (uint64_t)id << 32);
2128        } else if (usb) {
2129            /*
2130             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2131             * in the top 32 bits of the 64-bit LUN
2132             */
2133            unsigned usb_port = atoi(usb->port->path);
2134            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2135            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2136                                   (uint64_t)id << 32);
2137        }
2138    }
2139
2140    if (phb) {
2141        /* Replace "pci" with "pci@800000020000000" */
2142        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2143    }
2144
2145    return NULL;
2146}
2147
2148static char *spapr_get_kvm_type(Object *obj, Error **errp)
2149{
2150    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2151
2152    return g_strdup(spapr->kvm_type);
2153}
2154
2155static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2156{
2157    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2158
2159    g_free(spapr->kvm_type);
2160    spapr->kvm_type = g_strdup(value);
2161}
2162
2163static void spapr_machine_initfn(Object *obj)
2164{
2165    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2166
2167    spapr->htab_fd = -1;
2168    object_property_add_str(obj, "kvm-type",
2169                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2170    object_property_set_description(obj, "kvm-type",
2171                                    "Specifies the KVM virtualization mode (HV, PR)",
2172                                    NULL);
2173}
2174
2175static void spapr_machine_finalizefn(Object *obj)
2176{
2177    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2178
2179    g_free(spapr->kvm_type);
2180}
2181
2182static void ppc_cpu_do_nmi_on_cpu(void *arg)
2183{
2184    CPUState *cs = arg;
2185
2186    cpu_synchronize_state(cs);
2187    ppc_cpu_do_system_reset(cs);
2188}
2189
2190static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2191{
2192    CPUState *cs;
2193
2194    CPU_FOREACH(cs) {
2195        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2196    }
2197}
2198
2199static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2200                           uint32_t node, Error **errp)
2201{
2202    sPAPRDRConnector *drc;
2203    sPAPRDRConnectorClass *drck;
2204    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2205    int i, fdt_offset, fdt_size;
2206    void *fdt;
2207
2208    for (i = 0; i < nr_lmbs; i++) {
2209        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2210                addr/SPAPR_MEMORY_BLOCK_SIZE);
2211        g_assert(drc);
2212
2213        fdt = create_device_tree(&fdt_size);
2214        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2215                                                SPAPR_MEMORY_BLOCK_SIZE);
2216
2217        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2218        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2219        addr += SPAPR_MEMORY_BLOCK_SIZE;
2220    }
2221    /* send hotplug notification to the
2222     * guest only in case of hotplugged memory
2223     */
2224    if (dev->hotplugged) {
2225       spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2226    }
2227}
2228
2229static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2230                              uint32_t node, Error **errp)
2231{
2232    Error *local_err = NULL;
2233    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2234    PCDIMMDevice *dimm = PC_DIMM(dev);
2235    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2236    MemoryRegion *mr = ddc->get_memory_region(dimm);
2237    uint64_t align = memory_region_get_alignment(mr);
2238    uint64_t size = memory_region_size(mr);
2239    uint64_t addr;
2240
2241    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2242        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2243                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2244        goto out;
2245    }
2246
2247    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2248    if (local_err) {
2249        goto out;
2250    }
2251
2252    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2253    if (local_err) {
2254        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2255        goto out;
2256    }
2257
2258    spapr_add_lmbs(dev, addr, size, node, &error_abort);
2259
2260out:
2261    error_propagate(errp, local_err);
2262}
2263
2264void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2265                                    sPAPRMachineState *spapr)
2266{
2267    PowerPCCPU *cpu = POWERPC_CPU(cs);
2268    DeviceClass *dc = DEVICE_GET_CLASS(cs);
2269    int id = ppc_get_vcpu_dt_id(cpu);
2270    void *fdt;
2271    int offset, fdt_size;
2272    char *nodename;
2273
2274    fdt = create_device_tree(&fdt_size);
2275    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2276    offset = fdt_add_subnode(fdt, 0, nodename);
2277
2278    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2279    g_free(nodename);
2280
2281    *fdt_offset = offset;
2282    return fdt;
2283}
2284
2285static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2286                                      DeviceState *dev, Error **errp)
2287{
2288    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2289
2290    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2291        int node;
2292
2293        if (!smc->dr_lmb_enabled) {
2294            error_setg(errp, "Memory hotplug not supported for this machine");
2295            return;
2296        }
2297        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2298        if (*errp) {
2299            return;
2300        }
2301        if (node < 0 || node >= MAX_NODES) {
2302            error_setg(errp, "Invaild node %d", node);
2303            return;
2304        }
2305
2306        /*
2307         * Currently PowerPC kernel doesn't allow hot-adding memory to
2308         * memory-less node, but instead will silently add the memory
2309         * to the first node that has some memory. This causes two
2310         * unexpected behaviours for the user.
2311         *
2312         * - Memory gets hotplugged to a different node than what the user
2313         *   specified.
2314         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2315         *   to memory-less node, a reboot will set things accordingly
2316         *   and the previously hotplugged memory now ends in the right node.
2317         *   This appears as if some memory moved from one node to another.
