qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#define DIRTY_MEMORY_VGA       0
  20#define DIRTY_MEMORY_CODE      1
  21#define DIRTY_MEMORY_MIGRATION 2
  22#define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
  23
  24#include "exec/cpu-common.h"
  25#ifndef CONFIG_USER_ONLY
  26#include "exec/hwaddr.h"
  27#endif
  28#include "exec/memattrs.h"
  29#include "qemu/queue.h"
  30#include "qemu/int128.h"
  31#include "qemu/notify.h"
  32#include "qom/object.h"
  33#include "qemu/rcu.h"
  34
  35#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  36
  37#define MAX_PHYS_ADDR_SPACE_BITS 62
  38#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  39
  40#define TYPE_MEMORY_REGION "qemu:memory-region"
  41#define MEMORY_REGION(obj) \
  42        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  43
  44typedef struct MemoryRegionOps MemoryRegionOps;
  45typedef struct MemoryRegionMmio MemoryRegionMmio;
  46
  47struct MemoryRegionMmio {
  48    CPUReadMemoryFunc *read[3];
  49    CPUWriteMemoryFunc *write[3];
  50};
  51
  52typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  53
  54/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  55typedef enum {
  56    IOMMU_NONE = 0,
  57    IOMMU_RO   = 1,
  58    IOMMU_WO   = 2,
  59    IOMMU_RW   = 3,
  60} IOMMUAccessFlags;
  61
  62struct IOMMUTLBEntry {
  63    AddressSpace    *target_as;
  64    hwaddr           iova;
  65    hwaddr           translated_addr;
  66    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  67    IOMMUAccessFlags perm;
  68};
  69
  70/* New-style MMIO accessors can indicate that the transaction failed.
  71 * A zero (MEMTX_OK) response means success; anything else is a failure
  72 * of some kind. The memory subsystem will bitwise-OR together results
  73 * if it is synthesizing an operation from multiple smaller accesses.
  74 */
  75#define MEMTX_OK 0
  76#define MEMTX_ERROR             (1U << 0) /* device returned an error */
  77#define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
  78typedef uint32_t MemTxResult;
  79
  80/*
  81 * Memory region callbacks
  82 */
  83struct MemoryRegionOps {
  84    /* Read from the memory region. @addr is relative to @mr; @size is
  85     * in bytes. */
  86    uint64_t (*read)(void *opaque,
  87                     hwaddr addr,
  88                     unsigned size);
  89    /* Write to the memory region. @addr is relative to @mr; @size is
  90     * in bytes. */
  91    void (*write)(void *opaque,
  92                  hwaddr addr,
  93                  uint64_t data,
  94                  unsigned size);
  95
  96    MemTxResult (*read_with_attrs)(void *opaque,
  97                                   hwaddr addr,
  98                                   uint64_t *data,
  99                                   unsigned size,
 100                                   MemTxAttrs attrs);
 101    MemTxResult (*write_with_attrs)(void *opaque,
 102                                    hwaddr addr,
 103                                    uint64_t data,
 104                                    unsigned size,
 105                                    MemTxAttrs attrs);
 106
 107    enum device_endian endianness;
 108    /* Guest-visible constraints: */
 109    struct {
 110        /* If nonzero, specify bounds on access sizes beyond which a machine
 111         * check is thrown.
 112         */
 113        unsigned min_access_size;
 114        unsigned max_access_size;
 115        /* If true, unaligned accesses are supported.  Otherwise unaligned
 116         * accesses throw machine checks.
 117         */
 118         bool unaligned;
 119        /*
 120         * If present, and returns #false, the transaction is not accepted
 121         * by the device (and results in machine dependent behaviour such
 122         * as a machine check exception).
 123         */
 124        bool (*accepts)(void *opaque, hwaddr addr,
 125                        unsigned size, bool is_write);
 126    } valid;
 127    /* Internal implementation constraints: */
 128    struct {
 129        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 130         * will be rounded upwards and a partial result will be returned.
 131         */
 132        unsigned min_access_size;
 133        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 134         * will be done as a series of accesses with smaller sizes.
 135         */
 136        unsigned max_access_size;
 137        /* If true, unaligned accesses are supported.  Otherwise all accesses
 138         * are converted to (possibly multiple) naturally aligned accesses.
 139         */
 140        bool unaligned;
 141    } impl;
 142
 143    /* If .read and .write are not present, old_mmio may be used for
 144     * backwards compatibility with old mmio registration
 145     */
 146    const MemoryRegionMmio old_mmio;
 147};
 148
 149typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
 150
 151struct MemoryRegionIOMMUOps {
 152    /* Return a TLB entry that contains a given address. */
 153    IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
 154    /* Returns minimum supported page size */
 155    uint64_t (*get_min_page_size)(MemoryRegion *iommu);
 156    /* Called when the first notifier is set */
 157    void (*notify_started)(MemoryRegion *iommu);
 158    /* Called when the last notifier is removed */
 159    void (*notify_stopped)(MemoryRegion *iommu);
 160};
 161
 162typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 163typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 164
 165struct MemoryRegion {
 166    Object parent_obj;
 167
 168    /* All fields are private - violators will be prosecuted */
 169
 170    /* The following fields should fit in a cache line */
 171    bool romd_mode;
 172    bool ram;
 173    bool subpage;
 174    bool readonly; /* For RAM regions */
 175    bool rom_device;
 176    bool flush_coalesced_mmio;
 177    bool global_locking;
 178    uint8_t dirty_log_mask;
 179    RAMBlock *ram_block;
 180    Object *owner;
 181    const MemoryRegionIOMMUOps *iommu_ops;
 182
 183    const MemoryRegionOps *ops;
 184    void *opaque;
 185    MemoryRegion *container;
 186    Int128 size;
 187    hwaddr addr;
 188    void (*destructor)(MemoryRegion *mr);
 189    uint64_t align;
 190    bool terminates;
 191    bool skip_dump;
 192    bool enabled;
 193    bool warning_printed; /* For reservations */
 194    uint8_t vga_logging_count;
 195    MemoryRegion *alias;
 196    hwaddr alias_offset;
 197    int32_t priority;
 198    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 199    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 200    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 201    const char *name;
 202    unsigned ioeventfd_nb;
 203    MemoryRegionIoeventfd *ioeventfds;
 204    NotifierList iommu_notify;
 205};
 206
 207/**
 208 * MemoryListener: callbacks structure for updates to the physical memory map
 209 *
 210 * Allows a component to adjust to changes in the guest-visible memory map.
