qemu/target-arm/helper.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "cpu.h"
   3#include "internals.h"
   4#include "exec/gdbstub.h"
   5#include "exec/helper-proto.h"
   6#include "qemu/host-utils.h"
   7#include "sysemu/arch_init.h"
   8#include "sysemu/sysemu.h"
   9#include "qemu/bitops.h"
  10#include "qemu/crc32c.h"
  11#include "exec/exec-all.h"
  12#include "exec/cpu_ldst.h"
  13#include "arm_ldst.h"
  14#include <zlib.h> /* For crc32 */
  15#include "exec/semihost.h"
  16#include "sysemu/kvm.h"
  17
  18#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
  19
  20#ifndef CONFIG_USER_ONLY
  21static bool get_phys_addr(CPUARMState *env, target_ulong address,
  22                          int access_type, ARMMMUIdx mmu_idx,
  23                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
  24                          target_ulong *page_size, uint32_t *fsr,
  25                          ARMMMUFaultInfo *fi);
  26
  27static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
  28                               int access_type, ARMMMUIdx mmu_idx,
  29                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
  30                               target_ulong *page_size_ptr, uint32_t *fsr,
  31                               ARMMMUFaultInfo *fi);
  32
  33/* Definitions for the PMCCNTR and PMCR registers */
  34#define PMCRD   0x8
  35#define PMCRC   0x4
  36#define PMCRE   0x1
  37#endif
  38
  39static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
  40{
  41    int nregs;
  42
  43    /* VFP data registers are always little-endian.  */
  44    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
  45    if (reg < nregs) {
  46        stfq_le_p(buf, env->vfp.regs[reg]);
  47        return 8;
  48    }
  49    if (arm_feature(env, ARM_FEATURE_NEON)) {
  50        /* Aliases for Q regs.  */
  51        nregs += 16;
  52        if (reg < nregs) {
  53            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
  54            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
  55            return 16;
  56        }
  57    }
  58    switch (reg - nregs) {
  59    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
  60    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
  61    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
  62    }
  63    return 0;
  64}
  65
  66static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
  67{
  68    int nregs;
  69
  70    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
  71    if (reg < nregs) {
  72        env->vfp.regs[reg] = ldfq_le_p(buf);
  73        return 8;
  74    }
  75    if (arm_feature(env, ARM_FEATURE_NEON)) {
  76        nregs += 16;
  77        if (reg < nregs) {
  78            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
  79            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
  80            return 16;
  81        }
  82    }
  83    switch (reg - nregs) {
  84    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
  85    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
  86    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
  87    }
  88    return 0;
  89}
  90
  91static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
  92{
  93    switch (reg) {
  94    case 0 ... 31:
  95        /* 128 bit FP register */
  96        stfq_le_p(buf, env->vfp.regs[reg * 2]);
  97        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
  98        return 16;
  99    case 32:
 100        /* FPSR */
 101        stl_p(buf, vfp_get_fpsr(env));
 102        return 4;
 103    case 33:
 104        /* FPCR */
 105        stl_p(buf, vfp_get_fpcr(env));
 106        return 4;
 107    default:
 108        return 0;
 109    }
 110}
 111
 112static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 113{
 114    switch (reg) {
 115    case 0 ... 31:
 116        /* 128 bit FP register */
 117        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
 118        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
 119        return 16;
 120    case 32:
 121        /* FPSR */
 122        vfp_set_fpsr(env, ldl_p(buf));
 123        return 4;
 124    case 33:
 125        /* FPCR */
 126        vfp_set_fpcr(env, ldl_p(buf));
 127        return 4;
 128    default:
 129        return 0;
 130    }
 131}
 132
 133static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
 134{
 135    assert(ri->fieldoffset);
 136    if (cpreg_field_is_64bit(ri)) {
 137        return CPREG_FIELD64(env, ri);
 138    } else {
 139        return CPREG_FIELD32(env, ri);
 140    }
 141}
 142
 143static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 144                      uint64_t value)
 145{
 146    assert(ri->fieldoffset);
 147    if (cpreg_field_is_64bit(ri)) {
 148        CPREG_FIELD64(env, ri) = value;
 149    } else {
 150        CPREG_FIELD32(env, ri) = value;
 151    }
 152}
 153
 154static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
 155{
 156    return (char *)env + ri->fieldoffset;
 157}
 158
 159uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
 160{
 161    /* Raw read of a coprocessor register (as needed for migration, etc). */
 162    if (ri->type & ARM_CP_CONST) {
 163        return ri->resetvalue;
 164    } else if (ri->raw_readfn) {
 165        return ri->raw_readfn(env, ri);
 166    } else if (ri->readfn) {
 167        return ri->readfn(env, ri);
 168    } else {
 169        return raw_read(env, ri);
 170    }
 171}
 172
 173static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 174                             uint64_t v)
 175{
 176    /* Raw write of a coprocessor register (as needed for migration, etc).
 177     * Note that constant registers are treated as write-ignored; the
 178     * caller should check for success by whether a readback gives the
 179     * value written.
 180     */
 181    if (ri->type & ARM_CP_CONST) {
 182        return;
 183    } else if (ri->raw_writefn) {
 184        ri->raw_writefn(env, ri, v);
 185    } else if (ri->writefn) {
 186        ri->writefn(env, ri, v);
 187    } else {
 188        raw_write(env, ri, v);
 189    }
 190}
 191
 192static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 193{
 194   /* Return true if the regdef would cause an assertion if you called
 195    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 196    * program bug for it not to have the NO_RAW flag).
 197    * NB that returning false here doesn't necessarily mean that calling
 198    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 199    * read/write access functions which are safe for raw use" from "has
 200    * read/write access functions which have side effects but has forgotten
 201    * to provide raw access functions".
 202    * The tests here line up with the conditions in read/write_raw_cp_reg()
 203    * and assertions in raw_read()/raw_write().
 204    */
 205    if ((ri->type & ARM_CP_CONST) ||
 206        ri->fieldoffset ||
 207        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 208        return false;
 209    }
 210    return true;
 211}
 212
 213bool write_cpustate_to_list(ARMCPU *cpu)
 214{
 215    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 216    int i;
 217    bool ok = true;
 218
 219    for (i = 0; i < cpu->cpreg_array_len; i++) {
 220        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 221        const ARMCPRegInfo *ri;
 222
 223        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 224        if (!ri) {
 225            ok = false;
 226            continue;
 227        }
 228        if (ri->type & ARM_CP_NO_RAW) {
 229            continue;
 230        }
 231        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
 232    }
 233    return ok;
 234}
 235
 236bool write_list_to_cpustate(ARMCPU *cpu)
 237{
 238    int i;
 239    bool ok = true;
 240
 241    for (i = 0; i < cpu->cpreg_array_len; i++) {
 242        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 243        uint64_t v = cpu->cpreg_values[i];
 244        const ARMCPRegInfo *ri;
 245
 246        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 247        if (!ri) {
 248            ok = false;
 249            continue;
 250        }
 251        if (ri->type & ARM_CP_NO_RAW) {
 252            continue;
 253        }
 254        /* Write value and confirm it reads back as written
 255         * (to catch read-only registers and partially read-only
 256         * registers where the incoming migration value doesn't match)
 257         */
 258        write_raw_cp_reg(&cpu->env, ri, v);
 259        if (read_raw_cp_reg(&cpu->env, ri) != v) {
 260            ok = false;
 261        }
 262    }
 263    return ok;
 264}
 265
 266static void add_cpreg_to_list(gpointer key, gpointer opaque)
 267{
 268    ARMCPU *cpu = opaque;
 269    uint64_t regidx;
 270    const ARMCPRegInfo *ri;
 271
 272    regidx = *(uint32_t *)key;
 273    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 274
 275    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 276        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 277        /* The value array need not be initialized at this point */
 278        cpu->cpreg_array_len++;
 279    }
 280}
 281
 282static void count_cpreg(gpointer key, gpointer opaque)
 283{
 284    ARMCPU *cpu = opaque;
 285    uint64_t regidx;
 286    const ARMCPRegInfo *ri;
 287
 288    regidx = *(uint32_t *)key;
 289    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 290
 291    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 292        cpu->cpreg_array_len++;
 293    }
 294}
 295
 296static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 297{
 298    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 299    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 300
 301    if (aidx > bidx) {
 302        return 1;
 303    }
 304    if (aidx < bidx) {
 305        return -1;
 306    }
 307    return 0;
 308}
 309
 310void init_cpreg_list(ARMCPU *cpu)
 311{
 312    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 313     * Note that we require cpreg_tuples[] to be sorted by key ID.
 314     */
 315    GList *keys;
 316    int arraylen;
 317
 318    keys = g_hash_table_get_keys(cpu->cp_regs);
 319    keys = g_list_sort(keys, cpreg_key_compare);
 320
 321    cpu->cpreg_array_len = 0;
 322
 323    g_list_foreach(keys, count_cpreg, cpu);
 324
 325    arraylen = cpu->cpreg_array_len;
 326    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 327    cpu->cpreg_values = g_new(uint64_t, arraylen);
 328    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 329    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 330    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 331    cpu->cpreg_array_len = 0;
 332
 333    g_list_foreach(keys, add_cpreg_to_list, cpu);
 334
 335    assert(cpu->cpreg_array_len == arraylen);
 336
 337    g_list_free(keys);
 338}
 339
 340/*
 341 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 342 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 343 *
 344 * access_el3_aa32ns: Used to check AArch32 register views.
 345 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 346 */
 347static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 348                                        const ARMCPRegInfo *ri,
 349                                        bool isread)
 350{
 351    bool secure = arm_is_secure_below_el3(env);
 352
 353    assert(!arm_el_is_aa64(env, 3));
 354    if (secure) {
 355        return CP_ACCESS_TRAP_UNCATEGORIZED;
 356    }
 357    return CP_ACCESS_OK;
 358}
 359
 360static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
 361                                                const ARMCPRegInfo *ri,
 362                                                bool isread)
 363{
 364    if (!arm_el_is_aa64(env, 3)) {
 365        return access_el3_aa32ns(env, ri, isread);
 366    }
 367    return CP_ACCESS_OK;
 368}
 369
 370/* Some secure-only AArch32 registers trap to EL3 if used from
 371 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 372 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 373 * We assume that the .access field is set to PL1_RW.
 374 */
 375static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 376                                            const ARMCPRegInfo *ri,
 377                                            bool isread)
 378{
 379    if (arm_current_el(env) == 3) {
 380        return CP_ACCESS_OK;
 381    }
 382    if (arm_is_secure_below_el3(env)) {
 383        return CP_ACCESS_TRAP_EL3;
 384    }
 385    /* This will be EL1 NS and EL2 NS, which just UNDEF */
 386    return CP_ACCESS_TRAP_UNCATEGORIZED;
 387}
 388
 389/* Check for traps to "powerdown debug" registers, which are controlled
 390 * by MDCR.TDOSA
 391 */
 392static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 393                                   bool isread)
 394{
 395    int el = arm_current_el(env);
 396
 397    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
 398        && !arm_is_secure_below_el3(env)) {
 399        return CP_ACCESS_TRAP_EL2;
 400    }
 401    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 402        return CP_ACCESS_TRAP_EL3;
 403    }
 404    return CP_ACCESS_OK;
 405}
 406
 407/* Check for traps to "debug ROM" registers, which are controlled
 408 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 409 */
 410static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 411                                  bool isread)
 412{
 413    int el = arm_current_el(env);
 414
 415    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
 416        && !arm_is_secure_below_el3(env)) {
 417        return CP_ACCESS_TRAP_EL2;
 418    }
 419    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 420        return CP_ACCESS_TRAP_EL3;
 421    }
 422    return CP_ACCESS_OK;
 423}
 424
 425/* Check for traps to general debug registers, which are controlled
 426 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 427 */
 428static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 429                                  bool isread)
 430{
 431    int el = arm_current_el(env);
 432
 433    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
 434        && !arm_is_secure_below_el3(env)) {
 435        return CP_ACCESS_TRAP_EL2;
 436    }
 437    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 438        return CP_ACCESS_TRAP_EL3;
 439    }
 440    return CP_ACCESS_OK;
 441}
 442
 443/* Check for traps to performance monitor registers, which are controlled
 444 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 445 */
 446static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 447                                 bool isread)
 448{
 449    int el = arm_current_el(env);
 450
 451    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
 452        && !arm_is_secure_below_el3(env)) {
 453        return CP_ACCESS_TRAP_EL2;
 454    }
 455    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 456        return CP_ACCESS_TRAP_EL3;
 457    }
 458    return CP_ACCESS_OK;
 459}
 460
 461static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 462{
 463    ARMCPU *cpu = arm_env_get_cpu(env);
 464
 465    raw_write(env, ri, value);
 466    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
 467}
 468
 469static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 470{
 471    ARMCPU *cpu = arm_env_get_cpu(env);
 472
 473    if (raw_read(env, ri) != value) {
 474        /* Unlike real hardware the qemu TLB uses virtual addresses,
 475         * not modified virtual addresses, so this causes a TLB flush.
 476         */
 477        tlb_flush(CPU(cpu), 1);
 478        raw_write(env, ri, value);
 479    }
 480}
 481
 482static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 483                             uint64_t value)
 484{
 485    ARMCPU *cpu = arm_env_get_cpu(env);
 486
 487    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
 488        && !extended_addresses_enabled(env)) {
 489        /* For VMSA (when not using the LPAE long descriptor page table
 490         * format) this register includes the ASID, so do a TLB flush.
 491         * For PMSA it is purely a process ID and no action is needed.
 492         */
 493        tlb_flush(CPU(cpu), 1);
 494    }
 495    raw_write(env, ri, value);
 496}
 497
 498static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 499                          uint64_t value)
 500{
 501    /* Invalidate all (TLBIALL) */
 502    ARMCPU *cpu = arm_env_get_cpu(env);
 503
 504    tlb_flush(CPU(cpu), 1);
 505}
 506
 507static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 508                          uint64_t value)
 509{
 510    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 511    ARMCPU *cpu = arm_env_get_cpu(env);
 512
 513    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 514}
 515
 516static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 517                           uint64_t value)
 518{
 519    /* Invalidate by ASID (TLBIASID) */
 520    ARMCPU *cpu = arm_env_get_cpu(env);
 521
 522    tlb_flush(CPU(cpu), value == 0);
 523}
 524
 525static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 526                           uint64_t value)
 527{
 528    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 529    ARMCPU *cpu = arm_env_get_cpu(env);
 530
 531    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 532}
 533
 534/* IS variants of TLB operations must affect all cores */
 535static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 536                             uint64_t value)
 537{
 538    CPUState *other_cs;
 539
 540    CPU_FOREACH(other_cs) {
 541        tlb_flush(other_cs, 1);
 542    }
 543}
 544
 545static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 546                             uint64_t value)
 547{
 548    CPUState *other_cs;
 549
 550    CPU_FOREACH(other_cs) {
 551        tlb_flush(other_cs, value == 0);
 552    }
 553}
 554
 555static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 556                             uint64_t value)
 557{
 558    CPUState *other_cs;
 559
 560    CPU_FOREACH(other_cs) {
 561        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
 562    }
 563}
 564
 565static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 566                             uint64_t value)
 567{
 568    CPUState *other_cs;
 569
 570    CPU_FOREACH(other_cs) {
 571        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
 572    }
 573}
 574
 575static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 576                               uint64_t value)
 577{
 578    CPUState *cs = ENV_GET_CPU(env);
 579
 580    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
 581                        ARMMMUIdx_S2NS, -1);
 582}
 583
 584static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 585                                  uint64_t value)
 586{
 587    CPUState *other_cs;
 588
 589    CPU_FOREACH(other_cs) {
 590        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
 591                            ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
 592    }
 593}
 594
 595static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 596                            uint64_t value)
 597{
 598    /* Invalidate by IPA. This has to invalidate any structures that
 599     * contain only stage 2 translation information, but does not need
 600     * to apply to structures that contain combined stage 1 and stage 2
 601     * translation information.