2318         *
2319         * So until kernel starts supporting memory hotplug to memory-less
2320         * nodes, just prevent such attempts upfront in QEMU.
2321         */
2322        if (nb_numa_nodes && !numa_info[node].node_mem) {
2323            error_setg(errp, "Can't hotplug memory to memory-less node %d",
2324                       node);
2325            return;
2326        }
2327
2328        spapr_memory_plug(hotplug_dev, dev, node, errp);
2329    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2330        spapr_core_plug(hotplug_dev, dev, errp);
2331    }
2332}
2333
2334static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2335                                      DeviceState *dev, Error **errp)
2336{
2337    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2338
2339    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2340        error_setg(errp, "Memory hot unplug not supported by sPAPR");
2341    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2342        if (!mc->query_hotpluggable_cpus) {
2343            error_setg(errp, "CPU hot unplug not supported on this machine");
2344            return;
2345        }
2346        spapr_core_unplug(hotplug_dev, dev, errp);
2347    }
2348}
2349
2350static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2351                                          DeviceState *dev, Error **errp)
2352{
2353    if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2354        spapr_core_pre_plug(hotplug_dev, dev, errp);
2355    }
2356}
2357
2358static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2359                                             DeviceState *dev)
2360{
2361    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2362        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2363        return HOTPLUG_HANDLER(machine);
2364    }
2365    return NULL;
2366}
2367
2368static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2369{
2370    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2371     * socket means much for the paravirtualized PAPR platform) */
2372    return cpu_index / smp_threads / smp_cores;
2373}
2374
2375static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2376{
2377    int i;
2378    HotpluggableCPUList *head = NULL;
2379    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2380    int spapr_max_cores = max_cpus / smp_threads;
2381
2382    for (i = 0; i < spapr_max_cores; i++) {
2383        HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2384        HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2385        CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2386
2387        cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2388        cpu_item->vcpus_count = smp_threads;
2389        cpu_props->has_core_id = true;
2390        cpu_props->core_id = i * smp_threads;
2391        /* TODO: add 'has_node/node' here to describe
2392           to which node core belongs */
2393
2394        cpu_item->props = cpu_props;
2395        if (spapr->cores[i]) {
2396            cpu_item->has_qom_path = true;
2397            cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2398        }
2399        list_item->value = cpu_item;
2400        list_item->next = head;
2401        head = list_item;
2402    }
2403    return head;
2404}
2405
2406static void spapr_machine_class_init(ObjectClass *oc, void *data)
2407{
2408    MachineClass *mc = MACHINE_CLASS(oc);
2409    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2410    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2411    NMIClass *nc = NMI_CLASS(oc);
2412    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2413
2414    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2415
2416    /*
2417     * We set up the default / latest behaviour here.  The class_init
2418     * functions for the specific versioned machine types can override
2419     * these details for backwards compatibility
2420     */
2421    mc->init = ppc_spapr_init;
2422    mc->reset = ppc_spapr_reset;
2423    mc->block_default_type = IF_SCSI;
2424    mc->max_cpus = MAX_CPUMASK_BITS;
2425    mc->no_parallel = 1;
2426    mc->default_boot_order = "";
2427    mc->default_ram_size = 512 * M_BYTE;
2428    mc->kvm_type = spapr_kvm_type;
2429    mc->has_dynamic_sysbus = true;
2430    mc->pci_allow_0_address = true;
2431    mc->get_hotplug_handler = spapr_get_hotpug_handler;
2432    hc->pre_plug = spapr_machine_device_pre_plug;
2433    hc->plug = spapr_machine_device_plug;
2434    hc->unplug = spapr_machine_device_unplug;
2435    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2436
2437    smc->dr_lmb_enabled = true;
2438    mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2439    fwc->get_dev_path = spapr_get_fw_dev_path;
2440    nc->nmi_monitor_handler = spapr_nmi;
2441}
2442
2443static const TypeInfo spapr_machine_info = {
2444    .name          = TYPE_SPAPR_MACHINE,
2445    .parent        = TYPE_MACHINE,
2446    .abstract      = true,
2447    .instance_size = sizeof(sPAPRMachineState),
2448    .instance_init = spapr_machine_initfn,
2449    .instance_finalize = spapr_machine_finalizefn,
2450    .class_size    = sizeof(sPAPRMachineClass),
2451    .class_init    = spapr_machine_class_init,
2452    .interfaces = (InterfaceInfo[]) {
2453        { TYPE_FW_PATH_PROVIDER },
2454        { TYPE_NMI },
2455        { TYPE_HOTPLUG_HANDLER },
2456        { }
2457    },
2458};
2459
2460#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2461    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2462                                                    void *data)      \
2463    {                                                                \
2464        MachineClass *mc = MACHINE_CLASS(oc);                        \
2465        spapr_machine_##suffix##_class_options(mc);                  \
2466        if (latest) {                                                \
