qemu/migration/rdma.c
<<
>>
Prefs
   1/*
   2 * RDMA protocol and interfaces
   3 *
   4 * Copyright IBM, Corp. 2010-2013
   5 * Copyright Red Hat, Inc. 2015-2016
   6 *
   7 * Authors:
   8 *  Michael R. Hines <mrhines@us.ibm.com>
   9 *  Jiuxing Liu <jl@us.ibm.com>
  10 *  Daniel P. Berrange <berrange@redhat.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or
  13 * later.  See the COPYING file in the top-level directory.
  14 *
  15 */
  16#include "qemu/osdep.h"
  17#include "qapi/error.h"
  18#include "qemu-common.h"
  19#include "qemu/cutils.h"
  20#include "migration/migration.h"
  21#include "migration/qemu-file.h"
  22#include "exec/cpu-common.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qemu/sockets.h"
  26#include "qemu/bitmap.h"
  27#include "qemu/coroutine.h"
  28#include <sys/socket.h>
  29#include <netdb.h>
  30#include <arpa/inet.h>
  31#include <rdma/rdma_cma.h>
  32#include "trace.h"
  33
  34/*
  35 * Print and error on both the Monitor and the Log file.
  36 */
  37#define ERROR(errp, fmt, ...) \
  38    do { \
  39        fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
  40        if (errp && (*(errp) == NULL)) { \
  41            error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
  42        } \
  43    } while (0)
  44
  45#define RDMA_RESOLVE_TIMEOUT_MS 10000
  46
  47/* Do not merge data if larger than this. */
  48#define RDMA_MERGE_MAX (2 * 1024 * 1024)
  49#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
  50
  51#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
  52
  53/*
  54 * This is only for non-live state being migrated.
  55 * Instead of RDMA_WRITE messages, we use RDMA_SEND
  56 * messages for that state, which requires a different
  57 * delivery design than main memory.
  58 */
  59#define RDMA_SEND_INCREMENT 32768
  60
  61/*
  62 * Maximum size infiniband SEND message
  63 */
  64#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
  65#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
  66
  67#define RDMA_CONTROL_VERSION_CURRENT 1
  68/*
  69 * Capabilities for negotiation.
  70 */
  71#define RDMA_CAPABILITY_PIN_ALL 0x01
  72
  73/*
  74 * Add the other flags above to this list of known capabilities
  75 * as they are introduced.
  76 */
  77static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
  78
  79#define CHECK_ERROR_STATE() \
  80    do { \
  81        if (rdma->error_state) { \
  82            if (!rdma->error_reported) { \
  83                error_report("RDMA is in an error state waiting migration" \
  84                                " to abort!"); \
  85                rdma->error_reported = 1; \
  86            } \
  87            return rdma->error_state; \
  88        } \
  89    } while (0);
  90
  91/*
  92 * A work request ID is 64-bits and we split up these bits
  93 * into 3 parts:
  94 *
  95 * bits 0-15 : type of control message, 2^16
  96 * bits 16-29: ram block index, 2^14
  97 * bits 30-63: ram block chunk number, 2^34
  98 *
  99 * The last two bit ranges are only used for RDMA writes,
 100 * in order to track their completion and potentially
 101 * also track unregistration status of the message.
 102 */
 103#define RDMA_WRID_TYPE_SHIFT  0UL
 104#define RDMA_WRID_BLOCK_SHIFT 16UL
 105#define RDMA_WRID_CHUNK_SHIFT 30UL
 106
 107#define RDMA_WRID_TYPE_MASK \
 108    ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
 109
 110#define RDMA_WRID_BLOCK_MASK \
 111    (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
 112
 113#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
 114
 115/*
 116 * RDMA migration protocol:
 117 * 1. RDMA Writes (data messages, i.e. RAM)
 118 * 2. IB Send/Recv (control channel messages)
 119 */
 120enum {
 121    RDMA_WRID_NONE = 0,
 122    RDMA_WRID_RDMA_WRITE = 1,
 123    RDMA_WRID_SEND_CONTROL = 2000,
 124    RDMA_WRID_RECV_CONTROL = 4000,
 125};
 126
 127static const char *wrid_desc[] = {
 128    [RDMA_WRID_NONE] = "NONE",
 129    [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
 130    [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
 131    [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
 132};
 133
 134/*
 135 * Work request IDs for IB SEND messages only (not RDMA writes).
 136 * This is used by the migration protocol to transmit
 137 * control messages (such as device state and registration commands)
 138 *
 139 * We could use more WRs, but we have enough for now.
 140 */
 141enum {
 142    RDMA_WRID_READY = 0,
 143    RDMA_WRID_DATA,
 144    RDMA_WRID_CONTROL,
 145    RDMA_WRID_MAX,
 146};
 147
 148/*
 149 * SEND/RECV IB Control Messages.
 150 */
 151enum {
 152    RDMA_CONTROL_NONE = 0,
 153    RDMA_CONTROL_ERROR,
 154    RDMA_CONTROL_READY,               /* ready to receive */
 155    RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
 156    RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
 157    RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
 158    RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
 159    RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
 160    RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
 161    RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
 162    RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
 163    RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
 164};
 165
 166static const char *control_desc[] = {
 167    [RDMA_CONTROL_NONE] = "NONE",
 168    [RDMA_CONTROL_ERROR] = "ERROR",
 169    [RDMA_CONTROL_READY] = "READY",
 170    [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
 171    [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
 172    [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
 173    [RDMA_CONTROL_COMPRESS] = "COMPRESS",
 174    [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
 175    [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
 176    [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
 177    [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
 178    [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
 179};
 180
 181/*
 182 * Memory and MR structures used to represent an IB Send/Recv work request.
 183 * This is *not* used for RDMA writes, only IB Send/Recv.
 184 */
 185typedef struct {
 186    uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
 187    struct   ibv_mr *control_mr;               /* registration metadata */
 188    size_t   control_len;                      /* length of the message */
 189    uint8_t *control_curr;                     /* start of unconsumed bytes */
 190} RDMAWorkRequestData;
 191
 192/*
 193 * Negotiate RDMA capabilities during connection-setup time.
 194 */
 195typedef struct {
 196    uint32_t version;
 197    uint32_t flags;
 198} RDMACapabilities;
 199
 200static void caps_to_network(RDMACapabilities *cap)
 201{
 202    cap->version = htonl(cap->version);
 203    cap->flags = htonl(cap->flags);
 204}
 205
 206static void network_to_caps(RDMACapabilities *cap)
 207{
 208    cap->version = ntohl(cap->version);
 209    cap->flags = ntohl(cap->flags);
 210}
 211
 212/*
 213 * Representation of a RAMBlock from an RDMA perspective.
 214 * This is not transmitted, only local.
 215 * This and subsequent structures cannot be linked lists
 216 * because we're using a single IB message to transmit
 217 * the information. It's small anyway, so a list is overkill.
 218 */
 219typedef struct RDMALocalBlock {
 220    char          *block_name;
 221    uint8_t       *local_host_addr; /* local virtual address */
 222    uint64_t       remote_host_addr; /* remote virtual address */
 223    uint64_t       offset;
 224    uint64_t       length;
 225    struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
 226    struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
 227    uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
 228    uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
 229    int            index;           /* which block are we */
 230    unsigned int   src_index;       /* (Only used on dest) */
 231    bool           is_ram_block;
 232    int            nb_chunks;
 233    unsigned long *transit_bitmap;
 234    unsigned long *unregister_bitmap;
 235} RDMALocalBlock;
 236
 237/*
 238 * Also represents a RAMblock, but only on the dest.
 239 * This gets transmitted by the dest during connection-time
 240 * to the source VM and then is used to populate the
 241 * corresponding RDMALocalBlock with
 242 * the information needed to perform the actual RDMA.
 243 */
 244typedef struct QEMU_PACKED RDMADestBlock {
 245    uint64_t remote_host_addr;
 246    uint64_t offset;
 247    uint64_t length;
 248    uint32_t remote_rkey;
 249    uint32_t padding;
 250} RDMADestBlock;
 251
 252static uint64_t htonll(uint64_t v)
 253{
 254    union { uint32_t lv[2]; uint64_t llv; } u;
 255    u.lv[0] = htonl(v >> 32);
 256    u.lv[1] = htonl(v & 0xFFFFFFFFULL);
 257    return u.llv;
 258}
 259
 260static uint64_t ntohll(uint64_t v) {
 261    union { uint32_t lv[2]; uint64_t llv; } u;
 262    u.llv = v;
 263    return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
 264}
 265
 266static void dest_block_to_network(RDMADestBlock *db)
 267{
 268    db->remote_host_addr = htonll(db->remote_host_addr);
 269    db->offset = htonll(db->offset);
 270    db->length = htonll(db->length);
 271    db->remote_rkey = htonl(db->remote_rkey);
 272}
 273
 274static void network_to_dest_block(RDMADestBlock *db)
 275{
 276    db->remote_host_addr = ntohll(db->remote_host_addr);
 277    db->offset = ntohll(db->offset);
 278    db->length = ntohll(db->length);
 279    db->remote_rkey = ntohl(db->remote_rkey);
 280}
 281
 282/*
 283 * Virtual address of the above structures used for transmitting
 284 * the RAMBlock descriptions at connection-time.
 285 * This structure is *not* transmitted.
 286 */
 287typedef struct RDMALocalBlocks {
 288    int nb_blocks;
 289    bool     init;             /* main memory init complete */
 290    RDMALocalBlock *block;
 291} RDMALocalBlocks;
 292
 293/*
 294 * Main data structure for RDMA state.
 295 * While there is only one copy of this structure being allocated right now,
 296 * this is the place where one would start if you wanted to consider
 297 * having more than one RDMA connection open at the same time.
 298 */
 299typedef struct RDMAContext {
 300    char *host;
 301    int port;
 302
 303    RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
 304
 305    /*
 306     * This is used by *_exchange_send() to figure out whether or not
 307     * the initial "READY" message has already been received or not.
 308     * This is because other functions may potentially poll() and detect
 309     * the READY message before send() does, in which case we need to
 310     * know if it completed.
 311     */
 312    int control_ready_expected;
 313
 314    /* number of outstanding writes */
 315    int nb_sent;
 316
 317    /* store info about current buffer so that we can
 318       merge it with future sends */
 319    uint64_t current_addr;
 320    uint64_t current_length;
 321    /* index of ram block the current buffer belongs to */
 322    int current_index;
 323    /* index of the chunk in the current ram block */
 324    int current_chunk;
 325
 326    bool pin_all;
 327
 328    /*
 329     * infiniband-specific variables for opening the device
 330     * and maintaining connection state and so forth.
 331     *
 332     * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
 333     * cm_id->verbs, cm_id->channel, and cm_id->qp.
 334     */
 335    struct rdma_cm_id *cm_id;               /* connection manager ID */
 336    struct rdma_cm_id *listen_id;
 337    bool connected;
 338
 339    struct ibv_context          *verbs;
 340    struct rdma_event_channel   *channel;
 341    struct ibv_qp *qp;                      /* queue pair */
 342    struct ibv_comp_channel *comp_channel;  /* completion channel */
 343    struct ibv_pd *pd;                      /* protection domain */
 344    struct ibv_cq *cq;                      /* completion queue */
 345
 346    /*
 347     * If a previous write failed (perhaps because of a failed
 348     * memory registration, then do not attempt any future work
 349     * and remember the error state.
 350     */
 351    int error_state;
 352    int error_reported;
 353
 354    /*
 355     * Description of ram blocks used throughout the code.
 356     */
 357    RDMALocalBlocks local_ram_blocks;
 358    RDMADestBlock  *dest_blocks;
 359
 360    /* Index of the next RAMBlock received during block registration */
 361    unsigned int    next_src_index;
 362
 363    /*
 364     * Migration on *destination* started.
 365     * Then use coroutine yield function.
 366     * Source runs in a thread, so we don't care.
 367     */
 368    int migration_started_on_destination;
 369
 370    int total_registrations;
 371    int total_writes;
 372
 373    int unregister_current, unregister_next;
 374    uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
 375
 376    GHashTable *blockmap;
 377} RDMAContext;
 378
 379#define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
 380#define QIO_CHANNEL_RDMA(obj)                                     \
 381    OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
 382
 383typedef struct QIOChannelRDMA QIOChannelRDMA;
 384
 385
 386struct QIOChannelRDMA {
 387    QIOChannel parent;
 388    RDMAContext *rdma;
 389    QEMUFile *file;
 390    size_t len;
 391    bool blocking; /* XXX we don't actually honour this yet */
 392};
 393
 394/*
 395 * Main structure for IB Send/Recv control messages.
 396 * This gets prepended at the beginning of every Send/Recv.
 397 */
 398typedef struct QEMU_PACKED {
 399    uint32_t len;     /* Total length of data portion */
 400    uint32_t type;    /* which control command to perform */
 401    uint32_t repeat;  /* number of commands in data portion of same type */
 402    uint32_t padding;
 403} RDMAControlHeader;
 404
 405static void control_to_network(RDMAControlHeader *control)
 406{
 407    control->type = htonl(control->type);
 408    control->len = htonl(control->len);
 409    control->repeat = htonl(control->repeat);
 410}
 411
 412static void network_to_control(RDMAControlHeader *control)
 413{
 414    control->type = ntohl(control->type);
 415    control->len = ntohl(control->len);
 416    control->repeat = ntohl(control->repeat);
 417}
 418
 419/*
 420 * Register a single Chunk.
 421 * Information sent by the source VM to inform the dest
 422 * to register an single chunk of memory before we can perform
 423 * the actual RDMA operation.