 602     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
 603     */
 604    CPUState *cs = ENV_GET_CPU(env);
 605    uint64_t pageaddr;
 606
 607    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 608        return;
 609    }
 610
 611    pageaddr = sextract64(value << 12, 0, 40);
 612
 613    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
 614}
 615
 616static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 617                               uint64_t value)
 618{
 619    CPUState *other_cs;
 620    uint64_t pageaddr;
 621
 622    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 623        return;
 624    }
 625
 626    pageaddr = sextract64(value << 12, 0, 40);
 627
 628    CPU_FOREACH(other_cs) {
 629        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
 630    }
 631}
 632
 633static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 634                              uint64_t value)
 635{
 636    CPUState *cs = ENV_GET_CPU(env);
 637
 638    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
 639}
 640
 641static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 642                                 uint64_t value)
 643{
 644    CPUState *other_cs;
 645
 646    CPU_FOREACH(other_cs) {
 647        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
 648    }
 649}
 650
 651static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 652                              uint64_t value)
 653{
 654    CPUState *cs = ENV_GET_CPU(env);
 655    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 656
 657    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
 658}
 659
 660static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 661                                 uint64_t value)
 662{
 663    CPUState *other_cs;
 664    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 665
 666    CPU_FOREACH(other_cs) {
 667        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
 668    }
 669}
 670
 671static const ARMCPRegInfo cp_reginfo[] = {
 672    /* Define the secure and non-secure FCSE identifier CP registers
 673     * separately because there is no secure bank in V8 (no _EL3).  This allows
 674     * the secure register to be properly reset and migrated. There is also no
 675     * v8 EL1 version of the register so the non-secure instance stands alone.
 676     */
 677    { .name = "FCSEIDR(NS)",
 678      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 679      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 680      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 681      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 682    { .name = "FCSEIDR(S)",
 683      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 684      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 685      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 686      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 687    /* Define the secure and non-secure context identifier CP registers
 688     * separately because there is no secure bank in V8 (no _EL3).  This allows
 689     * the secure register to be properly reset and migrated.  In the
 690     * non-secure case, the 32-bit register will have reset and migration
 691     * disabled during registration as it is handled by the 64-bit instance.
 692     */
 693    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 694      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 695      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 696      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 697      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 698    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
 699      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 700      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 701      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 702      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 703    REGINFO_SENTINEL
 704};
 705
 706static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 707    /* NB: Some of these registers exist in v8 but with more precise
 708     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 709     */
 710    /* MMU Domain access control / MPU write buffer control */
 711    { .name = "DACR",
 712      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 713      .access = PL1_RW, .resetvalue = 0,
 714      .writefn = dacr_write, .raw_writefn = raw_write,
 715      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 716                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 717    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 718     * For v6 and v5, these mappings are overly broad.
 719     */
 720    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 721      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 722    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 723      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 724    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 725      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 726    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 727      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 728    /* Cache maintenance ops; some of this space may be overridden later. */
 729    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 730      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 731      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 732    REGINFO_SENTINEL
 733};
 734
 735static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 736    /* Not all pre-v6 cores implemented this WFI, so this is slightly
 737     * over-broad.
 738     */
 739    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 740      .access = PL1_W, .type = ARM_CP_WFI },
 741    REGINFO_SENTINEL
 742};
 743
 744static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 745    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 746     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 747     */
 748    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 749      .access = PL1_W, .type = ARM_CP_WFI },
 750    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 751     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 752     * OMAPCP will override this space.
 753     */
 754    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 755      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 756      .resetvalue = 0 },
 757    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 758      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 759      .resetvalue = 0 },
 760    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 761    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 762      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 763      .resetvalue = 0 },
 764    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 765     * implementing it as RAZ means the "debug architecture version" bits
 766     * will read as a reserved value, which should cause Linux to not try
 767     * to use the debug hardware.
 768     */
 769    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 770      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 771    /* MMU TLB control. Note that the wildcarding means we cover not just
 772     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 773     */
 774    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 775      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 776      .type = ARM_CP_NO_RAW },
 777    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 778      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 779      .type = ARM_CP_NO_RAW },
 780    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 781      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 782      .type = ARM_CP_NO_RAW },
 783    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 784      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 785      .type = ARM_CP_NO_RAW },
 786    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 787      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 788    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 789      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 790    REGINFO_SENTINEL
 791};
 792
 793static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 794                        uint64_t value)
 795{
 796    uint32_t mask = 0;
 797
 798    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 799    if (!arm_feature(env, ARM_FEATURE_V8)) {
 800        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 801         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 802         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 803         */
 804        if (arm_feature(env, ARM_FEATURE_VFP)) {
 805            /* VFP coprocessor: cp10 & cp11 [23:20] */
 806            mask |= (1 << 31) | (1 << 30) | (0xf << 20);
 807
 808            if (!arm_feature(env, ARM_FEATURE_NEON)) {
 809                /* ASEDIS [31] bit is RAO/WI */
 810                value |= (1 << 31);
 811            }
 812
 813            /* VFPv3 and upwards with NEON implement 32 double precision
 814             * registers (D0-D31).
 815             */
 816            if (!arm_feature(env, ARM_FEATURE_NEON) ||
 817                    !arm_feature(env, ARM_FEATURE_VFP3)) {
 818                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
 819                value |= (1 << 30);
 820            }
 821        }
 822        value &= mask;
 823    }
 824    env->cp15.cpacr_el1 = value;
 825}
 826
 827static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 828                                   bool isread)
 829{
 830    if (arm_feature(env, ARM_FEATURE_V8)) {
 831        /* Check if CPACR accesses are to be trapped to EL2 */
 832        if (arm_current_el(env) == 1 &&
 833            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
 834            return CP_ACCESS_TRAP_EL2;
 835        /* Check if CPACR accesses are to be trapped to EL3 */
 836        } else if (arm_current_el(env) < 3 &&
 837                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 838            return CP_ACCESS_TRAP_EL3;
 839        }
 840    }
 841
 842    return CP_ACCESS_OK;
 843}
 844
 845static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 846                                  bool isread)
 847{
 848    /* Check if CPTR accesses are set to trap to EL3 */
 849    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 850        return CP_ACCESS_TRAP_EL3;
 851    }
 852
 853    return CP_ACCESS_OK;
 854}
 855
 856static const ARMCPRegInfo v6_cp_reginfo[] = {
 857    /* prefetch by MVA in v6, NOP in v7 */
 858    { .name = "MVA_prefetch",
 859      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 860      .access = PL1_W, .type = ARM_CP_NOP },
 861    /* We need to break the TB after ISB to execute self-modifying code
 862     * correctly and also to take any pending interrupts immediately.
 863     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
 864     */
 865    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 866      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
 867    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 868      .access = PL0_W, .type = ARM_CP_NOP },
 869    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 870      .access = PL0_W, .type = ARM_CP_NOP },
 871    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 872      .access = PL1_RW,
 873      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
 874                             offsetof(CPUARMState, cp15.ifar_ns) },
 875      .resetvalue = 0, },
 876    /* Watchpoint Fault Address Register : should actually only be present
 877     * for 1136, 1176, 11MPCore.
 878     */
 879    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 880      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 881    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
 882      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
 883      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
 884      .resetvalue = 0, .writefn = cpacr_write },
 885    REGINFO_SENTINEL
 886};
 887
 888static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
 889                                   bool isread)
 890{
 891    /* Performance monitor registers user accessibility is controlled
 892     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
 893     * trapping to EL2 or EL3 for other accesses.
 894     */
 895    int el = arm_current_el(env);
 896
 897    if (el == 0 && !env->cp15.c9_pmuserenr) {
 898        return CP_ACCESS_TRAP;
 899    }
 900    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
 901        && !arm_is_secure_below_el3(env)) {
 902        return CP_ACCESS_TRAP_EL2;
 903    }
 904    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 905        return CP_ACCESS_TRAP_EL3;
 906    }
 907
 908    return CP_ACCESS_OK;
 909}
 910
 911#ifndef CONFIG_USER_ONLY
 912
 913static inline bool arm_ccnt_enabled(CPUARMState *env)
 914{
 915    /* This does not support checking PMCCFILTR_EL0 register */
 916
 917    if (!(env->cp15.c9_pmcr & PMCRE)) {
 918        return false;
 919    }
 920
 921    return true;
 922}
 923
 924void pmccntr_sync(CPUARMState *env)
 925{
 926    uint64_t temp_ticks;
 927
 928    temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 929                          ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 930
 931    if (env->cp15.c9_pmcr & PMCRD) {
 932        /* Increment once every 64 processor clock cycles */
 933        temp_ticks /= 64;
 934    }
 935
 936    if (arm_ccnt_enabled(env)) {
 937        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
 938    }
 939}
 940
 941static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 942                       uint64_t value)
 943{
 944    pmccntr_sync(env);
 945
 946    if (value & PMCRC) {
 947        /* The counter has been reset */
 948        env->cp15.c15_ccnt = 0;
 949    }
 950
 951    /* only the DP, X, D and E bits are writable */
 952    env->cp15.c9_pmcr &= ~0x39;
 953    env->cp15.c9_pmcr |= (value & 0x39);
 954
 955    pmccntr_sync(env);
 956}
 957
 958static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 959{
 960    uint64_t total_ticks;
 961
 962    if (!arm_ccnt_enabled(env)) {
 963        /* Counter is disabled, do not change value */
 964        return env->cp15.c15_ccnt;
 965    }
 966
 967    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 968                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 969
 970    if (env->cp15.c9_pmcr & PMCRD) {
 971        /* Increment once every 64 processor clock cycles */
 972        total_ticks /= 64;
 973    }
 974    return total_ticks - env->cp15.c15_ccnt;
 975}
 976
 977static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 978                        uint64_t value)
 979{
 980    uint64_t total_ticks;
 981
 982    if (!arm_ccnt_enabled(env)) {
 983        /* Counter is disabled, set the absolute value */
 984        env->cp15.c15_ccnt = value;
 985        return;
 986    }
 987
 988    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 989                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 990
 991    if (env->cp15.c9_pmcr & PMCRD) {
 992        /* Increment once every 64 processor clock cycles */
 993        total_ticks /= 64;
 994    }
 995    env->cp15.c15_ccnt = total_ticks - value;
 996}
 997
 998static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
 999                            uint64_t value)
1000{
1001    uint64_t cur_val = pmccntr_read(env, NULL);
1002
1003    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1004}
1005
1006#else /* CONFIG_USER_ONLY */
1007
1008void pmccntr_sync(CPUARMState *env)
1009{
1010}
1011
1012#endif
1013
1014static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1015                            uint64_t value)
1016{
1017    pmccntr_sync(env);
1018    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1019    pmccntr_sync(env);
1020}
1021
1022static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1023                            uint64_t value)
1024{
1025    value &= (1 << 31);
1026    env->cp15.c9_pmcnten |= value;
1027}
1028
1029static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1030                             uint64_t value)
1031{
1032    value &= (1 << 31);
1033    env->cp15.c9_pmcnten &= ~value;
1034}
1035
1036static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1037                         uint64_t value)
1038{
1039    env->cp15.c9_pmovsr &= ~value;
1040}
1041
1042static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1043                             uint64_t value)
1044{
1045    env->cp15.c9_pmxevtyper = value & 0xff;
1046}
1047
1048static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1049                            uint64_t value)
1050{
1051    env->cp15.c9_pmuserenr = value & 1;
1052}
1053
1054static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1055                             uint64_t value)
1056{
1057    /* We have no event counters so only the C bit can be changed */
1058    value &= (1 << 31);
1059    env->cp15.c9_pminten |= value;
1060}
1061
1062static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1063                             uint64_t value)
1064{
1065    value &= (1 << 31);
1066    env->cp15.c9_pminten &= ~value;
1067}
1068
1069static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1070                       uint64_t value)
1071{
1072    /* Note that even though the AArch64 view of this register has bits
1073     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1074     * architectural requirements for bits which are RES0 only in some
1075     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1076     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1077     */
1078    raw_write(env, ri, value & ~0x1FULL);
1079}
1080
1081static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1082{
1083    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1084     * For bits that vary between AArch32/64, code needs to check the
1085     * current execution mode before directly using the feature bit.
1086     */
1087    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1088
1089    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1090        valid_mask &= ~SCR_HCE;
1091
1092        /* On ARMv7, SMD (or SCD as it is called in v7) is only
1093         * supported if EL2 exists. The bit is UNK/SBZP when
1094         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1095         * when EL2 is unavailable.
1096         * On ARMv8, this bit is always available.
1097         */
1098        if (arm_feature(env, ARM_FEATURE_V7) &&
1099            !arm_feature(env, ARM_FEATURE_V8)) {
1100            valid_mask &= ~SCR_SMD;
1101        }
1102    }
1103
1104    /* Clear all-context RES0 bits.  */
1105    value &= valid_mask;
1106    raw_write(env, ri, value);
1107}
1108
1109static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1110{
1111    ARMCPU *cpu = arm_env_get_cpu(env);
1112
1113    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1114     * bank
1115     */
1116    uint32_t index = A32_BANKED_REG_GET(env, csselr,
1117                                        ri->secure & ARM_CP_SECSTATE_S);
1118
1119    return cpu->ccsidr[index];
1120}
1121
1122static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1123                         uint64_t value)
1124{
1125    raw_write(env, ri, value & 0xf);
1126}
1127
1128static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1129{
1130    CPUState *cs = ENV_GET_CPU(env);
1131    uint64_t ret = 0;
1132
1133    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1134        ret |= CPSR_I;
1135    }
1136    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1137        ret |= CPSR_F;
1138    }
1139    /* External aborts are not possible in QEMU so A bit is always clear */
1140    return ret;
1141}
1142
1143static const ARMCPRegInfo v7_cp_reginfo[] = {
1144    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1145    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1146      .access = PL1_W, .type = ARM_CP_NOP },
1147    /* Performance monitors are implementation defined in v7,
1148     * but with an ARM recommended set of registers, which we
1149     * follow (although we don't actually implement any counters)
1150     *
1151     * Performance registers fall into three categories:
1152     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1153     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1154     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1155     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1156     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1157     */
1158    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1159      .access = PL0_RW, .type = ARM_CP_ALIAS,
1160      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1161      .writefn = pmcntenset_write,
1162      .accessfn = pmreg_access,
1163      .raw_writefn = raw_write },
1164    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1165      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1166      .access = PL0_RW, .accessfn = pmreg_access,
1167      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1168      .writefn = pmcntenset_write, .raw_writefn = raw_write },
1169    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1170      .access = PL0_RW,
1171      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1172      .accessfn = pmreg_access,
1173      .writefn = pmcntenclr_write,
1174      .type = ARM_CP_ALIAS },
1175    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1176      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1177      .access = PL0_RW, .accessfn = pmreg_access,
1178      .type = ARM_CP_ALIAS,
1179      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1180      .writefn = pmcntenclr_write },
1181    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1182      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1183      .accessfn = pmreg_access,
1184      .writefn = pmovsr_write,
1185      .raw_writefn = raw_write },
1186    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1187      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1188      .access = PL0_RW, .accessfn = pmreg_access,
1189      .type = ARM_CP_ALIAS,
1190      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1191      .writefn = pmovsr_write,
1192      .raw_writefn = raw_write },
1193    /* Unimplemented so WI. */
1194    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1195      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1196    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1197     * We choose to RAZ/WI.