 211 * Use with memory_listener_register() and memory_listener_unregister().
 212 */
 213struct MemoryListener {
 214    void (*begin)(MemoryListener *listener);
 215    void (*commit)(MemoryListener *listener);
 216    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 217    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 218    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 219    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 220                      int old, int new);
 221    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 222                     int old, int new);
 223    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 224    void (*log_global_start)(MemoryListener *listener);
 225    void (*log_global_stop)(MemoryListener *listener);
 226    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 227                        bool match_data, uint64_t data, EventNotifier *e);
 228    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 229                        bool match_data, uint64_t data, EventNotifier *e);
 230    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 231                               hwaddr addr, hwaddr len);
 232    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 233                               hwaddr addr, hwaddr len);
 234    /* Lower = earlier (during add), later (during del) */
 235    unsigned priority;
 236    AddressSpace *address_space_filter;
 237    QTAILQ_ENTRY(MemoryListener) link;
 238};
 239
 240/**
 241 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 242 */
 243struct AddressSpace {
 244    /* All fields are private. */
 245    struct rcu_head rcu;
 246    char *name;
 247    MemoryRegion *root;
 248    int ref_count;
 249    bool malloced;
 250
 251    /* Accessed via RCU.  */
 252    struct FlatView *current_map;
 253
 254    int ioeventfd_nb;
 255    struct MemoryRegionIoeventfd *ioeventfds;
 256    struct AddressSpaceDispatch *dispatch;
 257    struct AddressSpaceDispatch *next_dispatch;
 258    MemoryListener dispatch_listener;
 259
 260    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 261};
 262
 263/**
 264 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 265 *
 266 * @mr: the region, or %NULL if empty
 267 * @address_space: the address space the region is mapped in
 268 * @offset_within_region: the beginning of the section, relative to @mr's start
 269 * @size: the size of the section; will not exceed @mr's boundaries
 270 * @offset_within_address_space: the address of the first byte of the section
 271 *     relative to the region's address space
 272 * @readonly: writes to this section are ignored
 273 */
 274struct MemoryRegionSection {
 275    MemoryRegion *mr;
 276    AddressSpace *address_space;
 277    hwaddr offset_within_region;
 278    Int128 size;
 279    hwaddr offset_within_address_space;
 280    bool readonly;
 281};
 282
 283/**
 284 * memory_region_init: Initialize a memory region
 285 *
 286 * The region typically acts as a container for other memory regions.  Use
 287 * memory_region_add_subregion() to add subregions.
 288 *
 289 * @mr: the #MemoryRegion to be initialized
 290 * @owner: the object that tracks the region's reference count
 291 * @name: used for debugging; not visible to the user or ABI
 292 * @size: size of the region; any subregions beyond this size will be clipped
 293 */
 294void memory_region_init(MemoryRegion *mr,
 295                        struct Object *owner,
 296                        const char *name,
 297                        uint64_t size);
 298
 299/**
 300 * memory_region_ref: Add 1 to a memory region's reference count
 301 *
 302 * Whenever memory regions are accessed outside the BQL, they need to be
 303 * preserved against hot-unplug.  MemoryRegions actually do not have their
 304 * own reference count; they piggyback on a QOM object, their "owner".
 305 * This function adds a reference to the owner.
 306 *
 307 * All MemoryRegions must have an owner if they can disappear, even if the
 308 * device they belong to operates exclusively under the BQL.  This is because
 309 * the region could be returned at any time by memory_region_find, and this
 310 * is usually under guest control.
 311 *
 312 * @mr: the #MemoryRegion
 313 */
 314void memory_region_ref(MemoryRegion *mr);
 315
 316/**
 317 * memory_region_unref: Remove 1 to a memory region's reference count
 318 *
 319 * Whenever memory regions are accessed outside the BQL, they need to be
 320 * preserved against hot-unplug.  MemoryRegions actually do not have their
 321 * own reference count; they piggyback on a QOM object, their "owner".
 322 * This function removes a reference to the owner and possibly destroys it.
 323 *
 324 * @mr: the #MemoryRegion
 325 */
 326void memory_region_unref(MemoryRegion *mr);
 327
 328/**
 329 * memory_region_init_io: Initialize an I/O memory region.
 330 *
 331 * Accesses into the region will cause the callbacks in @ops to be called.
 332 * if @size is nonzero, subregions will be clipped to @size.
 333 *
 334 * @mr: the #MemoryRegion to be initialized.
 335 * @owner: the object that tracks the region's reference count
 336 * @ops: a structure containing read and write callbacks to be used when
 337 *       I/O is performed on the region.
 338 * @opaque: passed to the read and write callbacks of the @ops structure.
 339 * @name: used for debugging; not visible to the user or ABI
 340 * @size: size of the region.
 341 */
 342void memory_region_init_io(MemoryRegion *mr,
 343                           struct Object *owner,
 344                           const MemoryRegionOps *ops,
 345                           void *opaque,
 346                           const char *name,
 347                           uint64_t size);
 348
 349/**
 350 * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
 351 *                          region will modify memory directly.
 352 *
 353 * @mr: the #MemoryRegion to be initialized.
 354 * @owner: the object that tracks the region's reference count
 355 * @name: the name of the region.
 356 * @size: size of the region.
 357 * @errp: pointer to Error*, to store an error if it happens.
 358 */
 359void memory_region_init_ram(MemoryRegion *mr,
 360                            struct Object *owner,
 361                            const char *name,
 362                            uint64_t size,
 363                            Error **errp);
 364
 365/**
 366 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 367 *                                     RAM.  Accesses into the region will
 368 *                                     modify memory directly.  Only an initial
 369 *                                     portion of this RAM is actually used.
 370 *                                     The used size can change across reboots.
 371 *
 372 * @mr: the #MemoryRegion to be initialized.
 373 * @owner: the object that tracks the region's reference count
 374 * @name: the name of the region.
 375 * @size: used size of the region.
 376 * @max_size: max size of the region.
 377 * @resized: callback to notify owner about used size change.
 378 * @errp: pointer to Error*, to store an error if it happens.