 424 */
 425typedef struct QEMU_PACKED {
 426    union QEMU_PACKED {
 427        uint64_t current_addr;  /* offset into the ram_addr_t space */
 428        uint64_t chunk;         /* chunk to lookup if unregistering */
 429    } key;
 430    uint32_t current_index; /* which ramblock the chunk belongs to */
 431    uint32_t padding;
 432    uint64_t chunks;            /* how many sequential chunks to register */
 433} RDMARegister;
 434
 435static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
 436{
 437    RDMALocalBlock *local_block;
 438    local_block  = &rdma->local_ram_blocks.block[reg->current_index];
 439
 440    if (local_block->is_ram_block) {
 441        /*
 442         * current_addr as passed in is an address in the local ram_addr_t
 443         * space, we need to translate this for the destination
 444         */
 445        reg->key.current_addr -= local_block->offset;
 446        reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
 447    }
 448    reg->key.current_addr = htonll(reg->key.current_addr);
 449    reg->current_index = htonl(reg->current_index);
 450    reg->chunks = htonll(reg->chunks);
 451}
 452
 453static void network_to_register(RDMARegister *reg)
 454{
 455    reg->key.current_addr = ntohll(reg->key.current_addr);
 456    reg->current_index = ntohl(reg->current_index);
 457    reg->chunks = ntohll(reg->chunks);
 458}
 459
 460typedef struct QEMU_PACKED {
 461    uint32_t value;     /* if zero, we will madvise() */
 462    uint32_t block_idx; /* which ram block index */
 463    uint64_t offset;    /* Address in remote ram_addr_t space */
 464    uint64_t length;    /* length of the chunk */
 465} RDMACompress;
 466
 467static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
 468{
 469    comp->value = htonl(comp->value);
 470    /*
 471     * comp->offset as passed in is an address in the local ram_addr_t
 472     * space, we need to translate this for the destination
 473     */
 474    comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
 475    comp->offset += rdma->dest_blocks[comp->block_idx].offset;
 476    comp->block_idx = htonl(comp->block_idx);
 477    comp->offset = htonll(comp->offset);
 478    comp->length = htonll(comp->length);
 479}
 480
 481static void network_to_compress(RDMACompress *comp)
 482{
 483    comp->value = ntohl(comp->value);
 484    comp->block_idx = ntohl(comp->block_idx);
 485    comp->offset = ntohll(comp->offset);
 486    comp->length = ntohll(comp->length);
 487}
 488
 489/*
 490 * The result of the dest's memory registration produces an "rkey"
 491 * which the source VM must reference in order to perform
 492 * the RDMA operation.
 493 */
 494typedef struct QEMU_PACKED {
 495    uint32_t rkey;
 496    uint32_t padding;
 497    uint64_t host_addr;
 498} RDMARegisterResult;
 499
 500static void result_to_network(RDMARegisterResult *result)
 501{
 502    result->rkey = htonl(result->rkey);
 503    result->host_addr = htonll(result->host_addr);
 504};
 505
 506static void network_to_result(RDMARegisterResult *result)
 507{
 508    result->rkey = ntohl(result->rkey);
 509    result->host_addr = ntohll(result->host_addr);
 510};
 511
 512const char *print_wrid(int wrid);
 513static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
 514                                   uint8_t *data, RDMAControlHeader *resp,
 515                                   int *resp_idx,
 516                                   int (*callback)(RDMAContext *rdma));
 517
 518static inline uint64_t ram_chunk_index(const uint8_t *start,
 519                                       const uint8_t *host)
 520{
 521    return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
 522}
 523
 524static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
 525                                       uint64_t i)
 526{
 527    return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
 528                                  (i << RDMA_REG_CHUNK_SHIFT));
 529}
 530
 531static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
 532                                     uint64_t i)
 533{
 534    uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
 535                                         (1UL << RDMA_REG_CHUNK_SHIFT);
 536
 537    if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
 538        result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
 539    }
 540
 541    return result;
 542}
 543
 544static int rdma_add_block(RDMAContext *rdma, const char *block_name,
 545                         void *host_addr,
 546                         ram_addr_t block_offset, uint64_t length)
 547{
 548    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 549    RDMALocalBlock *block;
 550    RDMALocalBlock *old = local->block;
 551
 552    local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
 553
 554    if (local->nb_blocks) {
 555        int x;
 556
 557        if (rdma->blockmap) {
 558            for (x = 0; x < local->nb_blocks; x++) {
 559                g_hash_table_remove(rdma->blockmap,
 560                                    (void *)(uintptr_t)old[x].offset);
 561                g_hash_table_insert(rdma->blockmap,
 562                                    (void *)(uintptr_t)old[x].offset,
 563                                    &local->block[x]);
 564            }
 565        }
 566        memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
 567        g_free(old);
 568    }
 569
 570    block = &local->block[local->nb_blocks];
 571
 572    block->block_name = g_strdup(block_name);
 573    block->local_host_addr = host_addr;
 574    block->offset = block_offset;
 575    block->length = length;
 576    block->index = local->nb_blocks;
 577    block->src_index = ~0U; /* Filled in by the receipt of the block list */
 578    block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
 579    block->transit_bitmap = bitmap_new(block->nb_chunks);
 580    bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
 581    block->unregister_bitmap = bitmap_new(block->nb_chunks);
 582    bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
 583    block->remote_keys = g_new0(uint32_t, block->nb_chunks);
 584
 585    block->is_ram_block = local->init ? false : true;
 586
 587    if (rdma->blockmap) {
 588        g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
 589    }
 590
 591    trace_rdma_add_block(block_name, local->nb_blocks,
 592                         (uintptr_t) block->local_host_addr,
 593                         block->offset, block->length,
 594                         (uintptr_t) (block->local_host_addr + block->length),
 595                         BITS_TO_LONGS(block->nb_chunks) *
 596                             sizeof(unsigned long) * 8,
 597                         block->nb_chunks);
 598
 599    local->nb_blocks++;
 600
 601    return 0;
 602}
 603
 604/*
 605 * Memory regions need to be registered with the device and queue pairs setup
 606 * in advanced before the migration starts. This tells us where the RAM blocks
 607 * are so that we can register them individually.
 608 */
 609static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
 610    ram_addr_t block_offset, ram_addr_t length, void *opaque)
 611{
 612    return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
 613}
 614
 615/*
 616 * Identify the RAMBlocks and their quantity. They will be references to
 617 * identify chunk boundaries inside each RAMBlock and also be referenced
 618 * during dynamic page registration.
 619 */
 620static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
 621{
 622    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 623
 624    assert(rdma->blockmap == NULL);
 625    memset(local, 0, sizeof *local);
 626    qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
 627    trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
 628    rdma->dest_blocks = g_new0(RDMADestBlock,
 629                               rdma->local_ram_blocks.nb_blocks);
 630    local->init = true;
 631    return 0;
 632}
 633
 634/*
 635 * Note: If used outside of cleanup, the caller must ensure that the destination
 636 * block structures are also updated
 637 */
 638static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
 639{
 640    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 641    RDMALocalBlock *old = local->block;
 642    int x;
 643
 644    if (rdma->blockmap) {
 645        g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
 646    }
 647    if (block->pmr) {
 648        int j;
 649
 650        for (j = 0; j < block->nb_chunks; j++) {
 651            if (!block->pmr[j]) {
 652                continue;
 653            }
 654            ibv_dereg_mr(block->pmr[j]);
 655            rdma->total_registrations--;
 656        }
 657        g_free(block->pmr);
 658        block->pmr = NULL;
 659    }
 660
 661    if (block->mr) {
 662        ibv_dereg_mr(block->mr);
 663        rdma->total_registrations--;
 664        block->mr = NULL;
 665    }
 666
 667    g_free(block->transit_bitmap);
 668    block->transit_bitmap = NULL;
 669
 670    g_free(block->unregister_bitmap);
 671    block->unregister_bitmap = NULL;
 672
 673    g_free(block->remote_keys);
 674    block->remote_keys = NULL;
 675
 676    g_free(block->block_name);
 677    block->block_name = NULL;
 678
 679    if (rdma->blockmap) {
 680        for (x = 0; x < local->nb_blocks; x++) {
 681            g_hash_table_remove(rdma->blockmap,
 682                                (void *)(uintptr_t)old[x].offset);
 683        }
 684    }
 685
 686    if (local->nb_blocks > 1) {
 687
 688        local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
 689
 690        if (block->index) {
 691            memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
 692        }
 693
 694        if (block->index < (local->nb_blocks - 1)) {
 695            memcpy(local->block + block->index, old + (block->index + 1),
 696                sizeof(RDMALocalBlock) *
 697                    (local->nb_blocks - (block->index + 1)));
 698        }
 699    } else {
 700        assert(block == local->block);
 701        local->block = NULL;
 702    }
 703
 704    trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
 705                           block->offset, block->length,
 706                            (uintptr_t)(block->local_host_addr + block->length),
 707                           BITS_TO_LONGS(block->nb_chunks) *
 708                               sizeof(unsigned long) * 8, block->nb_chunks);
 709
 710    g_free(old);
 711
 712    local->nb_blocks--;
 713
 714    if (local->nb_blocks && rdma->blockmap) {
 715        for (x = 0; x < local->nb_blocks; x++) {
 716            g_hash_table_insert(rdma->blockmap,
 717                                (void *)(uintptr_t)local->block[x].offset,
 718                                &local->block[x]);
 719        }
 720    }
 721
 722    return 0;
 723}
 724
 725/*
 726 * Put in the log file which RDMA device was opened and the details
 727 * associated with that device.
 728 */
 729static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
 730{
 731    struct ibv_port_attr port;
 732
 733    if (ibv_query_port(verbs, 1, &port)) {
 734        error_report("Failed to query port information");
 735        return;
 736    }
 737
 738    printf("%s RDMA Device opened: kernel name %s "
 739           "uverbs device name %s, "
 740           "infiniband_verbs class device path %s, "
 741           "infiniband class device path %s, "
 742           "transport: (%d) %s\n",
 743                who,
 744                verbs->device->name,
 745                verbs->device->dev_name,
 746                verbs->device->dev_path,
 747                verbs->device->ibdev_path,
 748                port.link_layer,
 749                (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
 750                 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
 751                    ? "Ethernet" : "Unknown"));
 752}
 753
 754/*
 755 * Put in the log file the RDMA gid addressing information,
 756 * useful for folks who have trouble understanding the
 757 * RDMA device hierarchy in the kernel.
 758 */
 759static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
 760{
 761    char sgid[33];
 762    char dgid[33];
 763    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
 764    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
 765    trace_qemu_rdma_dump_gid(who, sgid, dgid);
 766}
 767
 768/*
 769 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
 770 * We will try the next addrinfo struct, and fail if there are
 771 * no other valid addresses to bind against.
 772 *
 773 * If user is listening on '[::]', then we will not have a opened a device
 774 * yet and have no way of verifying if the device is RoCE or not.
 775 *
 776 * In this case, the source VM will throw an error for ALL types of
 777 * connections (both IPv4 and IPv6) if the destination machine does not have
 778 * a regular infiniband network available for use.
 779 *
 780 * The only way to guarantee that an error is thrown for broken kernels is
 781 * for the management software to choose a *specific* interface at bind time
 782 * and validate what time of hardware it is.
 783 *
 784 * Unfortunately, this puts the user in a fix:
 785 *
 786 *  If the source VM connects with an IPv4 address without knowing that the
 787 *  destination has bound to '[::]' the migration will unconditionally fail
 788 *  unless the management software is explicitly listening on the IPv4
 789 *  address while using a RoCE-based device.
 790 *
 791 *  If the source VM connects with an IPv6 address, then we're OK because we can
 792 *  throw an error on the source (and similarly on the destination).
 793 *
 794 *  But in mixed environments, this will be broken for a while until it is fixed
 795 *  inside linux.
 796 *
 797 * We do provide a *tiny* bit of help in this function: We can list all of the
 798 * devices in the system and check to see if all the devices are RoCE or
 799 * Infiniband.
 800 *
 801 * If we detect that we have a *pure* RoCE environment, then we can safely
 802 * thrown an error even if the management software has specified '[::]' as the
 803 * bind address.
 804 *
 805 * However, if there is are multiple hetergeneous devices, then we cannot make
 806 * this assumption and the user just has to be sure they know what they are
 807 * doing.
 808 *
 809 * Patches are being reviewed on linux-rdma.
 810 */
 811static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
 812{
 813    struct ibv_port_attr port_attr;
 814
 815    /* This bug only exists in linux, to our knowledge. */
 816#ifdef CONFIG_LINUX
 817
 818    /*
 819     * Verbs are only NULL if management has bound to '[::]'.
 820     *
 821     * Let's iterate through all the devices and see if there any pure IB
 822     * devices (non-ethernet).
 823     *
 824     * If not, then we can safely proceed with the migration.
 825     * Otherwise, there are no guarantees until the bug is fixed in linux.
 826     */
 827    if (!verbs) {
 828        int num_devices, x;
 829        struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
 830        bool roce_found = false;
 831        bool ib_found = false;
 832
 833        for (x = 0; x < num_devices; x++) {
 834            verbs = ibv_open_device(dev_list[x]);
 835            if (!verbs) {
 836                if (errno == EPERM) {
 837                    continue;
 838                } else {
 839                    return -EINVAL;
 840                }
 841            }
 842
 843            if (ibv_query_port(verbs, 1, &port_attr)) {
 844                ibv_close_device(verbs);
 845                ERROR(errp, "Could not query initial IB port");
 846                return -EINVAL;
 847            }
 848
 849            if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
 850                ib_found = true;
 851            } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 852                roce_found = true;
 853            }
 854
 855            ibv_close_device(verbs);
 856
 857        }
 858
 859        if (roce_found) {
 860            if (ib_found) {
 861                fprintf(stderr, "WARN: migrations may fail:"
 862                                " IPv6 over RoCE / iWARP in linux"
 863                                " is broken. But since you appear to have a"
 864                                " mixed RoCE / IB environment, be sure to only"
 865                                " migrate over the IB fabric until the kernel "
 866                                " fixes the bug.\n");
 867            } else {
 868                ERROR(errp, "You only have RoCE / iWARP devices in your systems"
 869                            " and your management software has specified '[::]'"
 870                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
 871                return -ENONET;
 872            }
 873        }
 874
 875        return 0;
 876    }
 877
 878    /*
 879     * If we have a verbs context, that means that some other than '[::]' was
 880     * used by the management software for binding. In which case we can
 881     * actually warn the user about a potentially broken kernel.