1198     */
1199    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1200      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1201      .accessfn = pmreg_access },
1202#ifndef CONFIG_USER_ONLY
1203    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1204      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1205      .readfn = pmccntr_read, .writefn = pmccntr_write32,
1206      .accessfn = pmreg_access },
1207    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1208      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1209      .access = PL0_RW, .accessfn = pmreg_access,
1210      .type = ARM_CP_IO,
1211      .readfn = pmccntr_read, .writefn = pmccntr_write, },
1212#endif
1213    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1214      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1215      .writefn = pmccfiltr_write,
1216      .access = PL0_RW, .accessfn = pmreg_access,
1217      .type = ARM_CP_IO,
1218      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1219      .resetvalue = 0, },
1220    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1221      .access = PL0_RW,
1222      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1223      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1224      .raw_writefn = raw_write },
1225    /* Unimplemented, RAZ/WI. */
1226    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1227      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1228      .accessfn = pmreg_access },
1229    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1230      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1231      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1232      .resetvalue = 0,
1233      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1234    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1235      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1236      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1237      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1238      .resetvalue = 0,
1239      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1240    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1241      .access = PL1_RW, .accessfn = access_tpm,
1242      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1243      .resetvalue = 0,
1244      .writefn = pmintenset_write, .raw_writefn = raw_write },
1245    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1246      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1247      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1248      .writefn = pmintenclr_write, },
1249    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1250      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1251      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1252      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1253      .writefn = pmintenclr_write },
1254    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1255      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1256      .access = PL1_RW, .writefn = vbar_write,
1257      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1258                             offsetof(CPUARMState, cp15.vbar_ns) },
1259      .resetvalue = 0 },
1260    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1261      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1262      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1263    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1264      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1265      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1266      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1267                             offsetof(CPUARMState, cp15.csselr_ns) } },
1268    /* Auxiliary ID register: this actually has an IMPDEF value but for now
1269     * just RAZ for all cores:
1270     */
1271    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1272      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1273      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1274    /* Auxiliary fault status registers: these also are IMPDEF, and we
1275     * choose to RAZ/WI for all cores.
1276     */
1277    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1278      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1279      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1280    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1281      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1282      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1283    /* MAIR can just read-as-written because we don't implement caches
1284     * and so don't need to care about memory attributes.
1285     */
1286    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1287      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1288      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1289      .resetvalue = 0 },
1290    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1291      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1292      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1293      .resetvalue = 0 },
1294    /* For non-long-descriptor page tables these are PRRR and NMRR;
1295     * regardless they still act as reads-as-written for QEMU.
1296     */
1297     /* MAIR0/1 are defined separately from their 64-bit counterpart which
1298      * allows them to assign the correct fieldoffset based on the endianness
1299      * handled in the field definitions.
1300      */
1301    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1302      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1303      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1304                             offsetof(CPUARMState, cp15.mair0_ns) },
1305      .resetfn = arm_cp_reset_ignore },
1306    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1307      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1308      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1309                             offsetof(CPUARMState, cp15.mair1_ns) },
1310      .resetfn = arm_cp_reset_ignore },
1311    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1312      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1313      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1314    /* 32 bit ITLB invalidates */
1315    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1316      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1317    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1318      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1319    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1320      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1321    /* 32 bit DTLB invalidates */
1322    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1323      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1324    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1325      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1326    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1327      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1328    /* 32 bit TLB invalidates */
1329    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1330      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1331    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1332      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1333    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1334      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1335    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1336      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1337    REGINFO_SENTINEL
1338};
1339
1340static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1341    /* 32 bit TLB invalidates, Inner Shareable */
1342    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1343      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1344    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1345      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1346    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1347      .type = ARM_CP_NO_RAW, .access = PL1_W,
1348      .writefn = tlbiasid_is_write },
1349    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1350      .type = ARM_CP_NO_RAW, .access = PL1_W,
1351      .writefn = tlbimvaa_is_write },
1352    REGINFO_SENTINEL
1353};
1354
1355static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1356                        uint64_t value)
1357{
1358    value &= 1;
1359    env->teecr = value;
1360}
1361
1362static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1363                                    bool isread)
1364{
1365    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1366        return CP_ACCESS_TRAP;
1367    }
1368    return CP_ACCESS_OK;
1369}
1370
1371static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1372    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1373      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1374      .resetvalue = 0,
1375      .writefn = teecr_write },
1376    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1377      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1378      .accessfn = teehbr_access, .resetvalue = 0 },
1379    REGINFO_SENTINEL
1380};
1381
1382static const ARMCPRegInfo v6k_cp_reginfo[] = {
1383    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1384      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1385      .access = PL0_RW,
1386      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1387    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1388      .access = PL0_RW,
1389      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1390                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1391      .resetfn = arm_cp_reset_ignore },
1392    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1393      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1394      .access = PL0_R|PL1_W,
1395      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1396      .resetvalue = 0},
1397    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1398      .access = PL0_R|PL1_W,
1399      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1400                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1401      .resetfn = arm_cp_reset_ignore },
1402    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1403      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1404      .access = PL1_RW,
1405      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1406    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1407      .access = PL1_RW,
1408      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1409                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1410      .resetvalue = 0 },
1411    REGINFO_SENTINEL
1412};
1413
1414#ifndef CONFIG_USER_ONLY
1415
1416static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1417                                       bool isread)
1418{
1419    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1420     * Writable only at the highest implemented exception level.
1421     */
1422    int el = arm_current_el(env);
1423
1424    switch (el) {
1425    case 0:
1426        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1427            return CP_ACCESS_TRAP;
1428        }
1429        break;
1430    case 1:
1431        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1432            arm_is_secure_below_el3(env)) {
1433            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1434            return CP_ACCESS_TRAP_UNCATEGORIZED;
1435        }
1436        break;
1437    case 2:
1438    case 3:
1439        break;
1440    }
1441
1442    if (!isread && el < arm_highest_el(env)) {
1443        return CP_ACCESS_TRAP_UNCATEGORIZED;
1444    }
1445
1446    return CP_ACCESS_OK;
1447}
1448
1449static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1450                                        bool isread)
1451{
1452    unsigned int cur_el = arm_current_el(env);
1453    bool secure = arm_is_secure(env);
1454
1455    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1456    if (cur_el == 0 &&
1457        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1458        return CP_ACCESS_TRAP;
1459    }
1460
1461    if (arm_feature(env, ARM_FEATURE_EL2) &&
1462        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1463        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1464        return CP_ACCESS_TRAP_EL2;
1465    }
1466    return CP_ACCESS_OK;
1467}
1468
1469static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1470                                      bool isread)
1471{
1472    unsigned int cur_el = arm_current_el(env);
1473    bool secure = arm_is_secure(env);
1474
1475    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1476     * EL0[PV]TEN is zero.
1477     */
1478    if (cur_el == 0 &&
1479        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1480        return CP_ACCESS_TRAP;
1481    }
1482
1483    if (arm_feature(env, ARM_FEATURE_EL2) &&
1484        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1485        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1486        return CP_ACCESS_TRAP_EL2;
1487    }
1488    return CP_ACCESS_OK;
1489}
1490
1491static CPAccessResult gt_pct_access(CPUARMState *env,
1492                                    const ARMCPRegInfo *ri,
1493                                    bool isread)
1494{
1495    return gt_counter_access(env, GTIMER_PHYS, isread);
1496}
1497
1498static CPAccessResult gt_vct_access(CPUARMState *env,
1499                                    const ARMCPRegInfo *ri,
1500                                    bool isread)
1501{
1502    return gt_counter_access(env, GTIMER_VIRT, isread);
1503}
1504
1505static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1506                                       bool isread)
1507{
1508    return gt_timer_access(env, GTIMER_PHYS, isread);
1509}
1510
1511static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1512                                       bool isread)
1513{
1514    return gt_timer_access(env, GTIMER_VIRT, isread);
1515}
1516
1517static CPAccessResult gt_stimer_access(CPUARMState *env,
1518                                       const ARMCPRegInfo *ri,
1519                                       bool isread)
1520{
1521    /* The AArch64 register view of the secure physical timer is
1522     * always accessible from EL3, and configurably accessible from
1523     * Secure EL1.
1524     */
1525    switch (arm_current_el(env)) {
1526    case 1:
1527        if (!arm_is_secure(env)) {
1528            return CP_ACCESS_TRAP;
1529        }
1530        if (!(env->cp15.scr_el3 & SCR_ST)) {
1531            return CP_ACCESS_TRAP_EL3;
1532        }
1533        return CP_ACCESS_OK;
1534    case 0:
1535    case 2:
1536        return CP_ACCESS_TRAP;
1537    case 3:
1538        return CP_ACCESS_OK;
1539    default:
1540        g_assert_not_reached();
1541    }
1542}
1543
1544static uint64_t gt_get_countervalue(CPUARMState *env)
1545{
1546    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1547}
1548
1549static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1550{
1551    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1552
1553    if (gt->ctl & 1) {
1554        /* Timer enabled: calculate and set current ISTATUS, irq, and
1555         * reset timer to when ISTATUS next has to change
1556         */
1557        uint64_t offset = timeridx == GTIMER_VIRT ?
1558                                      cpu->env.cp15.cntvoff_el2 : 0;
1559        uint64_t count = gt_get_countervalue(&cpu->env);
1560        /* Note that this must be unsigned 64 bit arithmetic: */
1561        int istatus = count - offset >= gt->cval;
1562        uint64_t nexttick;
1563
1564        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1565        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1566                     (istatus && !(gt->ctl & 2)));
1567        if (istatus) {
1568            /* Next transition is when count rolls back over to zero */
1569            nexttick = UINT64_MAX;
1570        } else {
1571            /* Next transition is when we hit cval */
1572            nexttick = gt->cval + offset;
1573        }
1574        /* Note that the desired next expiry time might be beyond the
1575         * signed-64-bit range of a QEMUTimer -- in this case we just
1576         * set the timer for as far in the future as possible. When the
1577         * timer expires we will reset the timer for any remaining period.
1578         */
1579        if (nexttick > INT64_MAX / GTIMER_SCALE) {
1580            nexttick = INT64_MAX / GTIMER_SCALE;
1581        }
1582        timer_mod(cpu->gt_timer[timeridx], nexttick);
1583    } else {
1584        /* Timer disabled: ISTATUS and timer output always clear */
1585        gt->ctl &= ~4;
1586        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1587        timer_del(cpu->gt_timer[timeridx]);
1588    }
1589}
1590
1591static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1592                           int timeridx)
1593{
1594    ARMCPU *cpu = arm_env_get_cpu(env);
1595
1596    timer_del(cpu->gt_timer[timeridx]);
1597}
1598
1599static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1600{
1601    return gt_get_countervalue(env);
1602}
1603
1604static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1605{
1606    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1607}
1608
1609static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610                          int timeridx,
1611                          uint64_t value)
1612{
1613    env->cp15.c14_timer[timeridx].cval = value;
1614    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1615}
1616
1617static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1618                             int timeridx)
1619{
1620    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1621
1622    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1623                      (gt_get_countervalue(env) - offset));
1624}
1625
1626static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627                          int timeridx,
1628                          uint64_t value)
1629{
1630    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1631
1632    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1633                                         sextract64(value, 0, 32);
1634    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1635}
1636
1637static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638                         int timeridx,
1639                         uint64_t value)
1640{
1641    ARMCPU *cpu = arm_env_get_cpu(env);
1642    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1643
1644    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1645    if ((oldval ^ value) & 1) {
1646        /* Enable toggled */
1647        gt_recalc_timer(cpu, timeridx);
1648    } else if ((oldval ^ value) & 2) {
1649        /* IMASK toggled: don't need to recalculate,
1650         * just set the interrupt line based on ISTATUS
1651         */
1652        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1653                     (oldval & 4) && !(value & 2));
1654    }
1655}
1656
1657static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1658{
1659    gt_timer_reset(env, ri, GTIMER_PHYS);
1660}
1661
1662static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1663                               uint64_t value)
1664{
1665    gt_cval_write(env, ri, GTIMER_PHYS, value);
1666}
1667
1668static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1669{
1670    return gt_tval_read(env, ri, GTIMER_PHYS);
1671}
1672
1673static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1674                               uint64_t value)
1675{
1676    gt_tval_write(env, ri, GTIMER_PHYS, value);
1677}
1678
1679static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1680                              uint64_t value)
1681{
1682    gt_ctl_write(env, ri, GTIMER_PHYS, value);
1683}
1684
1685static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1686{
1687    gt_timer_reset(env, ri, GTIMER_VIRT);
1688}
1689
1690static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1691                               uint64_t value)
1692{
1693    gt_cval_write(env, ri, GTIMER_VIRT, value);
1694}
1695
1696static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1697{
1698    return gt_tval_read(env, ri, GTIMER_VIRT);
1699}
1700
1701static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1702                               uint64_t value)
1703{
1704    gt_tval_write(env, ri, GTIMER_VIRT, value);
1705}
1706
1707static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value)
1709{
1710    gt_ctl_write(env, ri, GTIMER_VIRT, value);
1711}
1712
1713static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1714                              uint64_t value)
1715{
1716    ARMCPU *cpu = arm_env_get_cpu(env);
1717
1718    raw_write(env, ri, value);
1719    gt_recalc_timer(cpu, GTIMER_VIRT);
1720}
1721
1722static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1723{
1724    gt_timer_reset(env, ri, GTIMER_HYP);
1725}
1726
1727static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1728                              uint64_t value)
1729{
1730    gt_cval_write(env, ri, GTIMER_HYP, value);
1731}
1732
1733static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1734{
1735    return gt_tval_read(env, ri, GTIMER_HYP);
1736}
1737
1738static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1739                              uint64_t value)
1740{
1741    gt_tval_write(env, ri, GTIMER_HYP, value);
1742}
1743
1744static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                              uint64_t value)
1746{
1747    gt_ctl_write(env, ri, GTIMER_HYP, value);
1748}
1749
1750static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1751{
1752    gt_timer_reset(env, ri, GTIMER_SEC);
1753}
1754
1755static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756                              uint64_t value)
1757{
1758    gt_cval_write(env, ri, GTIMER_SEC, value);
1759}
1760
1761static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1762{
1763    return gt_tval_read(env, ri, GTIMER_SEC);
1764}
1765
1766static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1767                              uint64_t value)
1768{
1769    gt_tval_write(env, ri, GTIMER_SEC, value);
1770}
1771
1772static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773                              uint64_t value)
1774{
1775    gt_ctl_write(env, ri, GTIMER_SEC, value);
1776}
1777
1778void arm_gt_ptimer_cb(void *opaque)
1779{
1780    ARMCPU *cpu = opaque;
1781
1782    gt_recalc_timer(cpu, GTIMER_PHYS);
1783}
1784
1785void arm_gt_vtimer_cb(void *opaque)
1786{
1787    ARMCPU *cpu = opaque;
1788
1789    gt_recalc_timer(cpu, GTIMER_VIRT);
1790}
1791
1792void arm_gt_htimer_cb(void *opaque)
1793{
1794    ARMCPU *cpu = opaque;
1795
1796    gt_recalc_timer(cpu, GTIMER_HYP);
1797}
1798
1799void arm_gt_stimer_cb(void *opaque)
1800{
1801    ARMCPU *cpu = opaque;
1802
1803    gt_recalc_timer(cpu, GTIMER_SEC);
1804}
1805
1806static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1807    /* Note that CNTFRQ is purely reads-as-written for the benefit
1808     * of software; writing it doesn't actually change the timer frequency.