 379 */
 380void memory_region_init_resizeable_ram(MemoryRegion *mr,
 381                                       struct Object *owner,
 382                                       const char *name,
 383                                       uint64_t size,
 384                                       uint64_t max_size,
 385                                       void (*resized)(const char*,
 386                                                       uint64_t length,
 387                                                       void *host),
 388                                       Error **errp);
 389#ifdef __linux__
 390/**
 391 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 392 *                                    mmap-ed backend.
 393 *
 394 * @mr: the #MemoryRegion to be initialized.
 395 * @owner: the object that tracks the region's reference count
 396 * @name: the name of the region.
 397 * @size: size of the region.
 398 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 399 * @path: the path in which to allocate the RAM.
 400 * @errp: pointer to Error*, to store an error if it happens.
 401 */
 402void memory_region_init_ram_from_file(MemoryRegion *mr,
 403                                      struct Object *owner,
 404                                      const char *name,
 405                                      uint64_t size,
 406                                      bool share,
 407                                      const char *path,
 408                                      Error **errp);
 409#endif
 410
 411/**
 412 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 413 *                              user-provided pointer.  Accesses into the
 414 *                              region will modify memory directly.
 415 *
 416 * @mr: the #MemoryRegion to be initialized.
 417 * @owner: the object that tracks the region's reference count
 418 * @name: the name of the region.
 419 * @size: size of the region.
 420 * @ptr: memory to be mapped; must contain at least @size bytes.
 421 */
 422void memory_region_init_ram_ptr(MemoryRegion *mr,
 423                                struct Object *owner,
 424                                const char *name,
 425                                uint64_t size,
 426                                void *ptr);
 427
 428/**
 429 * memory_region_init_alias: Initialize a memory region that aliases all or a
 430 *                           part of another memory region.
 431 *
 432 * @mr: the #MemoryRegion to be initialized.
 433 * @owner: the object that tracks the region's reference count
 434 * @name: used for debugging; not visible to the user or ABI
 435 * @orig: the region to be referenced; @mr will be equivalent to
 436 *        @orig between @offset and @offset + @size - 1.
 437 * @offset: start of the section in @orig to be referenced.
 438 * @size: size of the region.
 439 */
 440void memory_region_init_alias(MemoryRegion *mr,
 441                              struct Object *owner,
 442                              const char *name,
 443                              MemoryRegion *orig,
 444                              hwaddr offset,
 445                              uint64_t size);
 446
 447/**
 448 * memory_region_init_rom: Initialize a ROM memory region.
 449 *
 450 * This has the same effect as calling memory_region_init_ram()
 451 * and then marking the resulting region read-only with
 452 * memory_region_set_readonly().
 453 *
 454 * @mr: the #MemoryRegion to be initialized.
 455 * @owner: the object that tracks the region's reference count
 456 * @name: the name of the region.
 457 * @size: size of the region.
 458 * @errp: pointer to Error*, to store an error if it happens.
 459 */
 460void memory_region_init_rom(MemoryRegion *mr,
 461                            struct Object *owner,
 462                            const char *name,
 463                            uint64_t size,
 464                            Error **errp);
 465
 466/**
 467 * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
 468 *                                 handled via callbacks.
 469 *
 470 * @mr: the #MemoryRegion to be initialized.
 471 * @owner: the object that tracks the region's reference count
 472 * @ops: callbacks for write access handling (must not be NULL).
 473 * @name: the name of the region.
 474 * @size: size of the region.
 475 * @errp: pointer to Error*, to store an error if it happens.
 476 */
 477void memory_region_init_rom_device(MemoryRegion *mr,
 478                                   struct Object *owner,
 479                                   const MemoryRegionOps *ops,
 480                                   void *opaque,
 481                                   const char *name,
 482                                   uint64_t size,
 483                                   Error **errp);
 484
 485/**
 486 * memory_region_init_reservation: Initialize a memory region that reserves
 487 *                                 I/O space.
 488 *
 489 * A reservation region primariy serves debugging purposes.  It claims I/O
 490 * space that is not supposed to be handled by QEMU itself.  Any access via
 491 * the memory API will cause an abort().
 492 * This function is deprecated. Use memory_region_init_io() with NULL
 493 * callbacks instead.
 494 *
 495 * @mr: the #MemoryRegion to be initialized
 496 * @owner: the object that tracks the region's reference count
 497 * @name: used for debugging; not visible to the user or ABI
 498 * @size: size of the region.
 499 */
 500static inline void memory_region_init_reservation(MemoryRegion *mr,
 501                                    Object *owner,
 502                                    const char *name,
 503                                    uint64_t size)
 504{
 505    memory_region_init_io(mr, owner, NULL, mr, name, size);
 506}
 507
 508/**
 509 * memory_region_init_iommu: Initialize a memory region that translates
 510 * addresses
 511 *
 512 * An IOMMU region translates addresses and forwards accesses to a target
 513 * memory region.
 514 *
 515 * @mr: the #MemoryRegion to be initialized
 516 * @owner: the object that tracks the region's reference count
 517 * @ops: a function that translates addresses into the @target region
 518 * @name: used for debugging; not visible to the user or ABI
 519 * @size: size of the region.
 520 */
 521void memory_region_init_iommu(MemoryRegion *mr,
 522                              struct Object *owner,
 523                              const MemoryRegionIOMMUOps *ops,
 524                              const char *name,
 525                              uint64_t size);
 526
 527/**
 528 * memory_region_owner: get a memory region's owner.
 529 *
 530 * @mr: the memory region being queried.
 531 */
 532struct Object *memory_region_owner(MemoryRegion *mr);
 533
 534/**
 535 * memory_region_size: get a memory region's size.
 536 *
 537 * @mr: the memory region being queried.
 538 */
 539uint64_t memory_region_size(MemoryRegion *mr);
 540
 541/**
 542 * memory_region_is_ram: check whether a memory region is random access
 543 *
 544 * Returns %true is a memory region is random access.