 882     */
 883
 884    /* IB ports start with 1, not 0 */
 885    if (ibv_query_port(verbs, 1, &port_attr)) {
 886        ERROR(errp, "Could not query initial IB port");
 887        return -EINVAL;
 888    }
 889
 890    if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 891        ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
 892                    "(but patches on linux-rdma in progress)");
 893        return -ENONET;
 894    }
 895
 896#endif
 897
 898    return 0;
 899}
 900
 901/*
 902 * Figure out which RDMA device corresponds to the requested IP hostname
 903 * Also create the initial connection manager identifiers for opening
 904 * the connection.
 905 */
 906static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
 907{
 908    int ret;
 909    struct rdma_addrinfo *res;
 910    char port_str[16];
 911    struct rdma_cm_event *cm_event;
 912    char ip[40] = "unknown";
 913    struct rdma_addrinfo *e;
 914
 915    if (rdma->host == NULL || !strcmp(rdma->host, "")) {
 916        ERROR(errp, "RDMA hostname has not been set");
 917        return -EINVAL;
 918    }
 919
 920    /* create CM channel */
 921    rdma->channel = rdma_create_event_channel();
 922    if (!rdma->channel) {
 923        ERROR(errp, "could not create CM channel");
 924        return -EINVAL;
 925    }
 926
 927    /* create CM id */
 928    ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
 929    if (ret) {
 930        ERROR(errp, "could not create channel id");
 931        goto err_resolve_create_id;
 932    }
 933
 934    snprintf(port_str, 16, "%d", rdma->port);
 935    port_str[15] = '\0';
 936
 937    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
 938    if (ret < 0) {
 939        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
 940        goto err_resolve_get_addr;
 941    }
 942
 943    for (e = res; e != NULL; e = e->ai_next) {
 944        inet_ntop(e->ai_family,
 945            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
 946        trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
 947
 948        ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
 949                RDMA_RESOLVE_TIMEOUT_MS);
 950        if (!ret) {
 951            if (e->ai_family == AF_INET6) {
 952                ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
 953                if (ret) {
 954                    continue;
 955                }
 956            }
 957            goto route;
 958        }
 959    }
 960
 961    ERROR(errp, "could not resolve address %s", rdma->host);
 962    goto err_resolve_get_addr;
 963
 964route:
 965    qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
 966
 967    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 968    if (ret) {
 969        ERROR(errp, "could not perform event_addr_resolved");
 970        goto err_resolve_get_addr;
 971    }
 972
 973    if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
 974        ERROR(errp, "result not equal to event_addr_resolved %s",
 975                rdma_event_str(cm_event->event));
 976        perror("rdma_resolve_addr");
 977        rdma_ack_cm_event(cm_event);
 978        ret = -EINVAL;
 979        goto err_resolve_get_addr;
 980    }
 981    rdma_ack_cm_event(cm_event);
 982
 983    /* resolve route */
 984    ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
 985    if (ret) {
 986        ERROR(errp, "could not resolve rdma route");
 987        goto err_resolve_get_addr;
 988    }
 989
 990    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 991    if (ret) {
 992        ERROR(errp, "could not perform event_route_resolved");
 993        goto err_resolve_get_addr;
 994    }
 995    if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
 996        ERROR(errp, "result not equal to event_route_resolved: %s",
 997                        rdma_event_str(cm_event->event));
 998        rdma_ack_cm_event(cm_event);
 999        ret = -EINVAL;
1000        goto err_resolve_get_addr;
1001    }
1002    rdma_ack_cm_event(cm_event);
1003    rdma->verbs = rdma->cm_id->verbs;
1004    qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1005    qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1006    return 0;
1007
1008err_resolve_get_addr:
1009    rdma_destroy_id(rdma->cm_id);
1010    rdma->cm_id = NULL;
1011err_resolve_create_id:
1012    rdma_destroy_event_channel(rdma->channel);
1013    rdma->channel = NULL;
1014    return ret;
1015}
1016
1017/*
1018 * Create protection domain and completion queues
1019 */
1020static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1021{
1022    /* allocate pd */
1023    rdma->pd = ibv_alloc_pd(rdma->verbs);
1024    if (!rdma->pd) {
1025        error_report("failed to allocate protection domain");
1026        return -1;
1027    }
1028
1029    /* create completion channel */
1030    rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1031    if (!rdma->comp_channel) {
1032        error_report("failed to allocate completion channel");
1033        goto err_alloc_pd_cq;
1034    }
1035
1036    /*
1037     * Completion queue can be filled by both read and write work requests,
1038     * so must reflect the sum of both possible queue sizes.
1039     */
1040    rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1041            NULL, rdma->comp_channel, 0);
1042    if (!rdma->cq) {
1043        error_report("failed to allocate completion queue");
1044        goto err_alloc_pd_cq;
1045    }
1046
1047    return 0;
1048
1049err_alloc_pd_cq:
1050    if (rdma->pd) {
1051        ibv_dealloc_pd(rdma->pd);
1052    }
1053    if (rdma->comp_channel) {
1054        ibv_destroy_comp_channel(rdma->comp_channel);
1055    }
1056    rdma->pd = NULL;
1057    rdma->comp_channel = NULL;
1058    return -1;
1059
1060}
1061
1062/*
1063 * Create queue pairs.
1064 */
1065static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1066{
1067    struct ibv_qp_init_attr attr = { 0 };
1068    int ret;
1069
1070    attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1071    attr.cap.max_recv_wr = 3;
1072    attr.cap.max_send_sge = 1;
1073    attr.cap.max_recv_sge = 1;
1074    attr.send_cq = rdma->cq;
1075    attr.recv_cq = rdma->cq;
1076    attr.qp_type = IBV_QPT_RC;
1077
1078    ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1079    if (ret) {
1080        return -1;
1081    }
1082
1083    rdma->qp = rdma->cm_id->qp;
1084    return 0;
1085}
1086
1087static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1088{
1089    int i;
1090    RDMALocalBlocks *local = &rdma->local_ram_blocks;
1091
1092    for (i = 0; i < local->nb_blocks; i++) {
1093        local->block[i].mr =
1094            ibv_reg_mr(rdma->pd,
1095                    local->block[i].local_host_addr,
1096                    local->block[i].length,
1097                    IBV_ACCESS_LOCAL_WRITE |
1098                    IBV_ACCESS_REMOTE_WRITE
1099                    );
1100        if (!local->block[i].mr) {
1101            perror("Failed to register local dest ram block!\n");
1102            break;
1103        }
1104        rdma->total_registrations++;
1105    }
1106
1107    if (i >= local->nb_blocks) {
1108        return 0;
1109    }
1110
1111    for (i--; i >= 0; i--) {
1112        ibv_dereg_mr(local->block[i].mr);
1113        rdma->total_registrations--;
1114    }
1115
1116    return -1;
1117
1118}
1119
1120/*
1121 * Find the ram block that corresponds to the page requested to be
1122 * transmitted by QEMU.
1123 *
1124 * Once the block is found, also identify which 'chunk' within that
1125 * block that the page belongs to.
1126 *
1127 * This search cannot fail or the migration will fail.
1128 */
1129static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1130                                      uintptr_t block_offset,
1131                                      uint64_t offset,
1132                                      uint64_t length,
1133                                      uint64_t *block_index,
1134                                      uint64_t *chunk_index)
1135{
1136    uint64_t current_addr = block_offset + offset;
1137    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1138                                                (void *) block_offset);
1139    assert(block);
1140    assert(current_addr >= block->offset);
1141    assert((current_addr + length) <= (block->offset + block->length));
1142
1143    *block_index = block->index;
1144    *chunk_index = ram_chunk_index(block->local_host_addr,
1145                block->local_host_addr + (current_addr - block->offset));
1146
1147    return 0;
1148}
1149
1150/*
1151 * Register a chunk with IB. If the chunk was already registered
1152 * previously, then skip.
1153 *
1154 * Also return the keys associated with the registration needed
1155 * to perform the actual RDMA operation.
1156 */
1157static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1158        RDMALocalBlock *block, uintptr_t host_addr,
1159        uint32_t *lkey, uint32_t *rkey, int chunk,
1160        uint8_t *chunk_start, uint8_t *chunk_end)
1161{
1162    if (block->mr) {
1163        if (lkey) {
1164            *lkey = block->mr->lkey;
1165        }
1166        if (rkey) {
1167            *rkey = block->mr->rkey;
1168        }
1169        return 0;
1170    }
1171
1172    /* allocate memory to store chunk MRs */
1173    if (!block->pmr) {
1174        block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1175    }
1176
1177    /*
1178     * If 'rkey', then we're the destination, so grant access to the source.
1179     *
1180     * If 'lkey', then we're the source VM, so grant access only to ourselves.
1181     */
1182    if (!block->pmr[chunk]) {
1183        uint64_t len = chunk_end - chunk_start;
1184
1185        trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1186
1187        block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1188                chunk_start, len,
1189                (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1190                        IBV_ACCESS_REMOTE_WRITE) : 0));
1191
1192        if (!block->pmr[chunk]) {
1193            perror("Failed to register chunk!");
1194            fprintf(stderr, "Chunk details: block: %d chunk index %d"
1195                            " start %" PRIuPTR " end %" PRIuPTR
1196                            " host %" PRIuPTR
1197                            " local %" PRIuPTR " registrations: %d\n",
1198                            block->index, chunk, (uintptr_t)chunk_start,
1199                            (uintptr_t)chunk_end, host_addr,
1200                            (uintptr_t)block->local_host_addr,
1201                            rdma->total_registrations);
1202            return -1;
1203        }
1204        rdma->total_registrations++;
1205    }
1206
1207    if (lkey) {
1208        *lkey = block->pmr[chunk]->lkey;
1209    }
1210    if (rkey) {
1211        *rkey = block->pmr[chunk]->rkey;
1212    }
1213    return 0;
1214}
1215
1216/*
1217 * Register (at connection time) the memory used for control
1218 * channel messages.
1219 */
1220static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1221{
1222    rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1223            rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1224            IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1225    if (rdma->wr_data[idx].control_mr) {
1226        rdma->total_registrations++;
1227        return 0;
1228    }
1229    error_report("qemu_rdma_reg_control failed");
1230    return -1;
1231}
1232
1233const char *print_wrid(int wrid)
1234{
1235    if (wrid >= RDMA_WRID_RECV_CONTROL) {
1236        return wrid_desc[RDMA_WRID_RECV_CONTROL];
1237    }
1238    return wrid_desc[wrid];
1239}
1240
1241/*
1242 * RDMA requires memory registration (mlock/pinning), but this is not good for
1243 * overcommitment.
1244 *
1245 * In preparation for the future where LRU information or workload-specific
1246 * writable writable working set memory access behavior is available to QEMU
1247 * it would be nice to have in place the ability to UN-register/UN-pin
1248 * particular memory regions from the RDMA hardware when it is determine that
1249 * those regions of memory will likely not be accessed again in the near future.
1250 *
1251 * While we do not yet have such information right now, the following
1252 * compile-time option allows us to perform a non-optimized version of this
1253 * behavior.
1254 *
1255 * By uncommenting this option, you will cause *all* RDMA transfers to be
1256 * unregistered immediately after the transfer completes on both sides of the
1257 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1258 *
1259 * This will have a terrible impact on migration performance, so until future
1260 * workload information or LRU information is available, do not attempt to use
1261 * this feature except for basic testing.
1262 */
1263//#define RDMA_UNREGISTRATION_EXAMPLE
1264
1265/*
1266 * Perform a non-optimized memory unregistration after every transfer
1267 * for demonstration purposes, only if pin-all is not requested.
1268 *
1269 * Potential optimizations:
1270 * 1. Start a new thread to run this function continuously
1271        - for bit clearing
1272        - and for receipt of unregister messages
1273 * 2. Use an LRU.
1274 * 3. Use workload hints.
1275 */
1276static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1277{
1278    while (rdma->unregistrations[rdma->unregister_current]) {
1279        int ret;
1280        uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1281        uint64_t chunk =
1282            (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1283        uint64_t index =
1284            (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1285        RDMALocalBlock *block =
1286            &(rdma->local_ram_blocks.block[index]);
1287        RDMARegister reg = { .current_index = index };
1288        RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1289                                 };
1290        RDMAControlHeader head = { .len = sizeof(RDMARegister),
1291                                   .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1292                                   .repeat = 1,
1293                                 };
1294
1295        trace_qemu_rdma_unregister_waiting_proc(chunk,
1296                                                rdma->unregister_current);
1297
1298        rdma->unregistrations[rdma->unregister_current] = 0;
1299        rdma->unregister_current++;
1300
1301        if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1302            rdma->unregister_current = 0;
1303        }
1304
1305
1306        /*
1307         * Unregistration is speculative (because migration is single-threaded
1308         * and we cannot break the protocol's inifinband message ordering).
1309         * Thus, if the memory is currently being used for transmission,
1310         * then abort the attempt to unregister and try again
1311         * later the next time a completion is received for this memory.