1809     * Our reset value matches the fixed frequency we implement the timer at.
1810     */
1811    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1812      .type = ARM_CP_ALIAS,
1813      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1814      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1815    },
1816    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1817      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1818      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1819      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1820      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1821    },
1822    /* overall control: mostly access permissions */
1823    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1824      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1825      .access = PL1_RW,
1826      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1827      .resetvalue = 0,
1828    },
1829    /* per-timer control */
1830    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1831      .secure = ARM_CP_SECSTATE_NS,
1832      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1833      .accessfn = gt_ptimer_access,
1834      .fieldoffset = offsetoflow32(CPUARMState,
1835                                   cp15.c14_timer[GTIMER_PHYS].ctl),
1836      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1837    },
1838    { .name = "CNTP_CTL(S)",
1839      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1840      .secure = ARM_CP_SECSTATE_S,
1841      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1842      .accessfn = gt_ptimer_access,
1843      .fieldoffset = offsetoflow32(CPUARMState,
1844                                   cp15.c14_timer[GTIMER_SEC].ctl),
1845      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1846    },
1847    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1848      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1849      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1850      .accessfn = gt_ptimer_access,
1851      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1852      .resetvalue = 0,
1853      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1854    },
1855    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1856      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1857      .accessfn = gt_vtimer_access,
1858      .fieldoffset = offsetoflow32(CPUARMState,
1859                                   cp15.c14_timer[GTIMER_VIRT].ctl),
1860      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1861    },
1862    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1863      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1864      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1865      .accessfn = gt_vtimer_access,
1866      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1867      .resetvalue = 0,
1868      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1869    },
1870    /* TimerValue views: a 32 bit downcounting view of the underlying state */
1871    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1872      .secure = ARM_CP_SECSTATE_NS,
1873      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1874      .accessfn = gt_ptimer_access,
1875      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1876    },
1877    { .name = "CNTP_TVAL(S)",
1878      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1879      .secure = ARM_CP_SECSTATE_S,
1880      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1881      .accessfn = gt_ptimer_access,
1882      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1883    },
1884    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1885      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1886      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1887      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1888      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1889    },
1890    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1891      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1892      .accessfn = gt_vtimer_access,
1893      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1894    },
1895    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1896      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1897      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1898      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1899      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1900    },
1901    /* The counter itself */
1902    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1903      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1904      .accessfn = gt_pct_access,
1905      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1906    },
1907    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1908      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1909      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1910      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1911    },
1912    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1913      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1914      .accessfn = gt_vct_access,
1915      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1916    },
1917    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1918      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1919      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1920      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1921    },
1922    /* Comparison value, indicating when the timer goes off */
1923    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1924      .secure = ARM_CP_SECSTATE_NS,
1925      .access = PL1_RW | PL0_R,
1926      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1927      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1928      .accessfn = gt_ptimer_access,
1929      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1930    },
1931    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1932      .secure = ARM_CP_SECSTATE_S,
1933      .access = PL1_RW | PL0_R,
1934      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1935      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1936      .accessfn = gt_ptimer_access,
1937      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1938    },
1939    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1940      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1941      .access = PL1_RW | PL0_R,
1942      .type = ARM_CP_IO,
1943      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1944      .resetvalue = 0, .accessfn = gt_ptimer_access,
1945      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1946    },
1947    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1948      .access = PL1_RW | PL0_R,
1949      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1950      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1951      .accessfn = gt_vtimer_access,
1952      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1953    },
1954    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1955      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1956      .access = PL1_RW | PL0_R,
1957      .type = ARM_CP_IO,
1958      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1959      .resetvalue = 0, .accessfn = gt_vtimer_access,
1960      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1961    },
1962    /* Secure timer -- this is actually restricted to only EL3
1963     * and configurably Secure-EL1 via the accessfn.
1964     */
1965    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1966      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1967      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1968      .accessfn = gt_stimer_access,
1969      .readfn = gt_sec_tval_read,
1970      .writefn = gt_sec_tval_write,
1971      .resetfn = gt_sec_timer_reset,
1972    },
1973    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1974      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1975      .type = ARM_CP_IO, .access = PL1_RW,
1976      .accessfn = gt_stimer_access,
1977      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1978      .resetvalue = 0,
1979      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1980    },
1981    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1982      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1983      .type = ARM_CP_IO, .access = PL1_RW,
1984      .accessfn = gt_stimer_access,
1985      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1986      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1987    },
1988    REGINFO_SENTINEL
1989};
1990
1991#else
1992/* In user-mode none of the generic timer registers are accessible,
1993 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1994 * so instead just don't register any of them.
1995 */
1996static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1997    REGINFO_SENTINEL
1998};
1999
2000#endif
2001
2002static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2003{
2004    if (arm_feature(env, ARM_FEATURE_LPAE)) {
2005        raw_write(env, ri, value);
2006    } else if (arm_feature(env, ARM_FEATURE_V7)) {
2007        raw_write(env, ri, value & 0xfffff6ff);
2008    } else {
2009        raw_write(env, ri, value & 0xfffff1ff);
2010    }
2011}
2012
2013#ifndef CONFIG_USER_ONLY
2014/* get_phys_addr() isn't present for user-mode-only targets */
2015
2016static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2017                                 bool isread)
2018{
2019    if (ri->opc2 & 4) {
2020        /* The ATS12NSO* operations must trap to EL3 if executed in
2021         * Secure EL1 (which can only happen if EL3 is AArch64).
2022         * They are simply UNDEF if executed from NS EL1.
2023         * They function normally from EL2 or EL3.
2024         */
2025        if (arm_current_el(env) == 1) {
2026            if (arm_is_secure_below_el3(env)) {
2027                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2028            }
2029            return CP_ACCESS_TRAP_UNCATEGORIZED;
2030        }
2031    }
2032    return CP_ACCESS_OK;
2033}
2034
2035static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2036                             int access_type, ARMMMUIdx mmu_idx)
2037{
2038    hwaddr phys_addr;
2039    target_ulong page_size;
2040    int prot;
2041    uint32_t fsr;
2042    bool ret;
2043    uint64_t par64;
2044    MemTxAttrs attrs = {};
2045    ARMMMUFaultInfo fi = {};
2046
2047    ret = get_phys_addr(env, value, access_type, mmu_idx,
2048                        &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2049    if (extended_addresses_enabled(env)) {
2050        /* fsr is a DFSR/IFSR value for the long descriptor
2051         * translation table format, but with WnR always clear.
2052         * Convert it to a 64-bit PAR.
2053         */
2054        par64 = (1 << 11); /* LPAE bit always set */
2055        if (!ret) {
2056            par64 |= phys_addr & ~0xfffULL;
2057            if (!attrs.secure) {
2058                par64 |= (1 << 9); /* NS */
2059            }
2060            /* We don't set the ATTR or SH fields in the PAR. */
2061        } else {
2062            par64 |= 1; /* F */
2063            par64 |= (fsr & 0x3f) << 1; /* FS */
2064            /* Note that S2WLK and FSTAGE are always zero, because we don't
2065             * implement virtualization and therefore there can't be a stage 2
2066             * fault.
2067             */
2068        }
2069    } else {
2070        /* fsr is a DFSR/IFSR value for the short descriptor
2071         * translation table format (with WnR always clear).
2072         * Convert it to a 32-bit PAR.
2073         */
2074        if (!ret) {
2075            /* We do not set any attribute bits in the PAR */
2076            if (page_size == (1 << 24)
2077                && arm_feature(env, ARM_FEATURE_V7)) {
2078                par64 = (phys_addr & 0xff000000) | (1 << 1);
2079            } else {
2080                par64 = phys_addr & 0xfffff000;
2081            }
2082            if (!attrs.secure) {
2083                par64 |= (1 << 9); /* NS */
2084            }
2085        } else {
2086            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2087                    ((fsr & 0xf) << 1) | 1;
2088        }
2089    }
2090    return par64;
2091}
2092
2093static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2094{
2095    int access_type = ri->opc2 & 1;
2096    uint64_t par64;
2097    ARMMMUIdx mmu_idx;
2098    int el = arm_current_el(env);
2099    bool secure = arm_is_secure_below_el3(env);
2100
2101    switch (ri->opc2 & 6) {
2102    case 0:
2103        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2104        switch (el) {
2105        case 3:
2106            mmu_idx = ARMMMUIdx_S1E3;
2107            break;
2108        case 2:
2109            mmu_idx = ARMMMUIdx_S1NSE1;
2110            break;
2111        case 1:
2112            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2113            break;
2114        default:
2115            g_assert_not_reached();
2116        }
2117        break;
2118    case 2:
2119        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2120        switch (el) {
2121        case 3:
2122            mmu_idx = ARMMMUIdx_S1SE0;
2123            break;
2124        case 2:
2125            mmu_idx = ARMMMUIdx_S1NSE0;
2126            break;
2127        case 1:
2128            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2129            break;
2130        default:
2131            g_assert_not_reached();
2132        }
2133        break;
2134    case 4:
2135        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2136        mmu_idx = ARMMMUIdx_S12NSE1;
2137        break;
2138    case 6:
2139        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2140        mmu_idx = ARMMMUIdx_S12NSE0;
2141        break;
2142    default:
2143        g_assert_not_reached();
2144    }
2145
2146    par64 = do_ats_write(env, value, access_type, mmu_idx);
2147
2148    A32_BANKED_CURRENT_REG_SET(env, par, par64);
2149}
2150
2151static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2152                        uint64_t value)
2153{
2154    int access_type = ri->opc2 & 1;
2155    uint64_t par64;
2156
2157    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2158
2159    A32_BANKED_CURRENT_REG_SET(env, par, par64);
2160}
2161
2162static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2163                                     bool isread)
2164{
2165    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2166        return CP_ACCESS_TRAP;
2167    }
2168    return CP_ACCESS_OK;
2169}
2170
2171static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2172                        uint64_t value)
2173{
2174    int access_type = ri->opc2 & 1;
2175    ARMMMUIdx mmu_idx;
2176    int secure = arm_is_secure_below_el3(env);
2177
2178    switch (ri->opc2 & 6) {
2179    case 0:
2180        switch (ri->opc1) {
2181        case 0: /* AT S1E1R, AT S1E1W */
2182            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2183            break;
2184        case 4: /* AT S1E2R, AT S1E2W */
2185            mmu_idx = ARMMMUIdx_S1E2;
2186            break;
2187        case 6: /* AT S1E3R, AT S1E3W */
2188            mmu_idx = ARMMMUIdx_S1E3;
2189            break;
2190        default:
2191            g_assert_not_reached();
2192        }
2193        break;
2194    case 2: /* AT S1E0R, AT S1E0W */
2195        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2196        break;
2197    case 4: /* AT S12E1R, AT S12E1W */
2198        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2199        break;
2200    case 6: /* AT S12E0R, AT S12E0W */
2201        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2202        break;
2203    default:
2204        g_assert_not_reached();
2205    }
2206
2207    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2208}
2209#endif
2210
2211static const ARMCPRegInfo vapa_cp_reginfo[] = {
2212    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2213      .access = PL1_RW, .resetvalue = 0,
2214      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2215                             offsetoflow32(CPUARMState, cp15.par_ns) },
2216      .writefn = par_write },
2217#ifndef CONFIG_USER_ONLY
2218    /* This underdecoding is safe because the reginfo is NO_RAW. */
2219    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2220      .access = PL1_W, .accessfn = ats_access,
2221      .writefn = ats_write, .type = ARM_CP_NO_RAW },
2222#endif
2223    REGINFO_SENTINEL
2224};
2225
2226/* Return basic MPU access permission bits.  */
2227static uint32_t simple_mpu_ap_bits(uint32_t val)
2228{
2229    uint32_t ret;
2230    uint32_t mask;
2231    int i;
2232    ret = 0;
2233    mask = 3;
2234    for (i = 0; i < 16; i += 2) {
2235        ret |= (val >> i) & mask;
2236        mask <<= 2;
2237    }
2238    return ret;
2239}
2240
2241/* Pad basic MPU access permission bits to extended format.  */
2242static uint32_t extended_mpu_ap_bits(uint32_t val)
2243{
2244    uint32_t ret;
2245    uint32_t mask;
2246    int i;
2247    ret = 0;
2248    mask = 3;
2249    for (i = 0; i < 16; i += 2) {
2250        ret |= (val & mask) << i;
2251        mask <<= 2;
2252    }
2253    return ret;
2254}
2255
2256static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2257                                 uint64_t value)
2258{
2259    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2260}
2261
2262static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2263{
2264    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2265}
2266
2267static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2268                                 uint64_t value)
2269{
2270    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2271}
2272
2273static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2274{
2275    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2276}
2277
2278static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2279{
2280    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2281
2282    if (!u32p) {
2283        return 0;
2284    }
2285
2286    u32p += env->cp15.c6_rgnr;
2287    return *u32p;
2288}
2289
2290static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2291                         uint64_t value)
2292{
2293    ARMCPU *cpu = arm_env_get_cpu(env);
2294    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2295
2296    if (!u32p) {
2297        return;
2298    }
2299
2300    u32p += env->cp15.c6_rgnr;
2301    tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2302    *u32p = value;
2303}
2304
2305static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2306{
2307    ARMCPU *cpu = arm_env_get_cpu(env);
2308    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2309
2310    if (!u32p) {
2311        return;
2312    }
2313
2314    memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2315}
2316
2317static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2318                              uint64_t value)
2319{
2320    ARMCPU *cpu = arm_env_get_cpu(env);
2321    uint32_t nrgs = cpu->pmsav7_dregion;
2322
2323    if (value >= nrgs) {
2324        qemu_log_mask(LOG_GUEST_ERROR,
2325                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2326                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2327        return;
2328    }
2329
2330    raw_write(env, ri, value);
2331}
2332
2333static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2334    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2335      .access = PL1_RW, .type = ARM_CP_NO_RAW,
2336      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2337      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2338    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2339      .access = PL1_RW, .type = ARM_CP_NO_RAW,
2340      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2341      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2342    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2343      .access = PL1_RW, .type = ARM_CP_NO_RAW,
2344      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2345      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2346    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2347      .access = PL1_RW,
2348      .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2349      .writefn = pmsav7_rgnr_write },
2350    REGINFO_SENTINEL
2351};
2352
2353static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2354    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2355      .access = PL1_RW, .type = ARM_CP_ALIAS,
2356      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2357      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2358    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2359      .access = PL1_RW, .type = ARM_CP_ALIAS,
2360      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2361      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2362    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2363      .access = PL1_RW,
2364      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2365      .resetvalue = 0, },
2366    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2367      .access = PL1_RW,
2368      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2369      .resetvalue = 0, },
2370    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2371      .access = PL1_RW,
2372      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2373    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2374      .access = PL1_RW,
2375      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2376    /* Protection region base and size registers */
2377    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2378      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2379      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2380    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2381      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2382      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2383    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2384      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2385      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2386    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2387      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2388      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2389    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2390      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2391      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2392    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2393      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2394      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2395    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2396      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2397      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2398    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2399      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2400      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2401    REGINFO_SENTINEL
2402};
2403
2404static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2405                                 uint64_t value)
2406{
2407    TCR *tcr = raw_ptr(env, ri);
2408    int maskshift = extract32(value, 0, 3);
2409
2410    if (!arm_feature(env, ARM_FEATURE_V8)) {
2411        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2412            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2413             * using Long-desciptor translation table format */
2414            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2415        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2416            /* In an implementation that includes the Security Extensions
2417             * TTBCR has additional fields PD0 [4] and PD1 [5] for
2418             * Short-descriptor translation table format.