 545 *
 546 * @mr: the memory region being queried
 547 */
 548static inline bool memory_region_is_ram(MemoryRegion *mr)
 549{
 550    return mr->ram;
 551}
 552
 553/**
 554 * memory_region_is_skip_dump: check whether a memory region should not be
 555 *                             dumped
 556 *
 557 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
 558 *
 559 * @mr: the memory region being queried
 560 */
 561bool memory_region_is_skip_dump(MemoryRegion *mr);
 562
 563/**
 564 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
 565 *                              region
 566 *
 567 * @mr: the memory region being queried
 568 */
 569void memory_region_set_skip_dump(MemoryRegion *mr);
 570
 571/**
 572 * memory_region_is_romd: check whether a memory region is in ROMD mode
 573 *
 574 * Returns %true if a memory region is a ROM device and currently set to allow
 575 * direct reads.
 576 *
 577 * @mr: the memory region being queried
 578 */
 579static inline bool memory_region_is_romd(MemoryRegion *mr)
 580{
 581    return mr->rom_device && mr->romd_mode;
 582}
 583
 584/**
 585 * memory_region_is_iommu: check whether a memory region is an iommu
 586 *
 587 * Returns %true is a memory region is an iommu.
 588 *
 589 * @mr: the memory region being queried
 590 */
 591static inline bool memory_region_is_iommu(MemoryRegion *mr)
 592{
 593    return mr->iommu_ops;
 594}
 595
 596
 597/**
 598 * memory_region_iommu_get_min_page_size: get minimum supported page size
 599 * for an iommu
 600 *
 601 * Returns minimum supported page size for an iommu.
 602 *
 603 * @mr: the memory region being queried
 604 */
 605uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
 606
 607/**
 608 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 609 *
 610 * @mr: the memory region that was changed
 611 * @entry: the new entry in the IOMMU translation table.  The entry
 612 *         replaces all old entries for the same virtual I/O address range.
 613 *         Deleted entries have .@perm == 0.
 614 */
 615void memory_region_notify_iommu(MemoryRegion *mr,
 616                                IOMMUTLBEntry entry);
 617
 618/**
 619 * memory_region_register_iommu_notifier: register a notifier for changes to
 620 * IOMMU translation entries.
 621 *
 622 * @mr: the memory region to observe
 623 * @n: the notifier to be added; the notifier receives a pointer to an
 624 *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
 625 *     valid on exit from the notifier.
 626 */
 627void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
 628
 629/**
 630 * memory_region_iommu_replay: replay existing IOMMU translations to
 631 * a notifier with the minimum page granularity returned by
 632 * mr->iommu_ops->get_page_size().
 633 *
 634 * @mr: the memory region to observe
 635 * @n: the notifier to which to replay iommu mappings
 636 * @is_write: Whether to treat the replay as a translate "write"
 637 *     through the iommu
 638 */
 639void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n, bool is_write);
 640
 641/**
 642 * memory_region_unregister_iommu_notifier: unregister a notifier for
 643 * changes to IOMMU translation entries.
 644 *
 645 * @mr: the memory region which was observed and for which notity_stopped()
 646 *      needs to be called
 647 * @n: the notifier to be removed.
 648 */
 649void memory_region_unregister_iommu_notifier(MemoryRegion *mr, Notifier *n);
 650
 651/**
 652 * memory_region_name: get a memory region's name
 653 *
 654 * Returns the string that was used to initialize the memory region.
 655 *
 656 * @mr: the memory region being queried
 657 */
 658const char *memory_region_name(const MemoryRegion *mr);
 659
 660/**
 661 * memory_region_is_logging: return whether a memory region is logging writes
 662 *
 663 * Returns %true if the memory region is logging writes for the given client
 664 *
 665 * @mr: the memory region being queried
 666 * @client: the client being queried
 667 */
 668bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
 669
 670/**
 671 * memory_region_get_dirty_log_mask: return the clients for which a
 672 * memory region is logging writes.
 673 *
 674 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
 675 * are the bit indices.
 676 *
 677 * @mr: the memory region being queried
 678 */
 679uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
 680
 681/**
 682 * memory_region_is_rom: check whether a memory region is ROM
 683 *
 684 * Returns %true is a memory region is read-only memory.
 685 *
 686 * @mr: the memory region being queried
 687 */
 688static inline bool memory_region_is_rom(MemoryRegion *mr)
 689{
 690    return mr->ram && mr->readonly;
 691}
 692
 693
 694/**
 695 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
 696 *
 697 * Returns a file descriptor backing a file-based RAM memory region,
 698 * or -1 if the region is not a file-based RAM memory region.
 699 *
 700 * @mr: the RAM or alias memory region being queried.
 701 */
 702int memory_region_get_fd(MemoryRegion *mr);
 703
 704/**
 705 * memory_region_set_fd: Mark a RAM memory region as backed by a
 706 * file descriptor.
 707 *
 708 * This function is typically used after memory_region_init_ram_ptr().
 709 *
 710 * @mr: the memory region being queried.
 711 * @fd: the file descriptor that backs @mr.
 712 */
 713void memory_region_set_fd(MemoryRegion *mr, int fd);
 714
 715/**
 716 * memory_region_from_host: Convert a pointer into a RAM memory region
 717 * and an offset within it.
 718 *
 719 * Given a host pointer inside a RAM memory region (created with
 720 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
 721 * the MemoryRegion and the offset within it.
 722 *
 723 * Use with care; by the time this function returns, the returned pointer is
 724 * not protected by RCU anymore.  If the caller is not within an RCU critical
 725 * section and does not hold the iothread lock, it must have other means of
 726 * protecting the pointer, such as a reference to the region that includes
 727 * the incoming ram_addr_t.
 728 *
 729 * @mr: the memory region being queried.
 730 */
 731MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
 732
 733/**
 734 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
 735 *
 736 * Returns a host pointer to a RAM memory region (created with
 737 * memory_region_init_ram() or memory_region_init_ram_ptr()).
 738 *
 739 * Use with care; by the time this function returns, the returned pointer is
 740 * not protected by RCU anymore.  If the caller is not within an RCU critical
 741 * section and does not hold the iothread lock, it must have other means of
 742 * protecting the pointer, such as a reference to the region that includes
 743 * the incoming ram_addr_t.
 744 *
 745 * @mr: the memory region being queried.
 746 */
 747void *memory_region_get_ram_ptr(MemoryRegion *mr);
 748
 749/* memory_region_ram_resize: Resize a RAM region.
 750 *
 751 * Only legal before guest might have detected the memory size: e.g. on
 752 * incoming migration, or right after reset.