1312         */
1313        clear_bit(chunk, block->unregister_bitmap);
1314
1315        if (test_bit(chunk, block->transit_bitmap)) {
1316            trace_qemu_rdma_unregister_waiting_inflight(chunk);
1317            continue;
1318        }
1319
1320        trace_qemu_rdma_unregister_waiting_send(chunk);
1321
1322        ret = ibv_dereg_mr(block->pmr[chunk]);
1323        block->pmr[chunk] = NULL;
1324        block->remote_keys[chunk] = 0;
1325
1326        if (ret != 0) {
1327            perror("unregistration chunk failed");
1328            return -ret;
1329        }
1330        rdma->total_registrations--;
1331
1332        reg.key.chunk = chunk;
1333        register_to_network(rdma, &reg);
1334        ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1335                                &resp, NULL, NULL);
1336        if (ret < 0) {
1337            return ret;
1338        }
1339
1340        trace_qemu_rdma_unregister_waiting_complete(chunk);
1341    }
1342
1343    return 0;
1344}
1345
1346static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1347                                         uint64_t chunk)
1348{
1349    uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1350
1351    result |= (index << RDMA_WRID_BLOCK_SHIFT);
1352    result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1353
1354    return result;
1355}
1356
1357/*
1358 * Set bit for unregistration in the next iteration.
1359 * We cannot transmit right here, but will unpin later.
1360 */
1361static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1362                                        uint64_t chunk, uint64_t wr_id)
1363{
1364    if (rdma->unregistrations[rdma->unregister_next] != 0) {
1365        error_report("rdma migration: queue is full");
1366    } else {
1367        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1368
1369        if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1370            trace_qemu_rdma_signal_unregister_append(chunk,
1371                                                     rdma->unregister_next);
1372
1373            rdma->unregistrations[rdma->unregister_next++] =
1374                    qemu_rdma_make_wrid(wr_id, index, chunk);
1375
1376            if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1377                rdma->unregister_next = 0;
1378            }
1379        } else {
1380            trace_qemu_rdma_signal_unregister_already(chunk);
1381        }
1382    }
1383}
1384
1385/*
1386 * Consult the connection manager to see a work request
1387 * (of any kind) has completed.
1388 * Return the work request ID that completed.
1389 */
1390static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1391                               uint32_t *byte_len)
1392{
1393    int ret;
1394    struct ibv_wc wc;
1395    uint64_t wr_id;
1396
1397    ret = ibv_poll_cq(rdma->cq, 1, &wc);
1398
1399    if (!ret) {
1400        *wr_id_out = RDMA_WRID_NONE;
1401        return 0;
1402    }
1403
1404    if (ret < 0) {
1405        error_report("ibv_poll_cq return %d", ret);
1406        return ret;
1407    }
1408
1409    wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1410
1411    if (wc.status != IBV_WC_SUCCESS) {
1412        fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1413                        wc.status, ibv_wc_status_str(wc.status));
1414        fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1415
1416        return -1;
1417    }
1418
1419    if (rdma->control_ready_expected &&
1420        (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1421        trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1422                  wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1423        rdma->control_ready_expected = 0;
1424    }
1425
1426    if (wr_id == RDMA_WRID_RDMA_WRITE) {
1427        uint64_t chunk =
1428            (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1429        uint64_t index =
1430            (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1431        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1432
1433        trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1434                                   index, chunk, block->local_host_addr,
1435                                   (void *)(uintptr_t)block->remote_host_addr);
1436
1437        clear_bit(chunk, block->transit_bitmap);
1438
1439        if (rdma->nb_sent > 0) {
1440            rdma->nb_sent--;
1441        }
1442
1443        if (!rdma->pin_all) {
1444            /*
1445             * FYI: If one wanted to signal a specific chunk to be unregistered
1446             * using LRU or workload-specific information, this is the function
1447             * you would call to do so. That chunk would then get asynchronously
1448             * unregistered later.
1449             */
1450#ifdef RDMA_UNREGISTRATION_EXAMPLE
1451            qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1452#endif
1453        }
1454    } else {
1455        trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1456    }
1457
1458    *wr_id_out = wc.wr_id;
1459    if (byte_len) {
1460        *byte_len = wc.byte_len;
1461    }
1462
1463    return  0;
1464}
1465
1466/*
1467 * Block until the next work request has completed.
1468 *
1469 * First poll to see if a work request has already completed,
1470 * otherwise block.
1471 *
1472 * If we encounter completed work requests for IDs other than
1473 * the one we're interested in, then that's generally an error.
1474 *
1475 * The only exception is actual RDMA Write completions. These
1476 * completions only need to be recorded, but do not actually
1477 * need further processing.
1478 */
1479static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1480                                    uint32_t *byte_len)
1481{
1482    int num_cq_events = 0, ret = 0;
1483    struct ibv_cq *cq;
1484    void *cq_ctx;
1485    uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1486
1487    if (ibv_req_notify_cq(rdma->cq, 0)) {
1488        return -1;
1489    }
1490    /* poll cq first */
1491    while (wr_id != wrid_requested) {
1492        ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1493        if (ret < 0) {
1494            return ret;
1495        }
1496
1497        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1498
1499        if (wr_id == RDMA_WRID_NONE) {
1500            break;
1501        }
1502        if (wr_id != wrid_requested) {
1503            trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1504                       wrid_requested, print_wrid(wr_id), wr_id);
1505        }
1506    }
1507
1508    if (wr_id == wrid_requested) {
1509        return 0;
1510    }
1511
1512    while (1) {
1513        /*
1514         * Coroutine doesn't start until migration_fd_process_incoming()
1515         * so don't yield unless we know we're running inside of a coroutine.
1516         */
1517        if (rdma->migration_started_on_destination) {
1518            yield_until_fd_readable(rdma->comp_channel->fd);
1519        }
1520
1521        if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1522            perror("ibv_get_cq_event");
1523            goto err_block_for_wrid;
1524        }
1525
1526        num_cq_events++;
1527
1528        if (ibv_req_notify_cq(cq, 0)) {
1529            goto err_block_for_wrid;
1530        }
1531
1532        while (wr_id != wrid_requested) {
1533            ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1534            if (ret < 0) {
1535                goto err_block_for_wrid;
1536            }
1537
1538            wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1539
1540            if (wr_id == RDMA_WRID_NONE) {
1541                break;
1542            }
1543            if (wr_id != wrid_requested) {
1544                trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1545                                   wrid_requested, print_wrid(wr_id), wr_id);
1546            }
1547        }
1548
1549        if (wr_id == wrid_requested) {
1550            goto success_block_for_wrid;
1551        }
1552    }
1553
1554success_block_for_wrid:
1555    if (num_cq_events) {
1556        ibv_ack_cq_events(cq, num_cq_events);
1557    }
1558    return 0;
1559
1560err_block_for_wrid:
1561    if (num_cq_events) {
1562        ibv_ack_cq_events(cq, num_cq_events);
1563    }
1564    return ret;
1565}
1566
1567/*
1568 * Post a SEND message work request for the control channel
1569 * containing some data and block until the post completes.
1570 */
1571static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1572                                       RDMAControlHeader *head)
1573{
1574    int ret = 0;
1575    RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1576    struct ibv_send_wr *bad_wr;
1577    struct ibv_sge sge = {
1578                           .addr = (uintptr_t)(wr->control),
1579                           .length = head->len + sizeof(RDMAControlHeader),
1580                           .lkey = wr->control_mr->lkey,
1581                         };
1582    struct ibv_send_wr send_wr = {
1583                                   .wr_id = RDMA_WRID_SEND_CONTROL,
1584                                   .opcode = IBV_WR_SEND,
1585                                   .send_flags = IBV_SEND_SIGNALED,
1586                                   .sg_list = &sge,
1587                                   .num_sge = 1,
1588                                };
1589
1590    trace_qemu_rdma_post_send_control(control_desc[head->type]);
1591
1592    /*
1593     * We don't actually need to do a memcpy() in here if we used
1594     * the "sge" properly, but since we're only sending control messages
1595     * (not RAM in a performance-critical path), then its OK for now.
1596     *
1597     * The copy makes the RDMAControlHeader simpler to manipulate
1598     * for the time being.
1599     */
1600    assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1601    memcpy(wr->control, head, sizeof(RDMAControlHeader));
1602    control_to_network((void *) wr->control);
1603
1604    if (buf) {
1605        memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1606    }
1607
1608
1609    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1610
1611    if (ret > 0) {
1612        error_report("Failed to use post IB SEND for control");
1613        return -ret;
1614    }
1615
1616    ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1617    if (ret < 0) {
1618        error_report("rdma migration: send polling control error");
1619    }
1620
1621    return ret;
1622}
1623
1624/*
1625 * Post a RECV work request in anticipation of some future receipt
1626 * of data on the control channel.
1627 */
1628static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1629{
1630    struct ibv_recv_wr *bad_wr;
1631    struct ibv_sge sge = {
1632                            .addr = (uintptr_t)(rdma->wr_data[idx].control),
1633                            .length = RDMA_CONTROL_MAX_BUFFER,
1634                            .lkey = rdma->wr_data[idx].control_mr->lkey,
1635                         };
1636
1637    struct ibv_recv_wr recv_wr = {
1638                                    .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1639                                    .sg_list = &sge,
1640                                    .num_sge = 1,
1641                                 };
1642
1643
1644    if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1645        return -1;
1646    }
1647
1648    return 0;
1649}
1650
1651/*
1652 * Block and wait for a RECV control channel message to arrive.
1653 */
1654static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1655                RDMAControlHeader *head, int expecting, int idx)
1656{
1657    uint32_t byte_len;
1658    int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1659                                       &byte_len);
1660
1661    if (ret < 0) {
1662        error_report("rdma migration: recv polling control error!");
1663        return ret;
1664    }
1665
1666    network_to_control((void *) rdma->wr_data[idx].control);
1667    memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1668
1669    trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1670
1671    if (expecting == RDMA_CONTROL_NONE) {
1672        trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1673                                             head->type);
1674    } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1675        error_report("Was expecting a %s (%d) control message"
1676                ", but got: %s (%d), length: %d",
1677                control_desc[expecting], expecting,
1678                control_desc[head->type], head->type, head->len);
1679        return -EIO;
1680    }
1681    if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1682        error_report("too long length: %d", head->len);
1683        return -EINVAL;
1684    }
1685    if (sizeof(*head) + head->len != byte_len) {
1686        error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1687        return -EINVAL;
1688    }
1689
1690    return 0;
1691}
1692
1693/*
1694 * When a RECV work request has completed, the work request's
1695 * buffer is pointed at the header.
1696 *
1697 * This will advance the pointer to the data portion
1698 * of the control message of the work request's buffer that
1699 * was populated after the work request finished.
1700 */
1701static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1702                                  RDMAControlHeader *head)
1703{
1704    rdma->wr_data[idx].control_len = head->len;
1705    rdma->wr_data[idx].control_curr =
1706        rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1707}
1708
1709/*
1710 * This is an 'atomic' high-level operation to deliver a single, unified
1711 * control-channel message.
1712 *
1713 * Additionally, if the user is expecting some kind of reply to this message,
1714 * they can request a 'resp' response message be filled in by posting an
1715 * additional work request on behalf of the user and waiting for an additional
1716 * completion.
1717 *
1718 * The extra (optional) response is used during registration to us from having
1719 * to perform an *additional* exchange of message just to provide a response by
1720 * instead piggy-backing on the acknowledgement.
1721 */
1722static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1723                                   uint8_t *data, RDMAControlHeader *resp,
1724                                   int *resp_idx,
1725                                   int (*callback)(RDMAContext *rdma))
1726{
1727    int ret = 0;
1728
1729    /*
1730     * Wait until the dest is ready before attempting to deliver the message
1731     * by waiting for a READY message.
1732     */
1733    if (rdma->control_ready_expected) {
1734        RDMAControlHeader resp;
1735        ret = qemu_rdma_exchange_get_response(rdma,
1736                                    &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1737        if (ret < 0) {
1738            return ret;
1739        }
1740    }
1741
1742    /*
1743     * If the user is expecting a response, post a WR in anticipation of it.
1744     */
1745    if (resp) {
1746        ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1747        if (ret) {
1748            error_report("rdma migration: error posting"
1749                    " extra control recv for anticipated result!");
1750            return ret;
1751        }
1752    }
1753
1754    /*
1755     * Post a WR to replace the one we just consumed for the READY message.
1756     */
1757    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1758    if (ret) {
1759        error_report("rdma migration: error posting first control recv!");
1760        return ret;
1761    }
1762
1763    /*
1764     * Deliver the control message that was requested.
1765     */
1766    ret = qemu_rdma_post_send_control(rdma, data, head);
1767
1768    if (ret < 0) {
1769        error_report("Failed to send control buffer!");
1770        return ret;
1771    }
1772
1773    /*
1774     * If we're expecting a response, block and wait for it.
1775     */
1776    if (resp) {
1777        if (callback) {
1778            trace_qemu_rdma_exchange_send_issue_callback();
1779            ret = callback(rdma);
1780            if (ret < 0) {
1781                return ret;
1782            }
1783        }
1784
1785        trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1786        ret = qemu_rdma_exchange_get_response(rdma, resp,
1787                                              resp->type, RDMA_WRID_DATA);
1788
1789        if (ret < 0) {
1790            return ret;
1791        }
1792
1793        qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1794        if (resp_idx) {
1795            *resp_idx = RDMA_WRID_DATA;
1796        }
1797        trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1798    }
1799
1800    rdma->control_ready_expected = 1;
1801
1802    return 0;
1803}
1804
1805/*
1806 * This is an 'atomic' high-level operation to receive a single, unified
1807 * control-channel message.
1808 */
1809static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1810                                int expecting)
1811{
1812    RDMAControlHeader ready = {
1813                                .len = 0,
1814                                .type = RDMA_CONTROL_READY,
1815                                .repeat = 1,
1816                              };
1817    int ret;
1818
1819    /*
1820     * Inform the source that we're ready to receive a message.
1821     */
1822    ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1823
1824    if (ret < 0) {
1825        error_report("Failed to send control buffer!");
1826        return ret;
1827    }
1828
1829    /*
1830     * Block and wait for the message.
1831     */
1832    ret = qemu_rdma_exchange_get_response(rdma, head,
1833                                          expecting, RDMA_WRID_READY);
1834
1835    if (ret < 0) {
1836        return ret;
1837    }
1838
1839    qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1840
1841    /*
1842     * Post a new RECV work request to replace the one we just consumed.