2419             */
2420            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2421        } else {
2422            value &= TTBCR_N;
2423        }
2424    }
2425
2426    /* Update the masks corresponding to the TCR bank being written
2427     * Note that we always calculate mask and base_mask, but
2428     * they are only used for short-descriptor tables (ie if EAE is 0);
2429     * for long-descriptor tables the TCR fields are used differently
2430     * and the mask and base_mask values are meaningless.
2431     */
2432    tcr->raw_tcr = value;
2433    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2434    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2435}
2436
2437static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2438                             uint64_t value)
2439{
2440    ARMCPU *cpu = arm_env_get_cpu(env);
2441
2442    if (arm_feature(env, ARM_FEATURE_LPAE)) {
2443        /* With LPAE the TTBCR could result in a change of ASID
2444         * via the TTBCR.A1 bit, so do a TLB flush.
2445         */
2446        tlb_flush(CPU(cpu), 1);
2447    }
2448    vmsa_ttbcr_raw_write(env, ri, value);
2449}
2450
2451static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2452{
2453    TCR *tcr = raw_ptr(env, ri);
2454
2455    /* Reset both the TCR as well as the masks corresponding to the bank of
2456     * the TCR being reset.
2457     */
2458    tcr->raw_tcr = 0;
2459    tcr->mask = 0;
2460    tcr->base_mask = 0xffffc000u;
2461}
2462
2463static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464                               uint64_t value)
2465{
2466    ARMCPU *cpu = arm_env_get_cpu(env);
2467    TCR *tcr = raw_ptr(env, ri);
2468
2469    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2470    tlb_flush(CPU(cpu), 1);
2471    tcr->raw_tcr = value;
2472}
2473
2474static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475                            uint64_t value)
2476{
2477    /* 64 bit accesses to the TTBRs can change the ASID and so we
2478     * must flush the TLB.
2479     */
2480    if (cpreg_field_is_64bit(ri)) {
2481        ARMCPU *cpu = arm_env_get_cpu(env);
2482
2483        tlb_flush(CPU(cpu), 1);
2484    }
2485    raw_write(env, ri, value);
2486}
2487
2488static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489                        uint64_t value)
2490{
2491    ARMCPU *cpu = arm_env_get_cpu(env);
2492    CPUState *cs = CPU(cpu);
2493
2494    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2495    if (raw_read(env, ri) != value) {
2496        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2497                            ARMMMUIdx_S2NS, -1);
2498        raw_write(env, ri, value);
2499    }
2500}
2501
2502static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2503    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2504      .access = PL1_RW, .type = ARM_CP_ALIAS,
2505      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2506                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2507    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2508      .access = PL1_RW, .resetvalue = 0,
2509      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2510                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2511    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2512      .access = PL1_RW, .resetvalue = 0,
2513      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2514                             offsetof(CPUARMState, cp15.dfar_ns) } },
2515    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2516      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2517      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2518      .resetvalue = 0, },
2519    REGINFO_SENTINEL
2520};
2521
2522static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2523    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2524      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2525      .access = PL1_RW,
2526      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2527    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2528      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2529      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2530      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2531                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
2532    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2533      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2534      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2535      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2536                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
2537    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2538      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2539      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2540      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2541      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2542    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2543      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2544      .raw_writefn = vmsa_ttbcr_raw_write,
2545      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2546                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2547    REGINFO_SENTINEL
2548};
2549
2550static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2551                                uint64_t value)
2552{
2553    env->cp15.c15_ticonfig = value & 0xe7;
2554    /* The OS_TYPE bit in this register changes the reported CPUID! */
2555    env->cp15.c0_cpuid = (value & (1 << 5)) ?
2556        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2557}
2558
2559static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2560                                uint64_t value)
2561{
2562    env->cp15.c15_threadid = value & 0xffff;
2563}
2564
2565static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566                           uint64_t value)
2567{
2568    /* Wait-for-interrupt (deprecated) */
2569    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2570}
2571
2572static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573                                  uint64_t value)
2574{
2575    /* On OMAP there are registers indicating the max/min index of dcache lines
2576     * containing a dirty line; cache flush operations have to reset these.
2577     */
2578    env->cp15.c15_i_max = 0x000;
2579    env->cp15.c15_i_min = 0xff0;
2580}
2581
2582static const ARMCPRegInfo omap_cp_reginfo[] = {
2583    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2584      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2585      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2586      .resetvalue = 0, },
2587    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2588      .access = PL1_RW, .type = ARM_CP_NOP },
2589    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2590      .access = PL1_RW,
2591      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2592      .writefn = omap_ticonfig_write },
2593    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2594      .access = PL1_RW,
2595      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2596    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2597      .access = PL1_RW, .resetvalue = 0xff0,
2598      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2599    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2600      .access = PL1_RW,
2601      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2602      .writefn = omap_threadid_write },
2603    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2604      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2605      .type = ARM_CP_NO_RAW,
2606      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2607    /* TODO: Peripheral port remap register:
2608     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2609     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2610     * when MMU is off.
2611     */
2612    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2613      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2614      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2615      .writefn = omap_cachemaint_write },
2616    { .name = "C9", .cp = 15, .crn = 9,
2617      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2618      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2619    REGINFO_SENTINEL
2620};
2621
2622static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2623                              uint64_t value)
2624{
2625    env->cp15.c15_cpar = value & 0x3fff;
2626}
2627
2628static const ARMCPRegInfo xscale_cp_reginfo[] = {
2629    { .name = "XSCALE_CPAR",
2630      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2631      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2632      .writefn = xscale_cpar_write, },
2633    { .name = "XSCALE_AUXCR",
2634      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2635      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2636      .resetvalue = 0, },
2637    /* XScale specific cache-lockdown: since we have no cache we NOP these
2638     * and hope the guest does not really rely on cache behaviour.
2639     */
2640    { .name = "XSCALE_LOCK_ICACHE_LINE",
2641      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2642      .access = PL1_W, .type = ARM_CP_NOP },
2643    { .name = "XSCALE_UNLOCK_ICACHE",
2644      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2645      .access = PL1_W, .type = ARM_CP_NOP },
2646    { .name = "XSCALE_DCACHE_LOCK",
2647      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2648      .access = PL1_RW, .type = ARM_CP_NOP },
2649    { .name = "XSCALE_UNLOCK_DCACHE",
2650      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2651      .access = PL1_W, .type = ARM_CP_NOP },
2652    REGINFO_SENTINEL
2653};
2654
2655static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2656    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2657     * implementation of this implementation-defined space.
2658     * Ideally this should eventually disappear in favour of actually
2659     * implementing the correct behaviour for all cores.
2660     */
2661    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2662      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2663      .access = PL1_RW,
2664      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2665      .resetvalue = 0 },
2666    REGINFO_SENTINEL
2667};
2668
2669static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2670    /* Cache status: RAZ because we have no cache so it's always clean */
2671    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2672      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2673      .resetvalue = 0 },
2674    REGINFO_SENTINEL
2675};
2676
2677static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2678    /* We never have a a block transfer operation in progress */
2679    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2680      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2681      .resetvalue = 0 },
2682    /* The cache ops themselves: these all NOP for QEMU */
2683    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2684      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2685    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2686      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2687    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2688      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2689    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2690      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2691    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2692      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2693    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2694      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2695    REGINFO_SENTINEL
2696};
2697
2698static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2699    /* The cache test-and-clean instructions always return (1 << 30)
2700     * to indicate that there are no dirty cache lines.
2701     */
2702    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2703      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2704      .resetvalue = (1 << 30) },
2705    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2706      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2707      .resetvalue = (1 << 30) },
2708    REGINFO_SENTINEL
2709};
2710
2711static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2712    /* Ignore ReadBuffer accesses */
2713    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2714      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2715      .access = PL1_RW, .resetvalue = 0,
2716      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2717    REGINFO_SENTINEL
2718};
2719
2720static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2721{
2722    ARMCPU *cpu = arm_env_get_cpu(env);
2723    unsigned int cur_el = arm_current_el(env);
2724    bool secure = arm_is_secure(env);
2725
2726    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2727        return env->cp15.vpidr_el2;
2728    }
2729    return raw_read(env, ri);
2730}
2731
2732static uint64_t mpidr_read_val(CPUARMState *env)
2733{
2734    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2735    uint64_t mpidr = cpu->mp_affinity;
2736
2737    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2738        mpidr |= (1U << 31);
2739        /* Cores which are uniprocessor (non-coherent)
2740         * but still implement the MP extensions set
2741         * bit 30. (For instance, Cortex-R5).
2742         */
2743        if (cpu->mp_is_up) {
2744            mpidr |= (1u << 30);
2745        }
2746    }
2747    return mpidr;
2748}
2749
2750static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2751{
2752    unsigned int cur_el = arm_current_el(env);
2753    bool secure = arm_is_secure(env);
2754
2755    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2756        return env->cp15.vmpidr_el2;
2757    }
2758    return mpidr_read_val(env);
2759}
2760
2761static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2762    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2763      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2764      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2765    REGINFO_SENTINEL
2766};
2767
2768static const ARMCPRegInfo lpae_cp_reginfo[] = {
2769    /* NOP AMAIR0/1 */
2770    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2771      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2772      .access = PL1_RW, .type = ARM_CP_CONST,
2773      .resetvalue = 0 },
2774    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2775    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2776      .access = PL1_RW, .type = ARM_CP_CONST,
2777      .resetvalue = 0 },
2778    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2779      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2780      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2781                             offsetof(CPUARMState, cp15.par_ns)} },
2782    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2783      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2784      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2785                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2786      .writefn = vmsa_ttbr_write, },
2787    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2788      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2789      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2790                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2791      .writefn = vmsa_ttbr_write, },
2792    REGINFO_SENTINEL
2793};
2794
2795static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2796{
2797    return vfp_get_fpcr(env);
2798}
2799
2800static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2801                            uint64_t value)
2802{
2803    vfp_set_fpcr(env, value);
2804}
2805
2806static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2807{
2808    return vfp_get_fpsr(env);
2809}
2810
2811static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2812                            uint64_t value)
2813{
2814    vfp_set_fpsr(env, value);
2815}
2816
2817static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2818                                       bool isread)
2819{
2820    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2821        return CP_ACCESS_TRAP;
2822    }
2823    return CP_ACCESS_OK;
2824}
2825
2826static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827                            uint64_t value)
2828{
2829    env->daif = value & PSTATE_DAIF;
2830}
2831
2832static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2833                                          const ARMCPRegInfo *ri,
2834                                          bool isread)
2835{
2836    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2837     * SCTLR_EL1.UCI is set.
2838     */
2839    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2840        return CP_ACCESS_TRAP;
2841    }
2842    return CP_ACCESS_OK;
2843}
2844
2845/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2846 * Page D4-1736 (DDI0487A.b)
2847 */
2848
2849static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850                                    uint64_t value)
2851{
2852    ARMCPU *cpu = arm_env_get_cpu(env);
2853    CPUState *cs = CPU(cpu);
2854
2855    if (arm_is_secure_below_el3(env)) {
2856        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2857    } else {
2858        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2859    }
2860}
2861
2862static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863                                      uint64_t value)
2864{
2865    bool sec = arm_is_secure_below_el3(env);
2866    CPUState *other_cs;
2867
2868    CPU_FOREACH(other_cs) {
2869        if (sec) {
2870            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2871        } else {
2872            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2873                                ARMMMUIdx_S12NSE0, -1);
2874        }
2875    }
2876}
2877
2878static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2879                                  uint64_t value)
2880{
2881    /* Note that the 'ALL' scope must invalidate both stage 1 and
2882     * stage 2 translations, whereas most other scopes only invalidate
2883     * stage 1 translations.
2884     */
2885    ARMCPU *cpu = arm_env_get_cpu(env);
2886    CPUState *cs = CPU(cpu);
2887
2888    if (arm_is_secure_below_el3(env)) {
2889        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2890    } else {
2891        if (arm_feature(env, ARM_FEATURE_EL2)) {
2892            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2893                                ARMMMUIdx_S2NS, -1);
2894        } else {
2895            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2896        }
2897    }
2898}
2899
2900static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901                                  uint64_t value)
2902{
2903    ARMCPU *cpu = arm_env_get_cpu(env);
2904    CPUState *cs = CPU(cpu);
2905
2906    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2907}
2908
2909static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2910                                  uint64_t value)
2911{
2912    ARMCPU *cpu = arm_env_get_cpu(env);
2913    CPUState *cs = CPU(cpu);
2914
2915    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2916}
2917
2918static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919                                    uint64_t value)
2920{
2921    /* Note that the 'ALL' scope must invalidate both stage 1 and
2922     * stage 2 translations, whereas most other scopes only invalidate
2923     * stage 1 translations.
2924     */
2925    bool sec = arm_is_secure_below_el3(env);
2926    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2927    CPUState *other_cs;
2928
2929    CPU_FOREACH(other_cs) {
2930        if (sec) {
2931            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2932        } else if (has_el2) {
2933            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2934                                ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2935        } else {
2936            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2937                                ARMMMUIdx_S12NSE0, -1);
2938        }
2939    }
2940}
2941
2942static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943                                    uint64_t value)
2944{
2945    CPUState *other_cs;
2946
2947    CPU_FOREACH(other_cs) {
2948        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2949    }
2950}
2951
2952static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2953                                    uint64_t value)
2954{
2955    CPUState *other_cs;
2956
2957    CPU_FOREACH(other_cs) {
2958        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2959    }
2960}
2961
2962static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2963                                 uint64_t value)
2964{
2965    /* Invalidate by VA, EL1&0 (AArch64 version).