 753 *
 754 * @mr: a memory region created with @memory_region_init_resizeable_ram.
 755 * @newsize: the new size the region
 756 * @errp: pointer to Error*, to store an error if it happens.
 757 */
 758void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
 759                              Error **errp);
 760
 761/**
 762 * memory_region_set_log: Turn dirty logging on or off for a region.
 763 *
 764 * Turns dirty logging on or off for a specified client (display, migration).
 765 * Only meaningful for RAM regions.
 766 *
 767 * @mr: the memory region being updated.
 768 * @log: whether dirty logging is to be enabled or disabled.
 769 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
 770 */
 771void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
 772
 773/**
 774 * memory_region_get_dirty: Check whether a range of bytes is dirty
 775 *                          for a specified client.
 776 *
 777 * Checks whether a range of bytes has been written to since the last
 778 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 779 * must be enabled.
 780 *
 781 * @mr: the memory region being queried.
 782 * @addr: the address (relative to the start of the region) being queried.
 783 * @size: the size of the range being queried.
 784 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 785 *          %DIRTY_MEMORY_VGA.
 786 */
 787bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
 788                             hwaddr size, unsigned client);
 789
 790/**
 791 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
 792 *
 793 * Marks a range of bytes as dirty, after it has been dirtied outside
 794 * guest code.
 795 *
 796 * @mr: the memory region being dirtied.
 797 * @addr: the address (relative to the start of the region) being dirtied.
 798 * @size: size of the range being dirtied.
 799 */
 800void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
 801                             hwaddr size);
 802
 803/**
 804 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
 805 *                                     for a specified client. It clears them.
 806 *
 807 * Checks whether a range of bytes has been written to since the last
 808 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 809 * must be enabled.
 810 *
 811 * @mr: the memory region being queried.
 812 * @addr: the address (relative to the start of the region) being queried.
 813 * @size: the size of the range being queried.
 814 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 815 *          %DIRTY_MEMORY_VGA.
 816 */
 817bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
 818                                        hwaddr size, unsigned client);
 819/**
 820 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
 821 *                                  any external TLBs (e.g. kvm)
 822 *
 823 * Flushes dirty information from accelerators such as kvm and vhost-net
 824 * and makes it available to users of the memory API.
 825 *
 826 * @mr: the region being flushed.
 827 */
 828void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
 829
 830/**
 831 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
 832 *                            client.
 833 *
 834 * Marks a range of pages as no longer dirty.
 835 *
 836 * @mr: the region being updated.
 837 * @addr: the start of the subrange being cleaned.
 838 * @size: the size of the subrange being cleaned.
 839 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 840 *          %DIRTY_MEMORY_VGA.
 841 */
 842void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
 843                               hwaddr size, unsigned client);
 844
 845/**
 846 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
 847 *
 848 * Allows a memory region to be marked as read-only (turning it into a ROM).
 849 * only useful on RAM regions.
 850 *
 851 * @mr: the region being updated.
 852 * @readonly: whether rhe region is to be ROM or RAM.
 853 */
 854void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
 855
 856/**
 857 * memory_region_rom_device_set_romd: enable/disable ROMD mode
 858 *
 859 * Allows a ROM device (initialized with memory_region_init_rom_device() to
 860 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
 861 * device is mapped to guest memory and satisfies read access directly.
 862 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
 863 * Writes are always handled by the #MemoryRegion.write function.
 864 *
 865 * @mr: the memory region to be updated
 866 * @romd_mode: %true to put the region into ROMD mode
 867 */
 868void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
 869
 870/**
 871 * memory_region_set_coalescing: Enable memory coalescing for the region.
 872 *
 873 * Enabled writes to a region to be queued for later processing. MMIO ->write
 874 * callbacks may be delayed until a non-coalesced MMIO is issued.
 875 * Only useful for IO regions.  Roughly similar to write-combining hardware.
 876 *
 877 * @mr: the memory region to be write coalesced
 878 */
 879void memory_region_set_coalescing(MemoryRegion *mr);
 880
 881/**
 882 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
 883 *                               a region.
 884 *
 885 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
 886 * Multiple calls can be issued coalesced disjoint ranges.
 887 *
 888 * @mr: the memory region to be updated.
 889 * @offset: the start of the range within the region to be coalesced.
 890 * @size: the size of the subrange to be coalesced.
 891 */
 892void memory_region_add_coalescing(MemoryRegion *mr,
 893                                  hwaddr offset,
 894                                  uint64_t size);
 895
 896/**
 897 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
 898 *
 899 * Disables any coalescing caused by memory_region_set_coalescing() or
 900 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
 901 * hardware.
 902 *
 903 * @mr: the memory region to be updated.
 904 */
 905void memory_region_clear_coalescing(MemoryRegion *mr);
 906
 907/**
 908 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
 909 *                                    accesses.
 910 *
 911 * Ensure that pending coalesced MMIO request are flushed before the memory
 912 * region is accessed. This property is automatically enabled for all regions
 913 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
 914 *
 915 * @mr: the memory region to be updated.
 916 */
 917void memory_region_set_flush_coalesced(MemoryRegion *mr);
 918
 919/**
 920 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
 921 *                                      accesses.
 922 *
 923 * Clear the automatic coalesced MMIO flushing enabled via
 924 * memory_region_set_flush_coalesced. Note that this service has no effect on
 925 * memory regions that have MMIO coalescing enabled for themselves. For them,
 926 * automatic flushing will stop once coalescing is disabled.
 927 *
 928 * @mr: the memory region to be updated.
 929 */
 930void memory_region_clear_flush_coalesced(MemoryRegion *mr);
 931
 932/**
 933 * memory_region_set_global_locking: Declares the access processing requires
 934 *                                   QEMU's global lock.
 935 *
 936 * When this is invoked, accesses to the memory region will be processed while
 937 * holding the global lock of QEMU. This is the default behavior of memory
 938 * regions.
 939 *
 940 * @mr: the memory region to be updated.
 941 */
 942void memory_region_set_global_locking(MemoryRegion *mr);
 943
 944/**
 945 * memory_region_clear_global_locking: Declares that access processing does
 946 *                                     not depend on the QEMU global lock.