1843     */
1844    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1845    if (ret) {
1846        error_report("rdma migration: error posting second control recv!");
1847        return ret;
1848    }
1849
1850    return 0;
1851}
1852
1853/*
1854 * Write an actual chunk of memory using RDMA.
1855 *
1856 * If we're using dynamic registration on the dest-side, we have to
1857 * send a registration command first.
1858 */
1859static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1860                               int current_index, uint64_t current_addr,
1861                               uint64_t length)
1862{
1863    struct ibv_sge sge;
1864    struct ibv_send_wr send_wr = { 0 };
1865    struct ibv_send_wr *bad_wr;
1866    int reg_result_idx, ret, count = 0;
1867    uint64_t chunk, chunks;
1868    uint8_t *chunk_start, *chunk_end;
1869    RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1870    RDMARegister reg;
1871    RDMARegisterResult *reg_result;
1872    RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1873    RDMAControlHeader head = { .len = sizeof(RDMARegister),
1874                               .type = RDMA_CONTROL_REGISTER_REQUEST,
1875                               .repeat = 1,
1876                             };
1877
1878retry:
1879    sge.addr = (uintptr_t)(block->local_host_addr +
1880                            (current_addr - block->offset));
1881    sge.length = length;
1882
1883    chunk = ram_chunk_index(block->local_host_addr,
1884                            (uint8_t *)(uintptr_t)sge.addr);
1885    chunk_start = ram_chunk_start(block, chunk);
1886
1887    if (block->is_ram_block) {
1888        chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1889
1890        if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1891            chunks--;
1892        }
1893    } else {
1894        chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1895
1896        if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1897            chunks--;
1898        }
1899    }
1900
1901    trace_qemu_rdma_write_one_top(chunks + 1,
1902                                  (chunks + 1) *
1903                                  (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1904
1905    chunk_end = ram_chunk_end(block, chunk + chunks);
1906
1907    if (!rdma->pin_all) {
1908#ifdef RDMA_UNREGISTRATION_EXAMPLE
1909        qemu_rdma_unregister_waiting(rdma);
1910#endif
1911    }
1912
1913    while (test_bit(chunk, block->transit_bitmap)) {
1914        (void)count;
1915        trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1916                sge.addr, length, rdma->nb_sent, block->nb_chunks);
1917
1918        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1919
1920        if (ret < 0) {
1921            error_report("Failed to Wait for previous write to complete "
1922                    "block %d chunk %" PRIu64
1923                    " current %" PRIu64 " len %" PRIu64 " %d",
1924                    current_index, chunk, sge.addr, length, rdma->nb_sent);
1925            return ret;
1926        }
1927    }
1928
1929    if (!rdma->pin_all || !block->is_ram_block) {
1930        if (!block->remote_keys[chunk]) {
1931            /*
1932             * This chunk has not yet been registered, so first check to see
1933             * if the entire chunk is zero. If so, tell the other size to
1934             * memset() + madvise() the entire chunk without RDMA.
1935             */
1936
1937            if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1938                                                   length)
1939                   && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1940                                                    length) == length) {
1941                RDMACompress comp = {
1942                                        .offset = current_addr,
1943                                        .value = 0,
1944                                        .block_idx = current_index,
1945                                        .length = length,
1946                                    };
1947
1948                head.len = sizeof(comp);
1949                head.type = RDMA_CONTROL_COMPRESS;
1950
1951                trace_qemu_rdma_write_one_zero(chunk, sge.length,
1952                                               current_index, current_addr);
1953
1954                compress_to_network(rdma, &comp);
1955                ret = qemu_rdma_exchange_send(rdma, &head,
1956                                (uint8_t *) &comp, NULL, NULL, NULL);
1957
1958                if (ret < 0) {
1959                    return -EIO;
1960                }
1961
1962                acct_update_position(f, sge.length, true);
1963
1964                return 1;
1965            }
1966
1967            /*
1968             * Otherwise, tell other side to register.
1969             */
1970            reg.current_index = current_index;
1971            if (block->is_ram_block) {
1972                reg.key.current_addr = current_addr;
1973            } else {
1974                reg.key.chunk = chunk;
1975            }
1976            reg.chunks = chunks;
1977
1978            trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1979                                              current_addr);
1980
1981            register_to_network(rdma, &reg);
1982            ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1983                                    &resp, &reg_result_idx, NULL);
1984            if (ret < 0) {
1985                return ret;
1986            }
1987
1988            /* try to overlap this single registration with the one we sent. */
1989            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1990                                                &sge.lkey, NULL, chunk,
1991                                                chunk_start, chunk_end)) {
1992                error_report("cannot get lkey");
1993                return -EINVAL;
1994            }
1995
1996            reg_result = (RDMARegisterResult *)
1997                    rdma->wr_data[reg_result_idx].control_curr;
1998
1999            network_to_result(reg_result);
2000
2001            trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2002                                                 reg_result->rkey, chunk);
2003
2004            block->remote_keys[chunk] = reg_result->rkey;
2005            block->remote_host_addr = reg_result->host_addr;
2006        } else {
2007            /* already registered before */
2008            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2009                                                &sge.lkey, NULL, chunk,
2010                                                chunk_start, chunk_end)) {
2011                error_report("cannot get lkey!");
2012                return -EINVAL;
2013            }
2014        }
2015
2016        send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2017    } else {
2018        send_wr.wr.rdma.rkey = block->remote_rkey;
2019
2020        if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2021                                                     &sge.lkey, NULL, chunk,
2022                                                     chunk_start, chunk_end)) {
2023            error_report("cannot get lkey!");
2024            return -EINVAL;
2025        }
2026    }
2027
2028    /*
2029     * Encode the ram block index and chunk within this wrid.
2030     * We will use this information at the time of completion
2031     * to figure out which bitmap to check against and then which
2032     * chunk in the bitmap to look for.
2033     */
2034    send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2035                                        current_index, chunk);
2036
2037    send_wr.opcode = IBV_WR_RDMA_WRITE;
2038    send_wr.send_flags = IBV_SEND_SIGNALED;
2039    send_wr.sg_list = &sge;
2040    send_wr.num_sge = 1;
2041    send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2042                                (current_addr - block->offset);
2043
2044    trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2045                                   sge.length);
2046
2047    /*
2048     * ibv_post_send() does not return negative error numbers,
2049     * per the specification they are positive - no idea why.
2050     */
2051    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2052
2053    if (ret == ENOMEM) {
2054        trace_qemu_rdma_write_one_queue_full();
2055        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2056        if (ret < 0) {
2057            error_report("rdma migration: failed to make "
2058                         "room in full send queue! %d", ret);
2059            return ret;
2060        }
2061
2062        goto retry;
2063
2064    } else if (ret > 0) {
2065        perror("rdma migration: post rdma write failed");
2066        return -ret;
2067    }
2068
2069    set_bit(chunk, block->transit_bitmap);
2070    acct_update_position(f, sge.length, false);
2071    rdma->total_writes++;
2072
2073    return 0;
2074}
2075
2076/*
2077 * Push out any unwritten RDMA operations.
2078 *
2079 * We support sending out multiple chunks at the same time.
2080 * Not all of them need to get signaled in the completion queue.
2081 */
2082static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2083{
2084    int ret;
2085
2086    if (!rdma->current_length) {
2087        return 0;
2088    }
2089
2090    ret = qemu_rdma_write_one(f, rdma,
2091            rdma->current_index, rdma->current_addr, rdma->current_length);
2092
2093    if (ret < 0) {
2094        return ret;
2095    }
2096
2097    if (ret == 0) {
2098        rdma->nb_sent++;
2099        trace_qemu_rdma_write_flush(rdma->nb_sent);
2100    }
2101
2102    rdma->current_length = 0;
2103    rdma->current_addr = 0;
2104
2105    return 0;
2106}
2107
2108static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2109                    uint64_t offset, uint64_t len)
2110{
2111    RDMALocalBlock *block;
2112    uint8_t *host_addr;
2113    uint8_t *chunk_end;
2114
2115    if (rdma->current_index < 0) {
2116        return 0;
2117    }
2118
2119    if (rdma->current_chunk < 0) {
2120        return 0;
2121    }
2122
2123    block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2124    host_addr = block->local_host_addr + (offset - block->offset);
2125    chunk_end = ram_chunk_end(block, rdma->current_chunk);
2126
2127    if (rdma->current_length == 0) {
2128        return 0;
2129    }
2130
2131    /*
2132     * Only merge into chunk sequentially.
2133     */
2134    if (offset != (rdma->current_addr + rdma->current_length)) {
2135        return 0;
2136    }
2137
2138    if (offset < block->offset) {
2139        return 0;
2140    }
2141
2142    if ((offset + len) > (block->offset + block->length)) {
2143        return 0;
2144    }
2145
2146    if ((host_addr + len) > chunk_end) {
2147        return 0;
2148    }
2149
2150    return 1;
2151}
2152
2153/*
2154 * We're not actually writing here, but doing three things:
2155 *
2156 * 1. Identify the chunk the buffer belongs to.
2157 * 2. If the chunk is full or the buffer doesn't belong to the current
2158 *    chunk, then start a new chunk and flush() the old chunk.
2159 * 3. To keep the hardware busy, we also group chunks into batches
2160 *    and only require that a batch gets acknowledged in the completion
2161 *    qeueue instead of each individual chunk.
2162 */
2163static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2164                           uint64_t block_offset, uint64_t offset,
2165                           uint64_t len)
2166{
2167    uint64_t current_addr = block_offset + offset;
2168    uint64_t index = rdma->current_index;
2169    uint64_t chunk = rdma->current_chunk;
2170    int ret;
2171
2172    /* If we cannot merge it, we flush the current buffer first. */
2173    if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2174        ret = qemu_rdma_write_flush(f, rdma);
2175        if (ret) {
2176            return ret;
2177        }
2178        rdma->current_length = 0;
2179        rdma->current_addr = current_addr;
2180
2181        ret = qemu_rdma_search_ram_block(rdma, block_offset,
2182                                         offset, len, &index, &chunk);
2183        if (ret) {
2184            error_report("ram block search failed");
2185            return ret;
2186        }
2187        rdma->current_index = index;
2188        rdma->current_chunk = chunk;
2189    }
2190
2191    /* merge it */
2192    rdma->current_length += len;
2193
2194    /* flush it if buffer is too large */
2195    if (rdma->current_length >= RDMA_MERGE_MAX) {
2196        return qemu_rdma_write_flush(f, rdma);
2197    }
2198
2199    return 0;
2200}
2201
2202static void qemu_rdma_cleanup(RDMAContext *rdma)
2203{
2204    struct rdma_cm_event *cm_event;
2205    int ret, idx;
2206
2207    if (rdma->cm_id && rdma->connected) {
2208        if (rdma->error_state) {
2209            RDMAControlHeader head = { .len = 0,
2210                                       .type = RDMA_CONTROL_ERROR,
2211                                       .repeat = 1,
2212                                     };
2213            error_report("Early error. Sending error.");
2214            qemu_rdma_post_send_control(rdma, NULL, &head);
2215        }
2216
2217        ret = rdma_disconnect(rdma->cm_id);
2218        if (!ret) {
2219            trace_qemu_rdma_cleanup_waiting_for_disconnect();
2220            ret = rdma_get_cm_event(rdma->channel, &cm_event);
2221            if (!ret) {
2222                rdma_ack_cm_event(cm_event);
2223            }
2224        }
2225        trace_qemu_rdma_cleanup_disconnect();
2226        rdma->connected = false;
2227    }
2228
2229    g_free(rdma->dest_blocks);
2230    rdma->dest_blocks = NULL;
2231
2232    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2233        if (rdma->wr_data[idx].control_mr) {
2234            rdma->total_registrations--;
2235            ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2236        }
2237        rdma->wr_data[idx].control_mr = NULL;
2238    }
2239
2240    if (rdma->local_ram_blocks.block) {
2241        while (rdma->local_ram_blocks.nb_blocks) {
2242            rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2243        }
2244    }
2245
2246    if (rdma->qp) {
2247        rdma_destroy_qp(rdma->cm_id);
2248        rdma->qp = NULL;
2249    }
2250    if (rdma->cq) {
2251        ibv_destroy_cq(rdma->cq);
2252        rdma->cq = NULL;
2253    }
2254    if (rdma->comp_channel) {
2255        ibv_destroy_comp_channel(rdma->comp_channel);
2256        rdma->comp_channel = NULL;
2257    }
2258    if (rdma->pd) {
2259        ibv_dealloc_pd(rdma->pd);
2260        rdma->pd = NULL;
2261    }
2262    if (rdma->cm_id) {
2263        rdma_destroy_id(rdma->cm_id);
2264        rdma->cm_id = NULL;
2265    }
2266    if (rdma->listen_id) {
2267        rdma_destroy_id(rdma->listen_id);
2268        rdma->listen_id = NULL;
2269    }
2270    if (rdma->channel) {
2271        rdma_destroy_event_channel(rdma->channel);
2272        rdma->channel = NULL;
2273    }
2274    g_free(rdma->host);
2275    rdma->host = NULL;
2276}
2277
2278
2279static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2280{
2281    int ret, idx;
2282    Error *local_err = NULL, **temp = &local_err;
2283
2284    /*
2285     * Will be validated against destination's actual capabilities
2286     * after the connect() completes.