2467            mc->alias = "pseries";                                   \
2468            mc->is_default = 1;                                      \
2469        }                                                            \
2470    }                                                                \
2471    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2472    {                                                                \
2473        MachineState *machine = MACHINE(obj);                        \
2474        spapr_machine_##suffix##_instance_options(machine);          \
2475    }                                                                \
2476    static const TypeInfo spapr_machine_##suffix##_info = {          \
2477        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2478        .parent = TYPE_SPAPR_MACHINE,                                \
2479        .class_init = spapr_machine_##suffix##_class_init,           \
2480        .instance_init = spapr_machine_##suffix##_instance_init,     \
2481    };                                                               \
2482    static void spapr_machine_register_##suffix(void)                \
2483    {                                                                \
2484        type_register(&spapr_machine_##suffix##_info);               \
2485    }                                                                \
2486    type_init(spapr_machine_register_##suffix)
2487
2488/*
2489 * pseries-2.7
2490 */
2491static void spapr_machine_2_7_instance_options(MachineState *machine)
2492{
2493}
2494
2495static void spapr_machine_2_7_class_options(MachineClass *mc)
2496{
2497    /* Defaults for the latest behaviour inherited from the base class */
2498}
2499
2500DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2501
2502/*
2503 * pseries-2.6
2504 */
2505#define SPAPR_COMPAT_2_6 \
2506    HW_COMPAT_2_6 \
2507    { \
2508        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2509        .property = "ddw",\
2510        .value    = stringify(off),\
2511    },
2512
2513static void spapr_machine_2_6_instance_options(MachineState *machine)
2514{
2515}
2516
2517static void spapr_machine_2_6_class_options(MachineClass *mc)
2518{
2519    spapr_machine_2_7_class_options(mc);
2520    mc->query_hotpluggable_cpus = NULL;
2521    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2522}
2523
2524DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2525
2526/*
2527 * pseries-2.5
2528 */
2529#define SPAPR_COMPAT_2_5 \
2530    HW_COMPAT_2_5 \
2531    { \
2532        .driver   = "spapr-vlan", \
2533        .property = "use-rx-buffer-pools", \
2534        .value    = "off", \
2535    },
2536
2537static void spapr_machine_2_5_instance_options(MachineState *machine)
2538{
2539}
2540
2541static void spapr_machine_2_5_class_options(MachineClass *mc)
2542{
2543    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2544
2545    spapr_machine_2_6_class_options(mc);
2546    smc->use_ohci_by_default = true;
2547    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2548}
2549
2550DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2551
2552/*
2553 * pseries-2.4
2554 */
2555#define SPAPR_COMPAT_2_4 \
2556        HW_COMPAT_2_4
2557
2558static void spapr_machine_2_4_instance_options(MachineState *machine)
2559{
2560    spapr_machine_2_5_instance_options(machine);
2561}
2562
2563static void spapr_machine_2_4_class_options(MachineClass *mc)
2564{
2565    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2566
2567    spapr_machine_2_5_class_options(mc);
2568    smc->dr_lmb_enabled = false;
2569    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2570}
2571
2572DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2573
2574/*
2575 * pseries-2.3
2576 */
2577#define SPAPR_COMPAT_2_3 \
2578        HW_COMPAT_2_3 \
2579        {\
2580            .driver   = "spapr-pci-host-bridge",\
2581            .property = "dynamic-reconfiguration",\
2582            .value    = "off",\
2583        },
2584
2585static void spapr_machine_2_3_instance_options(MachineState *machine)
2586{
2587    spapr_machine_2_4_instance_options(machine);
2588    savevm_skip_section_footers();
2589    global_state_set_optional();
2590    savevm_skip_configuration();
2591}
2592
2593static void spapr_machine_2_3_class_options(MachineClass *mc)
2594{
2595    spapr_machine_2_4_class_options(mc);
2596    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2597}
2598DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2599
2600/*
2601 * pseries-2.2
2602 */
2603
2604#define SPAPR_COMPAT_2_2 \
2605        HW_COMPAT_2_2 \
2606        {\
2607            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2608            .property = "mem_win_size",\
2609            .value    = "0x20000000",\
2610        },
2611
2612static void spapr_machine_2_2_instance_options(MachineState *machine)
2613{
2614    spapr_machine_2_3_instance_options(machine);
2615    machine->suppress_vmdesc = true;
2616}
2617
2618static void spapr_machine_2_2_class_options(MachineClass *mc)
2619{
2620    spapr_machine_2_3_class_options(mc);
2621    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2622}
2623DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2624
2625/*
2626 * pseries-2.1
2627 */
2628#define SPAPR_COMPAT_2_1 \
2629        HW_COMPAT_2_1
2630
2631static void spapr_machine_2_1_instance_options(MachineState *machine)
2632{
2633    spapr_machine_2_2_instance_options(machine);
2634}
2635
2636static void spapr_machine_2_1_class_options(MachineClass *mc)
2637{
2638    spapr_machine_2_2_class_options(mc);
2639    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2640}
2641DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2642
2643static void spapr_machine_register_types(void)
2644{
2645    type_register_static(&spapr_machine_info);
2646}
2647
2648type_init(spapr_machine_register_types)
2649