 947 *
 948 * By clearing this property, accesses to the memory region will be processed
 949 * outside of QEMU's global lock (unless the lock is held on when issuing the
 950 * access request). In this case, the device model implementing the access
 951 * handlers is responsible for synchronization of concurrency.
 952 *
 953 * @mr: the memory region to be updated.
 954 */
 955void memory_region_clear_global_locking(MemoryRegion *mr);
 956
 957/**
 958 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
 959 *                            is written to a location.
 960 *
 961 * Marks a word in an IO region (initialized with memory_region_init_io())
 962 * as a trigger for an eventfd event.  The I/O callback will not be called.
 963 * The caller must be prepared to handle failure (that is, take the required
 964 * action if the callback _is_ called).
 965 *
 966 * @mr: the memory region being updated.
 967 * @addr: the address within @mr that is to be monitored
 968 * @size: the size of the access to trigger the eventfd
 969 * @match_data: whether to match against @data, instead of just @addr
 970 * @data: the data to match against the guest write
 971 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 972 **/
 973void memory_region_add_eventfd(MemoryRegion *mr,
 974                               hwaddr addr,
 975                               unsigned size,
 976                               bool match_data,
 977                               uint64_t data,
 978                               EventNotifier *e);
 979
 980/**
 981 * memory_region_del_eventfd: Cancel an eventfd.
 982 *
 983 * Cancels an eventfd trigger requested by a previous
 984 * memory_region_add_eventfd() call.
 985 *
 986 * @mr: the memory region being updated.
 987 * @addr: the address within @mr that is to be monitored
 988 * @size: the size of the access to trigger the eventfd
 989 * @match_data: whether to match against @data, instead of just @addr
 990 * @data: the data to match against the guest write
 991 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 992 */
 993void memory_region_del_eventfd(MemoryRegion *mr,
 994                               hwaddr addr,
 995                               unsigned size,
 996                               bool match_data,
 997                               uint64_t data,
 998                               EventNotifier *e);
 999
1000/**
1001 * memory_region_add_subregion: Add a subregion to a container.
1002 *
1003 * Adds a subregion at @offset.  The subregion may not overlap with other
1004 * subregions (except for those explicitly marked as overlapping).  A region
1005 * may only be added once as a subregion (unless removed with
1006 * memory_region_del_subregion()); use memory_region_init_alias() if you
1007 * want a region to be a subregion in multiple locations.
1008 *
1009 * @mr: the region to contain the new subregion; must be a container
1010 *      initialized with memory_region_init().
1011 * @offset: the offset relative to @mr where @subregion is added.
1012 * @subregion: the subregion to be added.
1013 */
1014void memory_region_add_subregion(MemoryRegion *mr,
1015                                 hwaddr offset,
1016                                 MemoryRegion *subregion);
1017/**
1018 * memory_region_add_subregion_overlap: Add a subregion to a container
1019 *                                      with overlap.
1020 *
1021 * Adds a subregion at @offset.  The subregion may overlap with other
1022 * subregions.  Conflicts are resolved by having a higher @priority hide a
1023 * lower @priority. Subregions without priority are taken as @priority 0.
1024 * A region may only be added once as a subregion (unless removed with
1025 * memory_region_del_subregion()); use memory_region_init_alias() if you
1026 * want a region to be a subregion in multiple locations.
1027 *
1028 * @mr: the region to contain the new subregion; must be a container
1029 *      initialized with memory_region_init().
1030 * @offset: the offset relative to @mr where @subregion is added.
1031 * @subregion: the subregion to be added.
1032 * @priority: used for resolving overlaps; highest priority wins.
1033 */
1034void memory_region_add_subregion_overlap(MemoryRegion *mr,
1035                                         hwaddr offset,
1036                                         MemoryRegion *subregion,
1037                                         int priority);
1038
1039/**
1040 * memory_region_get_ram_addr: Get the ram address associated with a memory
1041 *                             region
1042 */
1043ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1044
1045uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1046/**
1047 * memory_region_del_subregion: Remove a subregion.
1048 *
1049 * Removes a subregion from its container.
1050 *
1051 * @mr: the container to be updated.
1052 * @subregion: the region being removed; must be a current subregion of @mr.
1053 */
1054void memory_region_del_subregion(MemoryRegion *mr,
1055                                 MemoryRegion *subregion);
1056
1057/*
1058 * memory_region_set_enabled: dynamically enable or disable a region
1059 *
1060 * Enables or disables a memory region.  A disabled memory region
1061 * ignores all accesses to itself and its subregions.  It does not
1062 * obscure sibling subregions with lower priority - it simply behaves as
1063 * if it was removed from the hierarchy.
1064 *
1065 * Regions default to being enabled.
1066 *
1067 * @mr: the region to be updated
1068 * @enabled: whether to enable or disable the region
1069 */
1070void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1071
1072/*
1073 * memory_region_set_address: dynamically update the address of a region
1074 *
1075 * Dynamically updates the address of a region, relative to its container.
1076 * May be used on regions are currently part of a memory hierarchy.
1077 *
1078 * @mr: the region to be updated
1079 * @addr: new address, relative to container region
1080 */
1081void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1082
1083/*
1084 * memory_region_set_size: dynamically update the size of a region.
1085 *
1086 * Dynamically updates the size of a region.
1087 *
1088 * @mr: the region to be updated
1089 * @size: used size of the region.
1090 */
1091void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1092
1093/*
1094 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1095 *
1096 * Dynamically updates the offset into the target region that an alias points
1097 * to, as if the fourth argument to memory_region_init_alias() has changed.
1098 *
1099 * @mr: the #MemoryRegion to be updated; should be an alias.
1100 * @offset: the new offset into the target memory region
1101 */
1102void memory_region_set_alias_offset(MemoryRegion *mr,
1103                                    hwaddr offset);
1104
1105/**
1106 * memory_region_present: checks if an address relative to a @container
1107 * translates into #MemoryRegion within @container
1108 *
1109 * Answer whether a #MemoryRegion within @container covers the address
1110 * @addr.
1111 *
1112 * @container: a #MemoryRegion within which @addr is a relative address
1113 * @addr: the area within @container to be searched
1114 */
1115bool memory_region_present(MemoryRegion *container, hwaddr addr);
1116
1117/**
1118 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1119 * into any address space.