2287     */
2288    rdma->pin_all = pin_all;
2289
2290    ret = qemu_rdma_resolve_host(rdma, temp);
2291    if (ret) {
2292        goto err_rdma_source_init;
2293    }
2294
2295    ret = qemu_rdma_alloc_pd_cq(rdma);
2296    if (ret) {
2297        ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2298                    " limits may be too low. Please check $ ulimit -a # and "
2299                    "search for 'ulimit -l' in the output");
2300        goto err_rdma_source_init;
2301    }
2302
2303    ret = qemu_rdma_alloc_qp(rdma);
2304    if (ret) {
2305        ERROR(temp, "rdma migration: error allocating qp!");
2306        goto err_rdma_source_init;
2307    }
2308
2309    ret = qemu_rdma_init_ram_blocks(rdma);
2310    if (ret) {
2311        ERROR(temp, "rdma migration: error initializing ram blocks!");
2312        goto err_rdma_source_init;
2313    }
2314
2315    /* Build the hash that maps from offset to RAMBlock */
2316    rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2317    for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2318        g_hash_table_insert(rdma->blockmap,
2319                (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2320                &rdma->local_ram_blocks.block[idx]);
2321    }
2322
2323    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2324        ret = qemu_rdma_reg_control(rdma, idx);
2325        if (ret) {
2326            ERROR(temp, "rdma migration: error registering %d control!",
2327                                                            idx);
2328            goto err_rdma_source_init;
2329        }
2330    }
2331
2332    return 0;
2333
2334err_rdma_source_init:
2335    error_propagate(errp, local_err);
2336    qemu_rdma_cleanup(rdma);
2337    return -1;
2338}
2339
2340static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2341{
2342    RDMACapabilities cap = {
2343                                .version = RDMA_CONTROL_VERSION_CURRENT,
2344                                .flags = 0,
2345                           };
2346    struct rdma_conn_param conn_param = { .initiator_depth = 2,
2347                                          .retry_count = 5,
2348                                          .private_data = &cap,
2349                                          .private_data_len = sizeof(cap),
2350                                        };
2351    struct rdma_cm_event *cm_event;
2352    int ret;
2353
2354    /*
2355     * Only negotiate the capability with destination if the user
2356     * on the source first requested the capability.
2357     */
2358    if (rdma->pin_all) {
2359        trace_qemu_rdma_connect_pin_all_requested();
2360        cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2361    }
2362
2363    caps_to_network(&cap);
2364
2365    ret = rdma_connect(rdma->cm_id, &conn_param);
2366    if (ret) {
2367        perror("rdma_connect");
2368        ERROR(errp, "connecting to destination!");
2369        goto err_rdma_source_connect;
2370    }
2371
2372    ret = rdma_get_cm_event(rdma->channel, &cm_event);
2373    if (ret) {
2374        perror("rdma_get_cm_event after rdma_connect");
2375        ERROR(errp, "connecting to destination!");
2376        rdma_ack_cm_event(cm_event);
2377        goto err_rdma_source_connect;
2378    }
2379
2380    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2381        perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2382        ERROR(errp, "connecting to destination!");
2383        rdma_ack_cm_event(cm_event);
2384        goto err_rdma_source_connect;
2385    }
2386    rdma->connected = true;
2387
2388    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2389    network_to_caps(&cap);
2390
2391    /*
2392     * Verify that the *requested* capabilities are supported by the destination
2393     * and disable them otherwise.
2394     */
2395    if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2396        ERROR(errp, "Server cannot support pinning all memory. "
2397                        "Will register memory dynamically.");
2398        rdma->pin_all = false;
2399    }
2400
2401    trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2402
2403    rdma_ack_cm_event(cm_event);
2404
2405    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2406    if (ret) {
2407        ERROR(errp, "posting second control recv!");
2408        goto err_rdma_source_connect;
2409    }
2410
2411    rdma->control_ready_expected = 1;
2412    rdma->nb_sent = 0;
2413    return 0;
2414
2415err_rdma_source_connect:
2416    qemu_rdma_cleanup(rdma);
2417    return -1;
2418}
2419
2420static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2421{
2422    int ret, idx;
2423    struct rdma_cm_id *listen_id;
2424    char ip[40] = "unknown";
2425    struct rdma_addrinfo *res, *e;
2426    char port_str[16];
2427
2428    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2429        rdma->wr_data[idx].control_len = 0;
2430        rdma->wr_data[idx].control_curr = NULL;
2431    }
2432
2433    if (!rdma->host || !rdma->host[0]) {
2434        ERROR(errp, "RDMA host is not set!");
2435        rdma->error_state = -EINVAL;
2436        return -1;
2437    }
2438    /* create CM channel */
2439    rdma->channel = rdma_create_event_channel();
2440    if (!rdma->channel) {
2441        ERROR(errp, "could not create rdma event channel");
2442        rdma->error_state = -EINVAL;
2443        return -1;
2444    }
2445
2446    /* create CM id */
2447    ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2448    if (ret) {
2449        ERROR(errp, "could not create cm_id!");
2450        goto err_dest_init_create_listen_id;
2451    }
2452
2453    snprintf(port_str, 16, "%d", rdma->port);
2454    port_str[15] = '\0';
2455
2456    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2457    if (ret < 0) {
2458        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2459        goto err_dest_init_bind_addr;
2460    }
2461
2462    for (e = res; e != NULL; e = e->ai_next) {
2463        inet_ntop(e->ai_family,
2464            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2465        trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2466        ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2467        if (ret) {
2468            continue;
2469        }
2470        if (e->ai_family == AF_INET6) {
2471            ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2472            if (ret) {
2473                continue;
2474            }
2475        }
2476        break;
2477    }
2478
2479    if (!e) {
2480        ERROR(errp, "Error: could not rdma_bind_addr!");
2481        goto err_dest_init_bind_addr;
2482    }
2483
2484    rdma->listen_id = listen_id;
2485    qemu_rdma_dump_gid("dest_init", listen_id);
2486    return 0;
2487
2488err_dest_init_bind_addr:
2489    rdma_destroy_id(listen_id);
2490err_dest_init_create_listen_id:
2491    rdma_destroy_event_channel(rdma->channel);
2492    rdma->channel = NULL;
2493    rdma->error_state = ret;
2494    return ret;
2495
2496}
2497
2498static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2499{
2500    RDMAContext *rdma = NULL;
2501    InetSocketAddress *addr;
2502
2503    if (host_port) {
2504        rdma = g_new0(RDMAContext, 1);
2505        rdma->current_index = -1;
2506        rdma->current_chunk = -1;
2507
2508        addr = inet_parse(host_port, NULL);
2509        if (addr != NULL) {
2510            rdma->port = atoi(addr->port);
2511            rdma->host = g_strdup(addr->host);
2512        } else {
2513            ERROR(errp, "bad RDMA migration address '%s'", host_port);
2514            g_free(rdma);
2515            rdma = NULL;
2516        }
2517
2518        qapi_free_InetSocketAddress(addr);
2519    }
2520
2521    return rdma;
2522}
2523
2524/*
2525 * QEMUFile interface to the control channel.
2526 * SEND messages for control only.
2527 * VM's ram is handled with regular RDMA messages.
2528 */
2529static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2530                                       const struct iovec *iov,
2531                                       size_t niov,
2532                                       int *fds,
2533                                       size_t nfds,
2534                                       Error **errp)
2535{
2536    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2537    QEMUFile *f = rioc->file;
2538    RDMAContext *rdma = rioc->rdma;
2539    int ret;
2540    ssize_t done = 0;
2541    size_t i;
2542
2543    CHECK_ERROR_STATE();
2544
2545    /*
2546     * Push out any writes that
2547     * we're queued up for VM's ram.
2548     */
2549    ret = qemu_rdma_write_flush(f, rdma);
2550    if (ret < 0) {
2551        rdma->error_state = ret;
2552        return ret;
2553    }
2554
2555    for (i = 0; i < niov; i++) {
2556        size_t remaining = iov[i].iov_len;
2557        uint8_t * data = (void *)iov[i].iov_base;
2558        while (remaining) {
2559            RDMAControlHeader head;
2560
2561            rioc->len = MIN(remaining, RDMA_SEND_INCREMENT);
2562            remaining -= rioc->len;
2563
2564            head.len = rioc->len;
2565            head.type = RDMA_CONTROL_QEMU_FILE;
2566
2567            ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2568
2569            if (ret < 0) {
2570                rdma->error_state = ret;
2571                return ret;
2572            }
2573
2574            data += rioc->len;
2575            done += rioc->len;
2576        }
2577    }
2578
2579    return done;
2580}
2581
2582static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2583                             size_t size, int idx)
2584{
2585    size_t len = 0;
2586
2587    if (rdma->wr_data[idx].control_len) {
2588        trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2589
2590        len = MIN(size, rdma->wr_data[idx].control_len);
2591        memcpy(buf, rdma->wr_data[idx].control_curr, len);
2592        rdma->wr_data[idx].control_curr += len;
2593        rdma->wr_data[idx].control_len -= len;
2594    }
2595
2596    return len;
2597}
2598
2599/*
2600 * QEMUFile interface to the control channel.
2601 * RDMA links don't use bytestreams, so we have to
2602 * return bytes to QEMUFile opportunistically.
2603 */
2604static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2605                                      const struct iovec *iov,
2606                                      size_t niov,
2607                                      int **fds,
2608                                      size_t *nfds,
2609                                      Error **errp)
2610{
2611    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2612    RDMAContext *rdma = rioc->rdma;
2613    RDMAControlHeader head;
2614    int ret = 0;
2615    ssize_t i;
2616    size_t done = 0;
2617
2618    CHECK_ERROR_STATE();
2619
2620    for (i = 0; i < niov; i++) {
2621        size_t want = iov[i].iov_len;
2622        uint8_t *data = (void *)iov[i].iov_base;
2623
2624        /*
2625         * First, we hold on to the last SEND message we
2626         * were given and dish out the bytes until we run
2627         * out of bytes.
2628         */
2629        ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2630        done += ret;
2631        want -= ret;
2632        /* Got what we needed, so go to next iovec */
2633        if (want == 0) {
2634            continue;
2635        }
2636
2637        /* If we got any data so far, then don't wait
2638         * for more, just return what we have */
2639        if (done > 0) {
2640            break;
2641        }
2642
2643
2644        /* We've got nothing at all, so lets wait for
2645         * more to arrive
2646         */
2647        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2648
2649        if (ret < 0) {
2650            rdma->error_state = ret;
2651            return ret;
2652        }
2653
2654        /*
2655         * SEND was received with new bytes, now try again.
2656         */
2657        ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2658        done += ret;
2659        want -= ret;
2660
2661        /* Still didn't get enough, so lets just return */
2662        if (want) {
2663            if (done == 0) {
2664                return QIO_CHANNEL_ERR_BLOCK;
2665            } else {
2666                break;
2667            }
2668        }
2669    }
2670    rioc->len = done;
2671    return rioc->len;
2672}
2673
2674/*
2675 * Block until all the outstanding chunks have been delivered by the hardware.
2676 */
2677static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2678{
2679    int ret;
2680
2681    if (qemu_rdma_write_flush(f, rdma) < 0) {
2682        return -EIO;
2683    }
2684
2685    while (rdma->nb_sent) {
2686        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2687        if (ret < 0) {
2688            error_report("rdma migration: complete polling error!");
2689            return -EIO;
2690        }
2691    }
2692
2693    qemu_rdma_unregister_waiting(rdma);
2694
2695    return 0;
2696}
2697
2698
2699static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2700                                         bool blocking,
2701                                         Error **errp)
2702{
2703    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2704    /* XXX we should make readv/writev actually honour this :-) */
2705    rioc->blocking = blocking;
2706    return 0;
2707}
2708
2709
2710typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2711struct QIOChannelRDMASource {
2712    GSource parent;
2713    QIOChannelRDMA *rioc;
2714    GIOCondition condition;
2715};
2716
2717static gboolean
2718qio_channel_rdma_source_prepare(GSource *source,
2719                                gint *timeout)
2720{
2721    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2722    RDMAContext *rdma = rsource->rioc->rdma;
2723    GIOCondition cond = 0;
2724    *timeout = -1;
2725
2726    if (rdma->wr_data[0].control_len) {
2727        cond |= G_IO_IN;
2728    }
2729    cond |= G_IO_OUT;
2730
2731    return cond & rsource->condition;
2732}
2733
2734static gboolean
2735qio_channel_rdma_source_check(GSource *source)
2736{
2737    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2738    RDMAContext *rdma = rsource->rioc->rdma;
2739    GIOCondition cond = 0;
2740
2741    if (rdma->wr_data[0].control_len) {
2742        cond |= G_IO_IN;
2743    }
2744    cond |= G_IO_OUT;
2745
2746    return cond & rsource->condition;
2747}
2748
2749static gboolean
2750qio_channel_rdma_source_dispatch(GSource *source,
2751                                 GSourceFunc callback,
2752                                 gpointer user_data)
2753{
2754    QIOChannelFunc func = (QIOChannelFunc)callback;
2755    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2756    RDMAContext *rdma = rsource->rioc->rdma;
2757    GIOCondition cond = 0;
2758
2759    if (rdma->wr_data[0].control_len) {
2760        cond |= G_IO_IN;
2761    }
2762    cond |= G_IO_OUT;
2763
2764    return (*func)(QIO_CHANNEL(rsource->rioc),
2765                   (cond & rsource->condition),
2766                   user_data);
2767}
2768
2769static void
2770qio_channel_rdma_source_finalize(GSource *source)
2771{
2772    QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2773
2774    object_unref(OBJECT(ssource->rioc));
2775}
2776
2777GSourceFuncs qio_channel_rdma_source_funcs = {
2778    qio_channel_rdma_source_prepare,
2779    qio_channel_rdma_source_check,
2780    qio_channel_rdma_source_dispatch,
2781    qio_channel_rdma_source_finalize
2782};
2783
2784static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2785                                              GIOCondition condition)
2786{
2787    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2788    QIOChannelRDMASource *ssource;
2789    GSource *source;
2790
2791    source = g_source_new(&qio_channel_rdma_source_funcs,
2792                          sizeof(QIOChannelRDMASource));
2793    ssource = (QIOChannelRDMASource *)source;
2794
2795    ssource->rioc = rioc;
2796    object_ref(OBJECT(rioc));
2797
2798    ssource->condition = condition;
2799
2800    return source;
2801}
2802
2803
2804static int qio_channel_rdma_close(QIOChannel *ioc,
2805                                  Error **errp)
2806{
2807    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2808    trace_qemu_rdma_close();
2809    if (rioc->rdma) {
2810        qemu_rdma_cleanup(rioc->rdma);
2811        g_free(rioc->rdma);
2812        rioc->rdma = NULL;
2813    }
2814    return 0;
2815}
2816
2817/*
2818 * Parameters:
2819 *    @offset == 0 :
2820 *        This means that 'block_offset' is a full virtual address that does not
2821 *        belong to a RAMBlock of the virtual machine and instead
2822 *        represents a private malloc'd memory area that the caller wishes to
2823 *        transfer.