2966     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2967     * since we don't support flush-for-specific-ASID-only or
2968     * flush-last-level-only.
2969     */
2970    ARMCPU *cpu = arm_env_get_cpu(env);
2971    CPUState *cs = CPU(cpu);
2972    uint64_t pageaddr = sextract64(value << 12, 0, 56);
2973
2974    if (arm_is_secure_below_el3(env)) {
2975        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2976                                 ARMMMUIdx_S1SE0, -1);
2977    } else {
2978        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2979                                 ARMMMUIdx_S12NSE0, -1);
2980    }
2981}
2982
2983static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2984                                 uint64_t value)
2985{
2986    /* Invalidate by VA, EL2
2987     * Currently handles both VAE2 and VALE2, since we don't support
2988     * flush-last-level-only.
2989     */
2990    ARMCPU *cpu = arm_env_get_cpu(env);
2991    CPUState *cs = CPU(cpu);
2992    uint64_t pageaddr = sextract64(value << 12, 0, 56);
2993
2994    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2995}
2996
2997static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2998                                 uint64_t value)
2999{
3000    /* Invalidate by VA, EL3
3001     * Currently handles both VAE3 and VALE3, since we don't support
3002     * flush-last-level-only.
3003     */
3004    ARMCPU *cpu = arm_env_get_cpu(env);
3005    CPUState *cs = CPU(cpu);
3006    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3007
3008    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
3009}
3010
3011static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3012                                   uint64_t value)
3013{
3014    bool sec = arm_is_secure_below_el3(env);
3015    CPUState *other_cs;
3016    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3017
3018    CPU_FOREACH(other_cs) {
3019        if (sec) {
3020            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
3021                                     ARMMMUIdx_S1SE0, -1);
3022        } else {
3023            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
3024                                     ARMMMUIdx_S12NSE0, -1);
3025        }
3026    }
3027}
3028
3029static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030                                   uint64_t value)
3031{
3032    CPUState *other_cs;
3033    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3034
3035    CPU_FOREACH(other_cs) {
3036        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
3037    }
3038}
3039
3040static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041                                   uint64_t value)
3042{
3043    CPUState *other_cs;
3044    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3045
3046    CPU_FOREACH(other_cs) {
3047        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
3048    }
3049}
3050
3051static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3052                                    uint64_t value)
3053{
3054    /* Invalidate by IPA. This has to invalidate any structures that
3055     * contain only stage 2 translation information, but does not need
3056     * to apply to structures that contain combined stage 1 and stage 2
3057     * translation information.
3058     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3059     */
3060    ARMCPU *cpu = arm_env_get_cpu(env);
3061    CPUState *cs = CPU(cpu);
3062    uint64_t pageaddr;
3063
3064    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3065        return;
3066    }
3067
3068    pageaddr = sextract64(value << 12, 0, 48);
3069
3070    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
3071}
3072
3073static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3074                                      uint64_t value)
3075{
3076    CPUState *other_cs;
3077    uint64_t pageaddr;
3078
3079    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3080        return;
3081    }
3082
3083    pageaddr = sextract64(value << 12, 0, 48);
3084
3085    CPU_FOREACH(other_cs) {
3086        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
3087    }
3088}
3089
3090static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3091                                      bool isread)
3092{
3093    /* We don't implement EL2, so the only control on DC ZVA is the
3094     * bit in the SCTLR which can prohibit access for EL0.
3095     */
3096    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3097        return CP_ACCESS_TRAP;
3098    }
3099    return CP_ACCESS_OK;
3100}
3101
3102static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3103{
3104    ARMCPU *cpu = arm_env_get_cpu(env);
3105    int dzp_bit = 1 << 4;
3106
3107    /* DZP indicates whether DC ZVA access is allowed */
3108    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3109        dzp_bit = 0;
3110    }
3111    return cpu->dcz_blocksize | dzp_bit;
3112}
3113
3114static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3115                                    bool isread)
3116{
3117    if (!(env->pstate & PSTATE_SP)) {
3118        /* Access to SP_EL0 is undefined if it's being used as
3119         * the stack pointer.
3120         */
3121        return CP_ACCESS_TRAP_UNCATEGORIZED;
3122    }
3123    return CP_ACCESS_OK;
3124}
3125
3126static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3127{
3128    return env->pstate & PSTATE_SP;
3129}
3130
3131static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3132{
3133    update_spsel(env, val);
3134}
3135
3136static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3137                        uint64_t value)
3138{
3139    ARMCPU *cpu = arm_env_get_cpu(env);
3140
3141    if (raw_read(env, ri) == value) {
3142        /* Skip the TLB flush if nothing actually changed; Linux likes
3143         * to do a lot of pointless SCTLR writes.
3144         */
3145        return;
3146    }
3147
3148    raw_write(env, ri, value);
3149    /* ??? Lots of these bits are not implemented.  */
3150    /* This may enable/disable the MMU, so do a TLB flush.  */
3151    tlb_flush(CPU(cpu), 1);
3152}
3153
3154static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3155                                     bool isread)
3156{
3157    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3158        return CP_ACCESS_TRAP_FP_EL2;
3159    }
3160    if (env->cp15.cptr_el[3] & CPTR_TFP) {
3161        return CP_ACCESS_TRAP_FP_EL3;
3162    }
3163    return CP_ACCESS_OK;
3164}
3165
3166static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3167                       uint64_t value)
3168{
3169    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3170}
3171
3172static const ARMCPRegInfo v8_cp_reginfo[] = {
3173    /* Minimal set of EL0-visible registers. This will need to be expanded
3174     * significantly for system emulation of AArch64 CPUs.
3175     */
3176    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3177      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3178      .access = PL0_RW, .type = ARM_CP_NZCV },
3179    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3180      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3181      .type = ARM_CP_NO_RAW,
3182      .access = PL0_RW, .accessfn = aa64_daif_access,
3183      .fieldoffset = offsetof(CPUARMState, daif),
3184      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3185    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3186      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3187      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3188    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3189      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3190      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3191    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3192      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3193      .access = PL0_R, .type = ARM_CP_NO_RAW,
3194      .readfn = aa64_dczid_read },
3195    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3196      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3197      .access = PL0_W, .type = ARM_CP_DC_ZVA,
3198#ifndef CONFIG_USER_ONLY
3199      /* Avoid overhead of an access check that always passes in user-mode */
3200      .accessfn = aa64_zva_access,
3201#endif
3202    },
3203    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3204      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3205      .access = PL1_R, .type = ARM_CP_CURRENTEL },
3206    /* Cache ops: all NOPs since we don't emulate caches */
3207    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3208      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3209      .access = PL1_W, .type = ARM_CP_NOP },
3210    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3211      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3212      .access = PL1_W, .type = ARM_CP_NOP },
3213    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3214      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3215      .access = PL0_W, .type = ARM_CP_NOP,
3216      .accessfn = aa64_cacheop_access },
3217    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3218      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3219      .access = PL1_W, .type = ARM_CP_NOP },
3220    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3221      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3222      .access = PL1_W, .type = ARM_CP_NOP },
3223    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3224      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3225      .access = PL0_W, .type = ARM_CP_NOP,
3226      .accessfn = aa64_cacheop_access },
3227    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3228      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3229      .access = PL1_W, .type = ARM_CP_NOP },
3230    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3231      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3232      .access = PL0_W, .type = ARM_CP_NOP,
3233      .accessfn = aa64_cacheop_access },
3234    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3235      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3236      .access = PL0_W, .type = ARM_CP_NOP,
3237      .accessfn = aa64_cacheop_access },
3238    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3239      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3240      .access = PL1_W, .type = ARM_CP_NOP },
3241    /* TLBI operations */
3242    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3243      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3244      .access = PL1_W, .type = ARM_CP_NO_RAW,
3245      .writefn = tlbi_aa64_vmalle1is_write },
3246    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3247      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3248      .access = PL1_W, .type = ARM_CP_NO_RAW,
3249      .writefn = tlbi_aa64_vae1is_write },
3250    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3251      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3252      .access = PL1_W, .type = ARM_CP_NO_RAW,
3253      .writefn = tlbi_aa64_vmalle1is_write },
3254    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3255      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3256      .access = PL1_W, .type = ARM_CP_NO_RAW,
3257      .writefn = tlbi_aa64_vae1is_write },
3258    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3259      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3260      .access = PL1_W, .type = ARM_CP_NO_RAW,
3261      .writefn = tlbi_aa64_vae1is_write },
3262    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3263      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3264      .access = PL1_W, .type = ARM_CP_NO_RAW,
3265      .writefn = tlbi_aa64_vae1is_write },
3266    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3267      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3268      .access = PL1_W, .type = ARM_CP_NO_RAW,
3269      .writefn = tlbi_aa64_vmalle1_write },
3270    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3271      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3272      .access = PL1_W, .type = ARM_CP_NO_RAW,
3273      .writefn = tlbi_aa64_vae1_write },
3274    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3275      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3276      .access = PL1_W, .type = ARM_CP_NO_RAW,
3277      .writefn = tlbi_aa64_vmalle1_write },
3278    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3279      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3280      .access = PL1_W, .type = ARM_CP_NO_RAW,
3281      .writefn = tlbi_aa64_vae1_write },
3282    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3283      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3284      .access = PL1_W, .type = ARM_CP_NO_RAW,
3285      .writefn = tlbi_aa64_vae1_write },
3286    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3287      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3288      .access = PL1_W, .type = ARM_CP_NO_RAW,
3289      .writefn = tlbi_aa64_vae1_write },
3290    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3291      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3292      .access = PL2_W, .type = ARM_CP_NO_RAW,
3293      .writefn = tlbi_aa64_ipas2e1is_write },
3294    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3295      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3296      .access = PL2_W, .type = ARM_CP_NO_RAW,
3297      .writefn = tlbi_aa64_ipas2e1is_write },
3298    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3299      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3300      .access = PL2_W, .type = ARM_CP_NO_RAW,
3301      .writefn = tlbi_aa64_alle1is_write },
3302    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3303      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3304      .access = PL2_W, .type = ARM_CP_NO_RAW,
3305      .writefn = tlbi_aa64_alle1is_write },
3306    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3307      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3308      .access = PL2_W, .type = ARM_CP_NO_RAW,
3309      .writefn = tlbi_aa64_ipas2e1_write },
3310    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3311      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3312      .access = PL2_W, .type = ARM_CP_NO_RAW,
3313      .writefn = tlbi_aa64_ipas2e1_write },
3314    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3315      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3316      .access = PL2_W, .type = ARM_CP_NO_RAW,
3317      .writefn = tlbi_aa64_alle1_write },
3318    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3319      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3320      .access = PL2_W, .type = ARM_CP_NO_RAW,
3321      .writefn = tlbi_aa64_alle1is_write },
3322#ifndef CONFIG_USER_ONLY
3323    /* 64 bit address translation operations */
3324    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3325      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3326      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3327    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3328      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3329      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3330    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3331      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3332      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3333    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3334      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3335      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3336    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3337      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3338      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3339    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3340      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3341      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3342    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3343      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3344      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3345    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3346      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3347      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3348    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3349    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3350      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3351      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3352    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3353      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3354      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3355    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3356      .type = ARM_CP_ALIAS,
3357      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3358      .access = PL1_RW, .resetvalue = 0,
3359      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3360      .writefn = par_write },
3361#endif
3362    /* TLB invalidate last level of translation table walk */
3363    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3364      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3365    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3366      .type = ARM_CP_NO_RAW, .access = PL1_W,
3367      .writefn = tlbimvaa_is_write },
3368    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3369      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3370    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3371      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3372    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3373      .type = ARM_CP_NO_RAW, .access = PL2_W,
3374      .writefn = tlbimva_hyp_write },
3375    { .name = "TLBIMVALHIS",
3376      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3377      .type = ARM_CP_NO_RAW, .access = PL2_W,
3378      .writefn = tlbimva_hyp_is_write },
3379    { .name = "TLBIIPAS2",
3380      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3381      .type = ARM_CP_NO_RAW, .access = PL2_W,
3382      .writefn = tlbiipas2_write },
3383    { .name = "TLBIIPAS2IS",
3384      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3385      .type = ARM_CP_NO_RAW, .access = PL2_W,
3386      .writefn = tlbiipas2_is_write },
3387    { .name = "TLBIIPAS2L",
3388      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3389      .type = ARM_CP_NO_RAW, .access = PL2_W,
3390      .writefn = tlbiipas2_write },
3391    { .name = "TLBIIPAS2LIS",
3392      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3393      .type = ARM_CP_NO_RAW, .access = PL2_W,
3394      .writefn = tlbiipas2_is_write },
3395    /* 32 bit cache operations */
3396    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3397      .type = ARM_CP_NOP, .access = PL1_W },
3398    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3399      .type = ARM_CP_NOP, .access = PL1_W },
3400    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3401      .type = ARM_CP_NOP, .access = PL1_W },
3402    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3403      .type = ARM_CP_NOP, .access = PL1_W },
3404    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3405      .type = ARM_CP_NOP, .access = PL1_W },
3406    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3407      .type = ARM_CP_NOP, .access = PL1_W },
3408    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3409      .type = ARM_CP_NOP, .access = PL1_W },
3410    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3411      .type = ARM_CP_NOP, .access = PL1_W },
3412    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3413      .type = ARM_CP_NOP, .access = PL1_W },
3414    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3415      .type = ARM_CP_NOP, .access = PL1_W },
3416    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3417      .type = ARM_CP_NOP, .access = PL1_W },
3418    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3419      .type = ARM_CP_NOP, .access = PL1_W },
3420    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3421      .type = ARM_CP_NOP, .access = PL1_W },
3422    /* MMU Domain access control / MPU write buffer control */
3423    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3424      .access = PL1_RW, .resetvalue = 0,
3425      .writefn = dacr_write, .raw_writefn = raw_write,
3426      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3427                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3428    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3429      .type = ARM_CP_ALIAS,
3430      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3431      .access = PL1_RW,
3432      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3433    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3434      .type = ARM_CP_ALIAS,
3435      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3436      .access = PL1_RW,
3437      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3438    /* We rely on the access checks not allowing the guest to write to the
3439     * state field when SPSel indicates that it's being used as the stack
3440     * pointer.