1120 *
1121 * @mr: a #MemoryRegion which should be checked if it's mapped
1122 */
1123bool memory_region_is_mapped(MemoryRegion *mr);
1124
1125/**
1126 * memory_region_find: translate an address/size relative to a
1127 * MemoryRegion into a #MemoryRegionSection.
1128 *
1129 * Locates the first #MemoryRegion within @mr that overlaps the range
1130 * given by @addr and @size.
1131 *
1132 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1133 * It will have the following characteristics:
1134 *    .@size = 0 iff no overlap was found
1135 *    .@mr is non-%NULL iff an overlap was found
1136 *
1137 * Remember that in the return value the @offset_within_region is
1138 * relative to the returned region (in the .@mr field), not to the
1139 * @mr argument.
1140 *
1141 * Similarly, the .@offset_within_address_space is relative to the
1142 * address space that contains both regions, the passed and the
1143 * returned one.  However, in the special case where the @mr argument
1144 * has no container (and thus is the root of the address space), the
1145 * following will hold:
1146 *    .@offset_within_address_space >= @addr
1147 *    .@offset_within_address_space + .@size <= @addr + @size
1148 *
1149 * @mr: a MemoryRegion within which @addr is a relative address
1150 * @addr: start of the area within @as to be searched
1151 * @size: size of the area to be searched
1152 */
1153MemoryRegionSection memory_region_find(MemoryRegion *mr,
1154                                       hwaddr addr, uint64_t size);
1155
1156/**
1157 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1158 *
1159 * Synchronizes the dirty page log for an entire address space.
1160 * @as: the address space that contains the memory being synchronized
1161 */
1162void address_space_sync_dirty_bitmap(AddressSpace *as);
1163
1164/**
1165 * memory_region_transaction_begin: Start a transaction.
1166 *
1167 * During a transaction, changes will be accumulated and made visible
1168 * only when the transaction ends (is committed).
1169 */
1170void memory_region_transaction_begin(void);
1171
1172/**
1173 * memory_region_transaction_commit: Commit a transaction and make changes
1174 *                                   visible to the guest.
1175 */
1176void memory_region_transaction_commit(void);
1177
1178/**
1179 * memory_listener_register: register callbacks to be called when memory
1180 *                           sections are mapped or unmapped into an address
1181 *                           space
1182 *
1183 * @listener: an object containing the callbacks to be called
1184 * @filter: if non-%NULL, only regions in this address space will be observed
1185 */
1186void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1187
1188/**
1189 * memory_listener_unregister: undo the effect of memory_listener_register()
1190 *
1191 * @listener: an object containing the callbacks to be removed
1192 */
1193void memory_listener_unregister(MemoryListener *listener);
1194
1195/**
1196 * memory_global_dirty_log_start: begin dirty logging for all regions
1197 */
1198void memory_global_dirty_log_start(void);
1199
1200/**
1201 * memory_global_dirty_log_stop: end dirty logging for all regions
1202 */
1203void memory_global_dirty_log_stop(void);
1204
1205void mtree_info(fprintf_function mon_printf, void *f);
1206
1207/**
1208 * memory_region_dispatch_read: perform a read directly to the specified
1209 * MemoryRegion.
1210 *
1211 * @mr: #MemoryRegion to access
1212 * @addr: address within that region
1213 * @pval: pointer to uint64_t which the data is written to
1214 * @size: size of the access in bytes
1215 * @attrs: memory transaction attributes to use for the access
1216 */
1217MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1218                                        hwaddr addr,
1219                                        uint64_t *pval,
1220                                        unsigned size,
1221                                        MemTxAttrs attrs);
1222/**
1223 * memory_region_dispatch_write: perform a write directly to the specified
1224 * MemoryRegion.
1225 *
1226 * @mr: #MemoryRegion to access
1227 * @addr: address within that region
1228 * @data: data to write
1229 * @size: size of the access in bytes
1230 * @attrs: memory transaction attributes to use for the access
1231 */
1232MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1233                                         hwaddr addr,
1234                                         uint64_t data,
1235                                         unsigned size,
1236                                         MemTxAttrs attrs);
1237
1238/**
1239 * address_space_init: initializes an address space
1240 *
1241 * @as: an uninitialized #AddressSpace
1242 * @root: a #MemoryRegion that routes addresses for the address space
1243 * @name: an address space name.  The name is only used for debugging
1244 *        output.
1245 */
1246void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1247
1248/**
1249 * address_space_init_shareable: return an address space for a memory region,
1250 *                               creating it if it does not already exist
1251 *
1252 * @root: a #MemoryRegion that routes addresses for the address space
1253 * @name: an address space name.  The name is only used for debugging
1254 *        output.
1255 *
1256 * This function will return a pointer to an existing AddressSpace
1257 * which was initialized with the specified MemoryRegion, or it will
1258 * create and initialize one if it does not already exist. The ASes
1259 * are reference-counted, so the memory will be freed automatically
1260 * when the AddressSpace is destroyed via address_space_destroy.
1261 */
1262AddressSpace *address_space_init_shareable(MemoryRegion *root,
1263                                           const char *name);
1264
1265/**
1266 * address_space_destroy: destroy an address space
1267 *
1268 * Releases all resources associated with an address space.  After an address space
1269 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1270 * as well.
1271 *
1272 * @as: address space to be destroyed
1273 */
1274void address_space_destroy(AddressSpace *as);
1275
1276/**
1277 * address_space_rw: read from or write to an address space.
1278 *
1279 * Return a MemTxResult indicating whether the operation succeeded
1280 * or failed (eg unassigned memory, device rejected the transaction,
1281 * IOMMU fault).
1282 *
1283 * @as: #AddressSpace to be accessed
1284 * @addr: address within that address space
1285 * @attrs: memory transaction attributes
1286 * @buf: buffer with the data transferred
1287 * @is_write: indicates the transfer direction
1288 */
1289MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1290                             MemTxAttrs attrs, uint8_t *buf,
1291                             int len, bool is_write);
1292
1293/**
1294 * address_space_write: write to address space.
1295 *
1296 * Return a MemTxResult indicating whether the operation succeeded
1297 * or failed (eg unassigned memory, device rejected the transaction,
1298 * IOMMU fault).