2824 *
2825 *    @offset != 0 :
2826 *        Offset is an offset to be added to block_offset and used
2827 *        to also lookup the corresponding RAMBlock.
2828 *
2829 *    @size > 0 :
2830 *        Initiate an transfer this size.
2831 *
2832 *    @size == 0 :
2833 *        A 'hint' or 'advice' that means that we wish to speculatively
2834 *        and asynchronously unregister this memory. In this case, there is no
2835 *        guarantee that the unregister will actually happen, for example,
2836 *        if the memory is being actively transmitted. Additionally, the memory
2837 *        may be re-registered at any future time if a write within the same
2838 *        chunk was requested again, even if you attempted to unregister it
2839 *        here.
2840 *
2841 *    @size < 0 : TODO, not yet supported
2842 *        Unregister the memory NOW. This means that the caller does not
2843 *        expect there to be any future RDMA transfers and we just want to clean
2844 *        things up. This is used in case the upper layer owns the memory and
2845 *        cannot wait for qemu_fclose() to occur.
2846 *
2847 *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2848 *                  sent. Usually, this will not be more than a few bytes of
2849 *                  the protocol because most transfers are sent asynchronously.
2850 */
2851static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2852                                  ram_addr_t block_offset, ram_addr_t offset,
2853                                  size_t size, uint64_t *bytes_sent)
2854{
2855    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
2856    RDMAContext *rdma = rioc->rdma;
2857    int ret;
2858
2859    CHECK_ERROR_STATE();
2860
2861    qemu_fflush(f);
2862
2863    if (size > 0) {
2864        /*
2865         * Add this page to the current 'chunk'. If the chunk
2866         * is full, or the page doen't belong to the current chunk,
2867         * an actual RDMA write will occur and a new chunk will be formed.
2868         */
2869        ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2870        if (ret < 0) {
2871            error_report("rdma migration: write error! %d", ret);
2872            goto err;
2873        }
2874
2875        /*
2876         * We always return 1 bytes because the RDMA
2877         * protocol is completely asynchronous. We do not yet know
2878         * whether an  identified chunk is zero or not because we're
2879         * waiting for other pages to potentially be merged with
2880         * the current chunk. So, we have to call qemu_update_position()
2881         * later on when the actual write occurs.
2882         */
2883        if (bytes_sent) {
2884            *bytes_sent = 1;
2885        }
2886    } else {
2887        uint64_t index, chunk;
2888
2889        /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2890        if (size < 0) {
2891            ret = qemu_rdma_drain_cq(f, rdma);
2892            if (ret < 0) {
2893                fprintf(stderr, "rdma: failed to synchronously drain"
2894                                " completion queue before unregistration.\n");
2895                goto err;
2896            }
2897        }
2898        */
2899
2900        ret = qemu_rdma_search_ram_block(rdma, block_offset,
2901                                         offset, size, &index, &chunk);
2902
2903        if (ret) {
2904            error_report("ram block search failed");
2905            goto err;
2906        }
2907
2908        qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2909
2910        /*
2911         * TODO: Synchronous, guaranteed unregistration (should not occur during
2912         * fast-path). Otherwise, unregisters will process on the next call to
2913         * qemu_rdma_drain_cq()
2914        if (size < 0) {
2915            qemu_rdma_unregister_waiting(rdma);
2916        }
2917        */
2918    }
2919
2920    /*
2921     * Drain the Completion Queue if possible, but do not block,
2922     * just poll.
2923     *
2924     * If nothing to poll, the end of the iteration will do this
2925     * again to make sure we don't overflow the request queue.
2926     */
2927    while (1) {
2928        uint64_t wr_id, wr_id_in;
2929        int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2930        if (ret < 0) {
2931            error_report("rdma migration: polling error! %d", ret);
2932            goto err;
2933        }
2934
2935        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2936
2937        if (wr_id == RDMA_WRID_NONE) {
2938            break;
2939        }
2940    }
2941
2942    return RAM_SAVE_CONTROL_DELAYED;
2943err:
2944    rdma->error_state = ret;
2945    return ret;
2946}
2947
2948static int qemu_rdma_accept(RDMAContext *rdma)
2949{
2950    RDMACapabilities cap;
2951    struct rdma_conn_param conn_param = {
2952                                            .responder_resources = 2,
2953                                            .private_data = &cap,
2954                                            .private_data_len = sizeof(cap),
2955                                         };
2956    struct rdma_cm_event *cm_event;
2957    struct ibv_context *verbs;
2958    int ret = -EINVAL;
2959    int idx;
2960
2961    ret = rdma_get_cm_event(rdma->channel, &cm_event);
2962    if (ret) {
2963        goto err_rdma_dest_wait;
2964    }
2965
2966    if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2967        rdma_ack_cm_event(cm_event);
2968        goto err_rdma_dest_wait;
2969    }
2970
2971    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2972
2973    network_to_caps(&cap);
2974
2975    if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2976            error_report("Unknown source RDMA version: %d, bailing...",
2977                            cap.version);
2978            rdma_ack_cm_event(cm_event);
2979            goto err_rdma_dest_wait;
2980    }
2981
2982    /*
2983     * Respond with only the capabilities this version of QEMU knows about.
2984     */
2985    cap.flags &= known_capabilities;
2986
2987    /*
2988     * Enable the ones that we do know about.
2989     * Add other checks here as new ones are introduced.
2990     */
2991    if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2992        rdma->pin_all = true;
2993    }
2994
2995    rdma->cm_id = cm_event->id;
2996    verbs = cm_event->id->verbs;
2997
2998    rdma_ack_cm_event(cm_event);
2999
3000    trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3001
3002    caps_to_network(&cap);
3003
3004    trace_qemu_rdma_accept_pin_verbsc(verbs);
3005
3006    if (!rdma->verbs) {
3007        rdma->verbs = verbs;
3008    } else if (rdma->verbs != verbs) {
3009            error_report("ibv context not matching %p, %p!", rdma->verbs,
3010                         verbs);
3011            goto err_rdma_dest_wait;
3012    }
3013
3014    qemu_rdma_dump_id("dest_init", verbs);
3015
3016    ret = qemu_rdma_alloc_pd_cq(rdma);
3017    if (ret) {
3018        error_report("rdma migration: error allocating pd and cq!");
3019        goto err_rdma_dest_wait;
3020    }
3021
3022    ret = qemu_rdma_alloc_qp(rdma);
3023    if (ret) {
3024        error_report("rdma migration: error allocating qp!");
3025        goto err_rdma_dest_wait;
3026    }
3027
3028    ret = qemu_rdma_init_ram_blocks(rdma);
3029    if (ret) {
3030        error_report("rdma migration: error initializing ram blocks!");
3031        goto err_rdma_dest_wait;
3032    }
3033
3034    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3035        ret = qemu_rdma_reg_control(rdma, idx);
3036        if (ret) {
3037            error_report("rdma: error registering %d control", idx);
3038            goto err_rdma_dest_wait;
3039        }
3040    }
3041
3042    qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
3043
3044    ret = rdma_accept(rdma->cm_id, &conn_param);
3045    if (ret) {
3046        error_report("rdma_accept returns %d", ret);
3047        goto err_rdma_dest_wait;
3048    }
3049
3050    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3051    if (ret) {
3052        error_report("rdma_accept get_cm_event failed %d", ret);
3053        goto err_rdma_dest_wait;
3054    }
3055
3056    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3057        error_report("rdma_accept not event established");
3058        rdma_ack_cm_event(cm_event);
3059        goto err_rdma_dest_wait;
3060    }
3061
3062    rdma_ack_cm_event(cm_event);
3063    rdma->connected = true;
3064
3065    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3066    if (ret) {
3067        error_report("rdma migration: error posting second control recv");
3068        goto err_rdma_dest_wait;
3069    }
3070
3071    qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3072
3073    return 0;
3074
3075err_rdma_dest_wait:
3076    rdma->error_state = ret;
3077    qemu_rdma_cleanup(rdma);
3078    return ret;
3079}
3080
3081static int dest_ram_sort_func(const void *a, const void *b)
3082{
3083    unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3084    unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3085
3086    return (a_index < b_index) ? -1 : (a_index != b_index);
3087}
3088
3089/*
3090 * During each iteration of the migration, we listen for instructions
3091 * by the source VM to perform dynamic page registrations before they
3092 * can perform RDMA operations.
3093 *
3094 * We respond with the 'rkey'.
3095 *
3096 * Keep doing this until the source tells us to stop.
3097 */
3098static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3099{
3100    RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3101                               .type = RDMA_CONTROL_REGISTER_RESULT,
3102                               .repeat = 0,
3103                             };
3104    RDMAControlHeader unreg_resp = { .len = 0,
3105                               .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3106                               .repeat = 0,
3107                             };
3108    RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3109                                 .repeat = 1 };
3110    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3111    RDMAContext *rdma = rioc->rdma;
3112    RDMALocalBlocks *local = &rdma->local_ram_blocks;
3113    RDMAControlHeader head;
3114    RDMARegister *reg, *registers;
3115    RDMACompress *comp;
3116    RDMARegisterResult *reg_result;
3117    static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3118    RDMALocalBlock *block;
3119    void *host_addr;
3120    int ret = 0;
3121    int idx = 0;
3122    int count = 0;
3123    int i = 0;
3124
3125    CHECK_ERROR_STATE();
3126
3127    do {
3128        trace_qemu_rdma_registration_handle_wait();
3129
3130        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3131
3132        if (ret < 0) {
3133            break;
3134        }
3135
3136        if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3137            error_report("rdma: Too many requests in this message (%d)."
3138                            "Bailing.", head.repeat);
3139            ret = -EIO;
3140            break;
3141        }
3142
3143        switch (head.type) {
3144        case RDMA_CONTROL_COMPRESS:
3145            comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3146            network_to_compress(comp);
3147
3148            trace_qemu_rdma_registration_handle_compress(comp->length,
3149                                                         comp->block_idx,
3150                                                         comp->offset);
3151            if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3152                error_report("rdma: 'compress' bad block index %u (vs %d)",
3153                             (unsigned int)comp->block_idx,
3154                             rdma->local_ram_blocks.nb_blocks);
3155                ret = -EIO;
3156                goto out;
3157            }
3158            block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3159
3160            host_addr = block->local_host_addr +
3161                            (comp->offset - block->offset);
3162
3163            ram_handle_compressed(host_addr, comp->value, comp->length);
3164            break;
3165
3166        case RDMA_CONTROL_REGISTER_FINISHED:
3167            trace_qemu_rdma_registration_handle_finished();
3168            goto out;
3169
3170        case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3171            trace_qemu_rdma_registration_handle_ram_blocks();
3172
3173            /* Sort our local RAM Block list so it's the same as the source,
3174             * we can do this since we've filled in a src_index in the list
3175             * as we received the RAMBlock list earlier.
3176             */
3177            qsort(rdma->local_ram_blocks.block,
3178                  rdma->local_ram_blocks.nb_blocks,
3179                  sizeof(RDMALocalBlock), dest_ram_sort_func);
3180            if (rdma->pin_all) {
3181                ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3182                if (ret) {
3183                    error_report("rdma migration: error dest "
3184                                    "registering ram blocks");
3185                    goto out;
3186                }
3187            }
3188
3189            /*
3190             * Dest uses this to prepare to transmit the RAMBlock descriptions
3191             * to the source VM after connection setup.
3192             * Both sides use the "remote" structure to communicate and update
3193             * their "local" descriptions with what was sent.