3441     */
3442    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3443      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3444      .access = PL1_RW, .accessfn = sp_el0_access,
3445      .type = ARM_CP_ALIAS,
3446      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3447    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3448      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3449      .access = PL2_RW, .type = ARM_CP_ALIAS,
3450      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3451    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3452      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3453      .type = ARM_CP_NO_RAW,
3454      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3455    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3456      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3457      .type = ARM_CP_ALIAS,
3458      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3459      .access = PL2_RW, .accessfn = fpexc32_access },
3460    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3461      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3462      .access = PL2_RW, .resetvalue = 0,
3463      .writefn = dacr_write, .raw_writefn = raw_write,
3464      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3465    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3466      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3467      .access = PL2_RW, .resetvalue = 0,
3468      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3469    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3470      .type = ARM_CP_ALIAS,
3471      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3472      .access = PL2_RW,
3473      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3474    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3475      .type = ARM_CP_ALIAS,
3476      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3477      .access = PL2_RW,
3478      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3479    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3480      .type = ARM_CP_ALIAS,
3481      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3482      .access = PL2_RW,
3483      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3484    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3485      .type = ARM_CP_ALIAS,
3486      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3487      .access = PL2_RW,
3488      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3489    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3490      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3491      .resetvalue = 0,
3492      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3493    { .name = "SDCR", .type = ARM_CP_ALIAS,
3494      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3495      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3496      .writefn = sdcr_write,
3497      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3498    REGINFO_SENTINEL
3499};
3500
3501/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3502static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3503    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3504      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3505      .access = PL2_RW,
3506      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3507    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3508      .type = ARM_CP_NO_RAW,
3509      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3510      .access = PL2_RW,
3511      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3512    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3513      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3514      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3515    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3516      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3517      .access = PL2_RW, .type = ARM_CP_CONST,
3518      .resetvalue = 0 },
3519    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3520      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3521      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3522    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3523      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3524      .access = PL2_RW, .type = ARM_CP_CONST,
3525      .resetvalue = 0 },
3526    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3527      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3528      .access = PL2_RW, .type = ARM_CP_CONST,
3529      .resetvalue = 0 },
3530    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3531      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3532      .access = PL2_RW, .type = ARM_CP_CONST,
3533      .resetvalue = 0 },
3534    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3535      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3536      .access = PL2_RW, .type = ARM_CP_CONST,
3537      .resetvalue = 0 },
3538    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3539      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3540      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3541    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3542      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3543      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3544      .type = ARM_CP_CONST, .resetvalue = 0 },
3545    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3546      .cp = 15, .opc1 = 6, .crm = 2,
3547      .access = PL2_RW, .accessfn = access_el3_aa32ns,
3548      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3549    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3550      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3551      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3552    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3553      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3554      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3555    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3556      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3557      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3558    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3559      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3560      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3561    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3562      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3563      .resetvalue = 0 },
3564    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3565      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3566      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3567    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3568      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3569      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3570    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3571      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3572      .resetvalue = 0 },
3573    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3574      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3575      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3576    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3577      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3578      .resetvalue = 0 },
3579    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3580      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3581      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3582    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3583      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3584      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3585    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3586      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3587      .access = PL2_RW, .accessfn = access_tda,
3588      .type = ARM_CP_CONST, .resetvalue = 0 },
3589    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3590      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3591      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3592      .type = ARM_CP_CONST, .resetvalue = 0 },
3593    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3594      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3595      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3596    REGINFO_SENTINEL
3597};
3598
3599static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3600{
3601    ARMCPU *cpu = arm_env_get_cpu(env);
3602    uint64_t valid_mask = HCR_MASK;
3603
3604    if (arm_feature(env, ARM_FEATURE_EL3)) {
3605        valid_mask &= ~HCR_HCD;
3606    } else {
3607        valid_mask &= ~HCR_TSC;
3608    }
3609
3610    /* Clear RES0 bits.  */
3611    value &= valid_mask;
3612
3613    /* These bits change the MMU setup:
3614     * HCR_VM enables stage 2 translation
3615     * HCR_PTW forbids certain page-table setups
3616     * HCR_DC Disables stage1 and enables stage2 translation
3617     */
3618    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3619        tlb_flush(CPU(cpu), 1);
3620    }
3621    raw_write(env, ri, value);
3622}
3623
3624static const ARMCPRegInfo el2_cp_reginfo[] = {
3625    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3626      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3627      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3628      .writefn = hcr_write },
3629    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3630      .type = ARM_CP_ALIAS,
3631      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3632      .access = PL2_RW,
3633      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3634    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3635      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3636      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3637    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3638      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3639      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3640    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3641      .type = ARM_CP_ALIAS,
3642      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3643      .access = PL2_RW,
3644      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3645    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3646      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3647      .access = PL2_RW, .writefn = vbar_write,
3648      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3649      .resetvalue = 0 },
3650    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3651      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3652      .access = PL3_RW, .type = ARM_CP_ALIAS,
3653      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3654    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3655      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3656      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3657      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3658    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3659      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3660      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3661      .resetvalue = 0 },
3662    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3663      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3664      .access = PL2_RW, .type = ARM_CP_ALIAS,
3665      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3666    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3667      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3668      .access = PL2_RW, .type = ARM_CP_CONST,
3669      .resetvalue = 0 },
3670    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3671    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3672      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3673      .access = PL2_RW, .type = ARM_CP_CONST,
3674      .resetvalue = 0 },
3675    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3676      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3677      .access = PL2_RW, .type = ARM_CP_CONST,
3678      .resetvalue = 0 },
3679    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3680      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3681      .access = PL2_RW, .type = ARM_CP_CONST,
3682      .resetvalue = 0 },
3683    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3684      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3685      .access = PL2_RW,
3686      /* no .writefn needed as this can't cause an ASID change;
3687       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3688       */
3689      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3690    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3691      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3692      .type = ARM_CP_ALIAS,
3693      .access = PL2_RW, .accessfn = access_el3_aa32ns,
3694      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3695    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3696      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3697      .access = PL2_RW,
3698      /* no .writefn needed as this can't cause an ASID change;
3699       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3700       */
3701      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3702    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3703      .cp = 15, .opc1 = 6, .crm = 2,
3704      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3705      .access = PL2_RW, .accessfn = access_el3_aa32ns,
3706      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3707      .writefn = vttbr_write },
3708    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3709      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3710      .access = PL2_RW, .writefn = vttbr_write,
3711      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3712    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3713      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3714      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3715      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3716    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3717      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3718      .access = PL2_RW, .resetvalue = 0,
3719      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3720    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3721      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3722      .access = PL2_RW, .resetvalue = 0,
3723      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3724    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3725      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3726      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3727    { .name = "TLBIALLNSNH",
3728      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3729      .type = ARM_CP_NO_RAW, .access = PL2_W,
3730      .writefn = tlbiall_nsnh_write },
3731    { .name = "TLBIALLNSNHIS",
3732      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3733      .type = ARM_CP_NO_RAW, .access = PL2_W,
3734      .writefn = tlbiall_nsnh_is_write },
3735    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3736      .type = ARM_CP_NO_RAW, .access = PL2_W,
3737      .writefn = tlbiall_hyp_write },
3738    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3739      .type = ARM_CP_NO_RAW, .access = PL2_W,
3740      .writefn = tlbiall_hyp_is_write },
3741    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3742      .type = ARM_CP_NO_RAW, .access = PL2_W,
3743      .writefn = tlbimva_hyp_write },
3744    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3745      .type = ARM_CP_NO_RAW, .access = PL2_W,
3746      .writefn = tlbimva_hyp_is_write },
3747    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3748      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3749      .type = ARM_CP_NO_RAW, .access = PL2_W,
3750      .writefn = tlbi_aa64_alle2_write },
3751    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3752      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3753      .type = ARM_CP_NO_RAW, .access = PL2_W,
3754      .writefn = tlbi_aa64_vae2_write },
3755    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3756      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3757      .access = PL2_W, .type = ARM_CP_NO_RAW,
3758      .writefn = tlbi_aa64_vae2_write },
3759    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3760      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3761      .access = PL2_W, .type = ARM_CP_NO_RAW,
3762      .writefn = tlbi_aa64_alle2is_write },
3763    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3764      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3765      .type = ARM_CP_NO_RAW, .access = PL2_W,
3766      .writefn = tlbi_aa64_vae2is_write },
3767    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3768      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3769      .access = PL2_W, .type = ARM_CP_NO_RAW,
3770      .writefn = tlbi_aa64_vae2is_write },
3771#ifndef CONFIG_USER_ONLY
3772    /* Unlike the other EL2-related AT operations, these must
3773     * UNDEF from EL3 if EL2 is not implemented, which is why we
3774     * define them here rather than with the rest of the AT ops.
3775     */
3776    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3777      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3778      .access = PL2_W, .accessfn = at_s1e2_access,
3779      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3780    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3781      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3782      .access = PL2_W, .accessfn = at_s1e2_access,
3783      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3784    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3785     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3786     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3787     * to behave as if SCR.NS was 1.
3788     */
3789    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3790      .access = PL2_W,
3791      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3792    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3793      .access = PL2_W,
3794      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3795    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3796      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3797      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3798       * reset values as IMPDEF. We choose to reset to 3 to comply with
3799       * both ARMv7 and ARMv8.
3800       */
3801      .access = PL2_RW, .resetvalue = 3,
3802      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3803    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3804      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3805      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3806      .writefn = gt_cntvoff_write,
3807      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3808    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3809      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3810      .writefn = gt_cntvoff_write,
3811      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3812    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3813      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3814      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3815      .type = ARM_CP_IO, .access = PL2_RW,
3816      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3817    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3818      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3819      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3820      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3821    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3822      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3823      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3824      .resetfn = gt_hyp_timer_reset,
3825      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3826    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3827      .type = ARM_CP_IO,
3828      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3829      .access = PL2_RW,
3830      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3831      .resetvalue = 0,
3832      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3833#endif
3834    /* The only field of MDCR_EL2 that has a defined architectural reset value
3835     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3836     * don't impelment any PMU event counters, so using zero as a reset
3837     * value for MDCR_EL2 is okay
3838     */
3839    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3840      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3841      .access = PL2_RW, .resetvalue = 0,
3842      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3843    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3844      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3845      .access = PL2_RW, .accessfn = access_el3_aa32ns,
3846      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3847    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3848      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3849      .access = PL2_RW,
3850      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3851    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3852      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3853      .access = PL2_RW,
3854      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3855    REGINFO_SENTINEL
3856};
3857
3858static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3859                                   bool isread)
3860{
3861    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3862     * At Secure EL1 it traps to EL3.
3863     */
3864    if (arm_current_el(env) == 3) {
3865        return CP_ACCESS_OK;
3866    }
3867    if (arm_is_secure_below_el3(env)) {
3868        return CP_ACCESS_TRAP_EL3;
3869    }
3870    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3871    if (isread) {
3872        return CP_ACCESS_OK;
3873    }
3874    return CP_ACCESS_TRAP_UNCATEGORIZED;
3875}
3876
3877static const ARMCPRegInfo el3_cp_reginfo[] = {
3878    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3879      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3880      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3881      .resetvalue = 0, .writefn = scr_write },
3882    { .name = "SCR",  .type = ARM_CP_ALIAS,
3883      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3884      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3885      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3886      .writefn = scr_write },
3887    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3888      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3889      .access = PL3_RW, .resetvalue = 0,
3890      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3891    { .name = "SDER",
3892      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3893      .access = PL3_RW, .resetvalue = 0,
3894      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3895    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3896      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3897      .writefn = vbar_write, .resetvalue = 0,
3898      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3899    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3900      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3901      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3902      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3903    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3904      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3905      .access = PL3_RW,
3906      /* no .writefn needed as this can't cause an ASID change;
3907       * we must provide a .raw_writefn and .resetfn because we handle
3908       * reset and migration for the AArch32 TTBCR(S), which might be
3909       * using mask and base_mask.
3910       */
3911      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3912      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3913    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3914      .type = ARM_CP_ALIAS,
3915      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3916      .access = PL3_RW,
3917      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3918    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3919      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3920      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3921    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3922      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3923      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3924    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3925      .type = ARM_CP_ALIAS,
3926      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3927      .access = PL3_RW,
3928      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3929    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3930      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3931      .access = PL3_RW, .writefn = vbar_write,
3932      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3933      .resetvalue = 0 },
3934    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3935      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3936      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3937      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3938    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3939      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3940      .access = PL3_RW, .resetvalue = 0,
3941      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3942    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3943      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3944      .access = PL3_RW, .type = ARM_CP_CONST,
3945      .resetvalue = 0 },
3946    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3947      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3948      .access = PL3_RW, .type = ARM_CP_CONST,
3949      .resetvalue = 0 },
3950    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3951      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3952      .access = PL3_RW, .type = ARM_CP_CONST,
3953      .resetvalue = 0 },
3954    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3955      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3956      .access = PL3_W, .type = ARM_CP_NO_RAW,
3957      .writefn = tlbi_aa64_alle3is_write },
3958    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3959      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3960      .access = PL3_W, .type = ARM_CP_NO_RAW,
3961      .writefn = tlbi_aa64_vae3is_write },
3962    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3963      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3964      .access = PL3_W, .type = ARM_CP_NO_RAW,
3965      .writefn = tlbi_aa64_vae3is_write },
3966    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3967      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3968      .access = PL3_W, .type = ARM_CP_NO_RAW,
3969      .writefn = tlbi_aa64_alle3_write },
3970    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3971      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3972      .access = PL3_W, .type = ARM_CP_NO_RAW,
3973      .writefn = tlbi_aa64_vae3_write },
3974    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3975      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3976      .access = PL3_W, .type = ARM_CP_NO_RAW,
3977      .writefn = tlbi_aa64_vae3_write },
3978    REGINFO_SENTINEL
3979};
3980
3981static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3982                                     bool isread)
3983{
3984    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3985     * but the AArch32 CTR has its own reginfo struct)
3986     */
3987    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3988        return CP_ACCESS_TRAP;
3989    }
3990    return CP_ACCESS_OK;
3991}
3992
3993static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3994                        uint64_t value)
3995{
3996    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3997     * read via a bit in OSLSR_EL1.
3998     */
3999    int oslock;
4000
4001    if (ri->state == ARM_CP_STATE_AA32) {
4002        oslock = (value == 0xC5ACCE55);
4003    } else {
4004        oslock = value & 1;
4005    }
4006
4007    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4008}
4009
4010static const ARMCPRegInfo debug_cp_reginfo[] = {
4011    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4012     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4013     * unlike DBGDRAR it is never accessible from EL0.
4014     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4015     * accessor.
4016     */
4017    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4018      .access = PL0_R, .accessfn = access_tdra,
4019      .type = ARM_CP_CONST, .resetvalue = 0 },
4020    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4021      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4022      .access = PL1_R, .accessfn = access_tdra,
4023      .type = ARM_CP_CONST, .resetvalue = 0 },
4024    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4025      .access = PL0_R, .accessfn = access_tdra,
4026      .type = ARM_CP_CONST, .resetvalue = 0 },
4027    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4028    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4029      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4030      .access = PL1_RW, .accessfn = access_tda,
4031      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4032      .resetvalue = 0 },
4033    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4034     * We don't implement the configurable EL0 access.
4035     */
4036    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4037      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4038      .type = ARM_CP_ALIAS,
4039      .access = PL1_R, .accessfn = access_tda,
4040      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4041    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4042      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4043      .access = PL1_W, .type = ARM_CP_NO_RAW,
4044      .accessfn = access_tdosa,
4045      .writefn = oslar_write },
4046    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4047      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4048      .access = PL1_R, .resetvalue = 10,
4049      .accessfn = access_tdosa,
4050      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4051    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4052    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4053      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4054      .access = PL1_RW, .accessfn = access_tdosa,
4055      .type = ARM_CP_NOP },
4056    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4057     * implement vector catch debug events yet.