1299 *
1300 * @as: #AddressSpace to be accessed
1301 * @addr: address within that address space
1302 * @attrs: memory transaction attributes
1303 * @buf: buffer with the data transferred
1304 */
1305MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1306                                MemTxAttrs attrs,
1307                                const uint8_t *buf, int len);
1308
1309/* address_space_ld*: load from an address space
1310 * address_space_st*: store to an address space
1311 *
1312 * These functions perform a load or store of the byte, word,
1313 * longword or quad to the specified address within the AddressSpace.
1314 * The _le suffixed functions treat the data as little endian;
1315 * _be indicates big endian; no suffix indicates "same endianness
1316 * as guest CPU".
1317 *
1318 * The "guest CPU endianness" accessors are deprecated for use outside
1319 * target-* code; devices should be CPU-agnostic and use either the LE
1320 * or the BE accessors.
1321 *
1322 * @as #AddressSpace to be accessed
1323 * @addr: address within that address space
1324 * @val: data value, for stores
1325 * @attrs: memory transaction attributes
1326 * @result: location to write the success/failure of the transaction;
1327 *   if NULL, this information is discarded
1328 */
1329uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1330                            MemTxAttrs attrs, MemTxResult *result);
1331uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1332                            MemTxAttrs attrs, MemTxResult *result);
1333uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1334                            MemTxAttrs attrs, MemTxResult *result);
1335uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1336                            MemTxAttrs attrs, MemTxResult *result);
1337uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1338                            MemTxAttrs attrs, MemTxResult *result);
1339uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1340                            MemTxAttrs attrs, MemTxResult *result);
1341uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1342                            MemTxAttrs attrs, MemTxResult *result);
1343void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1344                            MemTxAttrs attrs, MemTxResult *result);
1345void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1346                            MemTxAttrs attrs, MemTxResult *result);
1347void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1348                            MemTxAttrs attrs, MemTxResult *result);
1349void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1350                            MemTxAttrs attrs, MemTxResult *result);
1351void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1352                            MemTxAttrs attrs, MemTxResult *result);
1353void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1354                            MemTxAttrs attrs, MemTxResult *result);
1355void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1356                            MemTxAttrs attrs, MemTxResult *result);
1357
1358/* address_space_translate: translate an address range into an address space
1359 * into a MemoryRegion and an address range into that section.  Should be
1360 * called from an RCU critical section, to avoid that the last reference
1361 * to the returned region disappears after address_space_translate returns.
1362 *
1363 * @as: #AddressSpace to be accessed
1364 * @addr: address within that address space
1365 * @xlat: pointer to address within the returned memory region section's
1366 * #MemoryRegion.
1367 * @len: pointer to length
1368 * @is_write: indicates the transfer direction
1369 */
1370MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1371                                      hwaddr *xlat, hwaddr *len,
1372                                      bool is_write);
1373
1374/* address_space_access_valid: check for validity of accessing an address
1375 * space range
1376 *
1377 * Check whether memory is assigned to the given address space range, and
1378 * access is permitted by any IOMMU regions that are active for the address
1379 * space.
1380 *
1381 * For now, addr and len should be aligned to a page size.  This limitation
1382 * will be lifted in the future.
1383 *
1384 * @as: #AddressSpace to be accessed
1385 * @addr: address within that address space
1386 * @len: length of the area to be checked
1387 * @is_write: indicates the transfer direction
1388 */
1389bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1390
1391/* address_space_map: map a physical memory region into a host virtual address
1392 *
1393 * May map a subset of the requested range, given by and returned in @plen.
1394 * May return %NULL if resources needed to perform the mapping are exhausted.
1395 * Use only for reads OR writes - not for read-modify-write operations.
1396 * Use cpu_register_map_client() to know when retrying the map operation is
1397 * likely to succeed.
1398 *
1399 * @as: #AddressSpace to be accessed
1400 * @addr: address within that address space
1401 * @plen: pointer to length of buffer; updated on return
1402 * @is_write: indicates the transfer direction
1403 */
1404void *address_space_map(AddressSpace *as, hwaddr addr,
1405                        hwaddr *plen, bool is_write);
1406
1407/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1408 *
1409 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1410 * the amount of memory that was actually read or written by the caller.
1411 *
1412 * @as: #AddressSpace used
1413 * @addr: address within that address space
1414 * @len: buffer length as returned by address_space_map()
1415 * @access_len: amount of data actually transferred
1416 * @is_write: indicates the transfer direction
1417 */
1418void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1419                         int is_write, hwaddr access_len);
1420
1421
1422/* Internal functions, part of the implementation of address_space_read.  */
1423MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1424                                        MemTxAttrs attrs, uint8_t *buf,
1425                                        int len, hwaddr addr1, hwaddr l,
1426                                        MemoryRegion *mr);
1427MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1428                                    MemTxAttrs attrs, uint8_t *buf, int len);
1429void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1430
1431static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1432{
1433    if (is_write) {
1434        return memory_region_is_ram(mr) && !mr->readonly;
1435    } else {
1436        return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1437    }
1438}
1439
1440/**
1441 * address_space_read: read from an address space.
1442 *
1443 * Return a MemTxResult indicating whether the operation succeeded
1444 * or failed (eg unassigned memory, device rejected the transaction,
1445 * IOMMU fault).
1446 *
1447 * @as: #AddressSpace to be accessed
1448 * @addr: address within that address space
1449 * @attrs: memory transaction attributes
1450 * @buf: buffer with the data transferred
1451 */
1452static inline __attribute__((__always_inline__))
1453MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1454                               uint8_t *buf, int len)
1455{
1456    MemTxResult result = MEMTX_OK;
1457    hwaddr l, addr1;
1458    void *ptr;
1459    MemoryRegion *mr;
1460
1461    if (__builtin_constant_p(len)) {
1462        if (len) {
1463            rcu_read_lock();
1464            l = len;
1465            mr = address_space_translate(as, addr, &addr1, &l, false);
1466            if (len == l && memory_access_is_direct(mr, false)) {
1467                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1468                memcpy(buf, ptr, len);
1469            } else {
1470                result = address_space_read_continue(as, addr, attrs, buf, len,
1471                                                     addr1, l, mr);
1472            }
1473            rcu_read_unlock();
1474        }
1475    } else {
1476        result = address_space_read_full(as, addr, attrs, buf, len);
1477    }
1478    return result;
1479}
1480
1481#endif
1482
1483#endif
1484