3194             */
3195            for (i = 0; i < local->nb_blocks; i++) {
3196                rdma->dest_blocks[i].remote_host_addr =
3197                    (uintptr_t)(local->block[i].local_host_addr);
3198
3199                if (rdma->pin_all) {
3200                    rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3201                }
3202
3203                rdma->dest_blocks[i].offset = local->block[i].offset;
3204                rdma->dest_blocks[i].length = local->block[i].length;
3205
3206                dest_block_to_network(&rdma->dest_blocks[i]);
3207                trace_qemu_rdma_registration_handle_ram_blocks_loop(
3208                    local->block[i].block_name,
3209                    local->block[i].offset,
3210                    local->block[i].length,
3211                    local->block[i].local_host_addr,
3212                    local->block[i].src_index);
3213            }
3214
3215            blocks.len = rdma->local_ram_blocks.nb_blocks
3216                                                * sizeof(RDMADestBlock);
3217
3218
3219            ret = qemu_rdma_post_send_control(rdma,
3220                                        (uint8_t *) rdma->dest_blocks, &blocks);
3221
3222            if (ret < 0) {
3223                error_report("rdma migration: error sending remote info");
3224                goto out;
3225            }
3226
3227            break;
3228        case RDMA_CONTROL_REGISTER_REQUEST:
3229            trace_qemu_rdma_registration_handle_register(head.repeat);
3230
3231            reg_resp.repeat = head.repeat;
3232            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3233
3234            for (count = 0; count < head.repeat; count++) {
3235                uint64_t chunk;
3236                uint8_t *chunk_start, *chunk_end;
3237
3238                reg = &registers[count];
3239                network_to_register(reg);
3240
3241                reg_result = &results[count];
3242
3243                trace_qemu_rdma_registration_handle_register_loop(count,
3244                         reg->current_index, reg->key.current_addr, reg->chunks);
3245
3246                if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3247                    error_report("rdma: 'register' bad block index %u (vs %d)",
3248                                 (unsigned int)reg->current_index,
3249                                 rdma->local_ram_blocks.nb_blocks);
3250                    ret = -ENOENT;
3251                    goto out;
3252                }
3253                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3254                if (block->is_ram_block) {
3255                    if (block->offset > reg->key.current_addr) {
3256                        error_report("rdma: bad register address for block %s"
3257                            " offset: %" PRIx64 " current_addr: %" PRIx64,
3258                            block->block_name, block->offset,
3259                            reg->key.current_addr);
3260                        ret = -ERANGE;
3261                        goto out;
3262                    }
3263                    host_addr = (block->local_host_addr +
3264                                (reg->key.current_addr - block->offset));
3265                    chunk = ram_chunk_index(block->local_host_addr,
3266                                            (uint8_t *) host_addr);
3267                } else {
3268                    chunk = reg->key.chunk;
3269                    host_addr = block->local_host_addr +
3270                        (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3271                    /* Check for particularly bad chunk value */
3272                    if (host_addr < (void *)block->local_host_addr) {
3273                        error_report("rdma: bad chunk for block %s"
3274                            " chunk: %" PRIx64,
3275                            block->block_name, reg->key.chunk);
3276                        ret = -ERANGE;
3277                        goto out;
3278                    }
3279                }
3280                chunk_start = ram_chunk_start(block, chunk);
3281                chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3282                if (qemu_rdma_register_and_get_keys(rdma, block,
3283                            (uintptr_t)host_addr, NULL, &reg_result->rkey,
3284                            chunk, chunk_start, chunk_end)) {
3285                    error_report("cannot get rkey");
3286                    ret = -EINVAL;
3287                    goto out;
3288                }
3289
3290                reg_result->host_addr = (uintptr_t)block->local_host_addr;
3291
3292                trace_qemu_rdma_registration_handle_register_rkey(
3293                                                           reg_result->rkey);
3294
3295                result_to_network(reg_result);
3296            }
3297
3298            ret = qemu_rdma_post_send_control(rdma,
3299                            (uint8_t *) results, &reg_resp);
3300
3301            if (ret < 0) {
3302                error_report("Failed to send control buffer");
3303                goto out;
3304            }
3305            break;
3306        case RDMA_CONTROL_UNREGISTER_REQUEST:
3307            trace_qemu_rdma_registration_handle_unregister(head.repeat);
3308            unreg_resp.repeat = head.repeat;
3309            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3310
3311            for (count = 0; count < head.repeat; count++) {
3312                reg = &registers[count];
3313                network_to_register(reg);
3314
3315                trace_qemu_rdma_registration_handle_unregister_loop(count,
3316                           reg->current_index, reg->key.chunk);
3317
3318                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3319
3320                ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3321                block->pmr[reg->key.chunk] = NULL;
3322
3323                if (ret != 0) {
3324                    perror("rdma unregistration chunk failed");
3325                    ret = -ret;
3326                    goto out;
3327                }
3328
3329                rdma->total_registrations--;
3330
3331                trace_qemu_rdma_registration_handle_unregister_success(
3332                                                       reg->key.chunk);
3333            }
3334
3335            ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3336
3337            if (ret < 0) {
3338                error_report("Failed to send control buffer");
3339                goto out;
3340            }
3341            break;
3342        case RDMA_CONTROL_REGISTER_RESULT:
3343            error_report("Invalid RESULT message at dest.");
3344            ret = -EIO;
3345            goto out;
3346        default:
3347            error_report("Unknown control message %s", control_desc[head.type]);
3348            ret = -EIO;
3349            goto out;
3350        }
3351    } while (1);
3352out:
3353    if (ret < 0) {
3354        rdma->error_state = ret;
3355    }
3356    return ret;
3357}
3358
3359/* Destination:
3360 * Called via a ram_control_load_hook during the initial RAM load section which
3361 * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3362 * on the source.
3363 * We've already built our local RAMBlock list, but not yet sent the list to
3364 * the source.
3365 */
3366static int
3367rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3368{
3369    RDMAContext *rdma = rioc->rdma;
3370    int curr;
3371    int found = -1;
3372
3373    /* Find the matching RAMBlock in our local list */
3374    for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3375        if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3376            found = curr;
3377            break;
3378        }
3379    }
3380
3381    if (found == -1) {
3382        error_report("RAMBlock '%s' not found on destination", name);
3383        return -ENOENT;
3384    }
3385
3386    rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3387    trace_rdma_block_notification_handle(name, rdma->next_src_index);
3388    rdma->next_src_index++;
3389
3390    return 0;
3391}
3392
3393static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3394{
3395    switch (flags) {
3396    case RAM_CONTROL_BLOCK_REG:
3397        return rdma_block_notification_handle(opaque, data);
3398
3399    case RAM_CONTROL_HOOK:
3400        return qemu_rdma_registration_handle(f, opaque);
3401
3402    default:
3403        /* Shouldn't be called with any other values */
3404        abort();
3405    }
3406}
3407
3408static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3409                                        uint64_t flags, void *data)
3410{
3411    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3412    RDMAContext *rdma = rioc->rdma;
3413
3414    CHECK_ERROR_STATE();
3415
3416    trace_qemu_rdma_registration_start(flags);
3417    qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3418    qemu_fflush(f);
3419
3420    return 0;
3421}
3422
3423/*
3424 * Inform dest that dynamic registrations are done for now.
3425 * First, flush writes, if any.
3426 */
3427static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3428                                       uint64_t flags, void *data)
3429{
3430    Error *local_err = NULL, **errp = &local_err;
3431    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3432    RDMAContext *rdma = rioc->rdma;
3433    RDMAControlHeader head = { .len = 0, .repeat = 1 };
3434    int ret = 0;
3435
3436    CHECK_ERROR_STATE();
3437
3438    qemu_fflush(f);
3439    ret = qemu_rdma_drain_cq(f, rdma);
3440
3441    if (ret < 0) {
3442        goto err;
3443    }
3444
3445    if (flags == RAM_CONTROL_SETUP) {
3446        RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3447        RDMALocalBlocks *local = &rdma->local_ram_blocks;
3448        int reg_result_idx, i, nb_dest_blocks;
3449
3450        head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3451        trace_qemu_rdma_registration_stop_ram();
3452
3453        /*
3454         * Make sure that we parallelize the pinning on both sides.
3455         * For very large guests, doing this serially takes a really
3456         * long time, so we have to 'interleave' the pinning locally
3457         * with the control messages by performing the pinning on this
3458         * side before we receive the control response from the other
3459         * side that the pinning has completed.
3460         */
3461        ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3462                    &reg_result_idx, rdma->pin_all ?
3463                    qemu_rdma_reg_whole_ram_blocks : NULL);
3464        if (ret < 0) {
3465            ERROR(errp, "receiving remote info!");
3466            return ret;
3467        }
3468
3469        nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3470
3471        /*
3472         * The protocol uses two different sets of rkeys (mutually exclusive):
3473         * 1. One key to represent the virtual address of the entire ram block.
3474         *    (dynamic chunk registration disabled - pin everything with one rkey.)
3475         * 2. One to represent individual chunks within a ram block.
3476         *    (dynamic chunk registration enabled - pin individual chunks.)
3477         *
3478         * Once the capability is successfully negotiated, the destination transmits
3479         * the keys to use (or sends them later) including the virtual addresses
3480         * and then propagates the remote ram block descriptions to his local copy.
3481         */
3482
3483        if (local->nb_blocks != nb_dest_blocks) {
3484            ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3485                        "Your QEMU command line parameters are probably "
3486                        "not identical on both the source and destination.",
3487                        local->nb_blocks, nb_dest_blocks);
3488            rdma->error_state = -EINVAL;
3489            return -EINVAL;
3490        }
3491
3492        qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3493        memcpy(rdma->dest_blocks,
3494            rdma->wr_data[reg_result_idx].control_curr, resp.len);
3495        for (i = 0; i < nb_dest_blocks; i++) {
3496            network_to_dest_block(&rdma->dest_blocks[i]);
3497
3498            /* We require that the blocks are in the same order */
3499            if (rdma->dest_blocks[i].length != local->block[i].length) {
3500                ERROR(errp, "Block %s/%d has a different length %" PRIu64
3501                            "vs %" PRIu64, local->block[i].block_name, i,
3502                            local->block[i].length,
3503                            rdma->dest_blocks[i].length);
3504                rdma->error_state = -EINVAL;
3505                return -EINVAL;
3506            }
3507            local->block[i].remote_host_addr =
3508                    rdma->dest_blocks[i].remote_host_addr;
3509            local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3510        }
3511    }
3512
3513    trace_qemu_rdma_registration_stop(flags);
3514
3515    head.type = RDMA_CONTROL_REGISTER_FINISHED;
3516    ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3517
3518    if (ret < 0) {
3519        goto err;
3520    }
3521
3522    return 0;
3523err:
3524    rdma->error_state = ret;
3525    return ret;
3526}
3527
3528static const QEMUFileHooks rdma_read_hooks = {
3529    .hook_ram_load = rdma_load_hook,
3530};
3531
3532static const QEMUFileHooks rdma_write_hooks = {
3533    .before_ram_iterate = qemu_rdma_registration_start,
3534    .after_ram_iterate  = qemu_rdma_registration_stop,
3535    .save_page          = qemu_rdma_save_page,
3536};
3537
3538
3539static void qio_channel_rdma_finalize(Object *obj)
3540{
3541    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3542    if (rioc->rdma) {
3543        qemu_rdma_cleanup(rioc->rdma);
3544        g_free(rioc->rdma);
3545        rioc->rdma = NULL;
3546    }
3547}
3548
3549static void qio_channel_rdma_class_init(ObjectClass *klass,
3550                                        void *class_data G_GNUC_UNUSED)
3551{
3552    QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3553
3554    ioc_klass->io_writev = qio_channel_rdma_writev;
3555    ioc_klass->io_readv = qio_channel_rdma_readv;
3556    ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3557    ioc_klass->io_close = qio_channel_rdma_close;
3558    ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3559}
3560
3561static const TypeInfo qio_channel_rdma_info = {
3562    .parent = TYPE_QIO_CHANNEL,
3563    .name = TYPE_QIO_CHANNEL_RDMA,
3564    .instance_size = sizeof(QIOChannelRDMA),
3565    .instance_finalize = qio_channel_rdma_finalize,
3566    .class_init = qio_channel_rdma_class_init,
3567};
3568
3569static void qio_channel_rdma_register_types(void)
3570{
3571    type_register_static(&qio_channel_rdma_info);
3572}
3573
3574type_init(qio_channel_rdma_register_types);
3575
3576static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3577{
3578    QIOChannelRDMA *rioc;
3579
3580    if (qemu_file_mode_is_not_valid(mode)) {
3581        return NULL;
3582    }
3583
3584    rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3585    rioc->rdma = rdma;
3586
3587    if (mode[0] == 'w') {
3588        rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3589        qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3590    } else {
3591        rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3592        qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3593    }
3594
3595    return rioc->file;
3596}
3597
3598static void rdma_accept_incoming_migration(void *opaque)
3599{
3600    RDMAContext *rdma = opaque;
3601    int ret;
3602    QEMUFile *f;
3603    Error *local_err = NULL, **errp = &local_err;
3604
3605    trace_qemu_rdma_accept_incoming_migration();
3606    ret = qemu_rdma_accept(rdma);
3607
3608    if (ret) {
3609        ERROR(errp, "RDMA Migration initialization failed!");
3610        return;
3611    }
3612
3613    trace_qemu_rdma_accept_incoming_migration_accepted();
3614
3615    f = qemu_fopen_rdma(rdma, "rb");
3616    if (f == NULL) {
3617        ERROR(errp, "could not qemu_fopen_rdma!");
3618        qemu_rdma_cleanup(rdma);
3619        return;
3620    }
3621
3622    rdma->migration_started_on_destination = 1;
3623    migration_fd_process_incoming(f);
3624}
3625
3626void rdma_start_incoming_migration(const char *host_port, Error **errp)
3627{
3628    int ret;
3629    RDMAContext *rdma;
3630    Error *local_err = NULL;
3631
3632    trace_rdma_start_incoming_migration();
3633    rdma = qemu_rdma_data_init(host_port, &local_err);
3634
3635    if (rdma == NULL) {
3636        goto err;
3637    }
3638
3639    ret = qemu_rdma_dest_init(rdma, &local_err);
3640
3641    if (ret) {
3642        goto err;
3643    }
3644
3645    trace_rdma_start_incoming_migration_after_dest_init();
3646
3647    ret = rdma_listen(rdma->listen_id, 5);
3648
3649    if (ret) {
3650        ERROR(errp, "listening on socket!");
3651        goto err;
3652    }
3653
3654    trace_rdma_start_incoming_migration_after_rdma_listen();
3655
3656    qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3657                        NULL, (void *)(intptr_t)rdma);
3658    return;
3659err:
3660    error_propagate(errp, local_err);
3661    g_free(rdma);
3662}
3663
3664void rdma_start_outgoing_migration(void *opaque,
3665                            const char *host_port, Error **errp)
3666{
3667    MigrationState *s = opaque;
3668    RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
3669    int ret = 0;
3670
3671    if (rdma == NULL) {
3672        goto err;
3673    }
3674
3675    ret = qemu_rdma_source_init(rdma, errp,
3676        s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3677
3678    if (ret) {
3679        goto err;
3680    }
3681
3682    trace_rdma_start_outgoing_migration_after_rdma_source_init();
3683    ret = qemu_rdma_connect(rdma, errp);
3684
3685    if (ret) {
3686        goto err;
3687    }
3688
3689    trace_rdma_start_outgoing_migration_after_rdma_connect();
3690
3691    s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
3692    migrate_fd_connect(s);
3693    return;
3694err:
3695    g_free(rdma);
3696}
3697