4058     */
4059    { .name = "DBGVCR",
4060      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4061      .access = PL1_RW, .accessfn = access_tda,
4062      .type = ARM_CP_NOP },
4063    REGINFO_SENTINEL
4064};
4065
4066static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4067    /* 64 bit access versions of the (dummy) debug registers */
4068    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4069      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4070    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4071      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4072    REGINFO_SENTINEL
4073};
4074
4075void hw_watchpoint_update(ARMCPU *cpu, int n)
4076{
4077    CPUARMState *env = &cpu->env;
4078    vaddr len = 0;
4079    vaddr wvr = env->cp15.dbgwvr[n];
4080    uint64_t wcr = env->cp15.dbgwcr[n];
4081    int mask;
4082    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4083
4084    if (env->cpu_watchpoint[n]) {
4085        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4086        env->cpu_watchpoint[n] = NULL;
4087    }
4088
4089    if (!extract64(wcr, 0, 1)) {
4090        /* E bit clear : watchpoint disabled */
4091        return;
4092    }
4093
4094    switch (extract64(wcr, 3, 2)) {
4095    case 0:
4096        /* LSC 00 is reserved and must behave as if the wp is disabled */
4097        return;
4098    case 1:
4099        flags |= BP_MEM_READ;
4100        break;
4101    case 2:
4102        flags |= BP_MEM_WRITE;
4103        break;
4104    case 3:
4105        flags |= BP_MEM_ACCESS;
4106        break;
4107    }
4108
4109    /* Attempts to use both MASK and BAS fields simultaneously are
4110     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4111     * thus generating a watchpoint for every byte in the masked region.
4112     */
4113    mask = extract64(wcr, 24, 4);
4114    if (mask == 1 || mask == 2) {
4115        /* Reserved values of MASK; we must act as if the mask value was
4116         * some non-reserved value, or as if the watchpoint were disabled.
4117         * We choose the latter.
4118         */
4119        return;
4120    } else if (mask) {
4121        /* Watchpoint covers an aligned area up to 2GB in size */
4122        len = 1ULL << mask;
4123        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4124         * whether the watchpoint fires when the unmasked bits match; we opt
4125         * to generate the exceptions.
4126         */
4127        wvr &= ~(len - 1);
4128    } else {
4129        /* Watchpoint covers bytes defined by the byte address select bits */
4130        int bas = extract64(wcr, 5, 8);
4131        int basstart;
4132
4133        if (bas == 0) {
4134            /* This must act as if the watchpoint is disabled */
4135            return;
4136        }
4137
4138        if (extract64(wvr, 2, 1)) {
4139            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4140             * ignored, and BAS[3:0] define which bytes to watch.
4141             */
4142            bas &= 0xf;
4143        }
4144        /* The BAS bits are supposed to be programmed to indicate a contiguous
4145         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4146         * we fire for each byte in the word/doubleword addressed by the WVR.
4147         * We choose to ignore any non-zero bits after the first range of 1s.
4148         */
4149        basstart = ctz32(bas);
4150        len = cto32(bas >> basstart);
4151        wvr += basstart;
4152    }
4153
4154    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4155                          &env->cpu_watchpoint[n]);
4156}
4157
4158void hw_watchpoint_update_all(ARMCPU *cpu)
4159{
4160    int i;
4161    CPUARMState *env = &cpu->env;
4162
4163    /* Completely clear out existing QEMU watchpoints and our array, to
4164     * avoid possible stale entries following migration load.
4165     */
4166    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4167    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4168
4169    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4170        hw_watchpoint_update(cpu, i);
4171    }
4172}
4173
4174static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4175                         uint64_t value)
4176{
4177    ARMCPU *cpu = arm_env_get_cpu(env);
4178    int i = ri->crm;
4179
4180    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4181     * register reads and behaves as if values written are sign extended.
4182     * Bits [1:0] are RES0.
4183     */
4184    value = sextract64(value, 0, 49) & ~3ULL;
4185
4186    raw_write(env, ri, value);
4187    hw_watchpoint_update(cpu, i);
4188}
4189
4190static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4191                         uint64_t value)
4192{
4193    ARMCPU *cpu = arm_env_get_cpu(env);
4194    int i = ri->crm;
4195
4196    raw_write(env, ri, value);
4197    hw_watchpoint_update(cpu, i);
4198}
4199
4200void hw_breakpoint_update(ARMCPU *cpu, int n)
4201{
4202    CPUARMState *env = &cpu->env;
4203    uint64_t bvr = env->cp15.dbgbvr[n];
4204    uint64_t bcr = env->cp15.dbgbcr[n];
4205    vaddr addr;
4206    int bt;
4207    int flags = BP_CPU;
4208
4209    if (env->cpu_breakpoint[n]) {
4210        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4211        env->cpu_breakpoint[n] = NULL;
4212    }
4213
4214    if (!extract64(bcr, 0, 1)) {
4215        /* E bit clear : watchpoint disabled */
4216        return;
4217    }
4218
4219    bt = extract64(bcr, 20, 4);
4220
4221    switch (bt) {
4222    case 4: /* unlinked address mismatch (reserved if AArch64) */
4223    case 5: /* linked address mismatch (reserved if AArch64) */
4224        qemu_log_mask(LOG_UNIMP,
4225                      "arm: address mismatch breakpoint types not implemented");
4226        return;
4227    case 0: /* unlinked address match */
4228    case 1: /* linked address match */
4229    {
4230        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4231         * we behave as if the register was sign extended. Bits [1:0] are
4232         * RES0. The BAS field is used to allow setting breakpoints on 16
4233         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4234         * a bp will fire if the addresses covered by the bp and the addresses
4235         * covered by the insn overlap but the insn doesn't start at the
4236         * start of the bp address range. We choose to require the insn and
4237         * the bp to have the same address. The constraints on writing to
4238         * BAS enforced in dbgbcr_write mean we have only four cases:
4239         *  0b0000  => no breakpoint
4240         *  0b0011  => breakpoint on addr
4241         *  0b1100  => breakpoint on addr + 2
4242         *  0b1111  => breakpoint on addr
4243         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4244         */
4245        int bas = extract64(bcr, 5, 4);
4246        addr = sextract64(bvr, 0, 49) & ~3ULL;
4247        if (bas == 0) {
4248            return;
4249        }
4250        if (bas == 0xc) {
4251            addr += 2;
4252        }
4253        break;
4254    }
4255    case 2: /* unlinked context ID match */
4256    case 8: /* unlinked VMID match (reserved if no EL2) */
4257    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4258        qemu_log_mask(LOG_UNIMP,
4259                      "arm: unlinked context breakpoint types not implemented");
4260        return;
4261    case 9: /* linked VMID match (reserved if no EL2) */
4262    case 11: /* linked context ID and VMID match (reserved if no EL2) */
4263    case 3: /* linked context ID match */
4264    default:
4265        /* We must generate no events for Linked context matches (unless
4266         * they are linked to by some other bp/wp, which is handled in
4267         * updates for the linking bp/wp). We choose to also generate no events
4268         * for reserved values.
4269         */
4270        return;
4271    }
4272
4273    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4274}
4275
4276void hw_breakpoint_update_all(ARMCPU *cpu)
4277{
4278    int i;
4279    CPUARMState *env = &cpu->env;
4280
4281    /* Completely clear out existing QEMU breakpoints and our array, to
4282     * avoid possible stale entries following migration load.
4283     */
4284    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4285    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4286
4287    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4288        hw_breakpoint_update(cpu, i);
4289    }
4290}
4291
4292static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4293                         uint64_t value)
4294{
4295    ARMCPU *cpu = arm_env_get_cpu(env);
4296    int i = ri->crm;
4297
4298    raw_write(env, ri, value);
4299    hw_breakpoint_update(cpu, i);
4300}
4301
4302static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4303                         uint64_t value)
4304{
4305    ARMCPU *cpu = arm_env_get_cpu(env);
4306    int i = ri->crm;
4307
4308    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4309     * copy of BAS[0].
4310     */
4311    value = deposit64(value, 6, 1, extract64(value, 5, 1));
4312    value = deposit64(value, 8, 1, extract64(value, 7, 1));
4313
4314    raw_write(env, ri, value);
4315    hw_breakpoint_update(cpu, i);
4316}
4317
4318static void define_debug_regs(ARMCPU *cpu)
4319{
4320    /* Define v7 and v8 architectural debug registers.
4321     * These are just dummy implementations for now.
4322     */
4323    int i;
4324    int wrps, brps, ctx_cmps;
4325    ARMCPRegInfo dbgdidr = {
4326        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4327        .access = PL0_R, .accessfn = access_tda,
4328        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4329    };
4330
4331    /* Note that all these register fields hold "number of Xs minus 1". */
4332    brps = extract32(cpu->dbgdidr, 24, 4);
4333    wrps = extract32(cpu->dbgdidr, 28, 4);
4334    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4335
4336    assert(ctx_cmps <= brps);
4337
4338    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4339     * of the debug registers such as number of breakpoints;
4340     * check that if they both exist then they agree.
4341     */
4342    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4343        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4344        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4345        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4346    }
4347
4348    define_one_arm_cp_reg(cpu, &dbgdidr);
4349    define_arm_cp_regs(cpu, debug_cp_reginfo);
4350
4351    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4352        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4353    }
4354
4355    for (i = 0; i < brps + 1; i++) {
4356        ARMCPRegInfo dbgregs[] = {
4357            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4358              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4359              .access = PL1_RW, .accessfn = access_tda,
4360              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4361              .writefn = dbgbvr_write, .raw_writefn = raw_write
4362            },
4363            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4364              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4365              .access = PL1_RW, .accessfn = access_tda,
4366              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4367              .writefn = dbgbcr_write, .raw_writefn = raw_write
4368            },
4369            REGINFO_SENTINEL
4370        };
4371        define_arm_cp_regs(cpu, dbgregs);
4372    }
4373
4374    for (i = 0; i < wrps + 1; i++) {
4375        ARMCPRegInfo dbgregs[] = {
4376            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4377              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4378              .access = PL1_RW, .accessfn = access_tda,
4379              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4380              .writefn = dbgwvr_write, .raw_writefn = raw_write
4381            },
4382            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4383              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4384              .access = PL1_RW, .accessfn = access_tda,
4385              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4386              .writefn = dbgwcr_write, .raw_writefn = raw_write
4387            },
4388            REGINFO_SENTINEL
4389        };
4390        define_arm_cp_regs(cpu, dbgregs);
4391    }
4392}
4393
4394void register_cp_regs_for_features(ARMCPU *cpu)
4395{
4396    /* Register all the coprocessor registers based on feature bits */
4397    CPUARMState *env = &cpu->env;
4398    if (arm_feature(env, ARM_FEATURE_M)) {
4399        /* M profile has no coprocessor registers */
4400        return;
4401    }
4402
4403    define_arm_cp_regs(cpu, cp_reginfo);
4404    if (!arm_feature(env, ARM_FEATURE_V8)) {
4405        /* Must go early as it is full of wildcards that may be
4406         * overridden by later definitions.
4407         */
4408        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4409    }
4410
4411    if (arm_feature(env, ARM_FEATURE_V6)) {
4412        /* The ID registers all have impdef reset values */
4413        ARMCPRegInfo v6_idregs[] = {
4414            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4415              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4416              .access = PL1_R, .type = ARM_CP_CONST,
4417              .resetvalue = cpu->id_pfr0 },
4418            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4419              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4420              .access = PL1_R, .type = ARM_CP_CONST,
4421              .resetvalue = cpu->id_pfr1 },
4422            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4423              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4424              .access = PL1_R, .type = ARM_CP_CONST,
4425              .resetvalue = cpu->id_dfr0 },
4426            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4427              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4428              .access = PL1_R, .type = ARM_CP_CONST,
4429              .resetvalue = cpu->id_afr0 },
4430            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4431              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4432              .access = PL1_R, .type = ARM_CP_CONST,
4433              .resetvalue = cpu->id_mmfr0 },
4434            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4435              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4436              .access = PL1_R, .type = ARM_CP_CONST,
4437              .resetvalue = cpu->id_mmfr1 },
4438            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4439              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4440              .access = PL1_R, .type = ARM_CP_CONST,
4441              .resetvalue = cpu->id_mmfr2 },
4442            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4443              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4444              .access = PL1_R, .type = ARM_CP_CONST,
4445              .resetvalue = cpu->id_mmfr3 },
4446            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4447              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4448              .access = PL1_R, .type = ARM_CP_CONST,
4449              .resetvalue = cpu->id_isar0 },
4450            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4451              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4452              .access = PL1_R, .type = ARM_CP_CONST,
4453              .resetvalue = cpu->id_isar1 },
4454            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4455              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4456              .access = PL1_R, .type = ARM_CP_CONST,
4457              .resetvalue = cpu->id_isar2 },
4458            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4459              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4460              .access = PL1_R, .type = ARM_CP_CONST,
4461              .resetvalue = cpu->id_isar3 },
4462            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4463              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4464              .access = PL1_R, .type = ARM_CP_CONST,
4465              .resetvalue = cpu->id_isar4 },
4466            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4467              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4468              .access = PL1_R, .type = ARM_CP_CONST,
4469              .resetvalue = cpu->id_isar5 },
4470            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4471              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4472              .access = PL1_R, .type = ARM_CP_CONST,
4473              .resetvalue = cpu->id_mmfr4 },
4474            /* 7 is as yet unallocated and must RAZ */
4475            { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4476              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4477              .access = PL1_R, .type = ARM_CP_CONST,
4478              .resetvalue = 0 },
4479            REGINFO_SENTINEL
4480        };
4481        define_arm_cp_regs(cpu, v6_idregs);
4482        define_arm_cp_regs(cpu, v6_cp_reginfo);
4483    } else {
4484        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4485    }
4486    if (arm_feature(env, ARM_FEATURE_V6K)) {
4487        define_arm_cp_regs(cpu, v6k_cp_reginfo);
4488    }
4489    if (arm_feature(env, ARM_FEATURE_V7MP) &&
4490        !arm_feature(env, ARM_FEATURE_MPU)) {
4491        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4492    }
4493    if (arm_feature(env, ARM_FEATURE_V7)) {
4494        /* v7 performance monitor control register: same implementor
4495         * field as main ID register, and we implement only the cycle
4496         * count register.
4497         */
4498#ifndef CONFIG_USER_ONLY
4499        ARMCPRegInfo pmcr = {
4500            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4501            .access = PL0_RW,
4502            .type = ARM_CP_IO | ARM_CP_ALIAS,
4503            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4504            .accessfn = pmreg_access, .writefn = pmcr_write,
4505            .raw_writefn = raw_write,
4506        };
4507        ARMCPRegInfo pmcr64 = {
4508            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4509            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4510            .access = PL0_RW, .accessfn = pmreg_access,
4511            .type = ARM_CP_IO,
4512            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4513            .resetvalue = cpu->midr & 0xff000000,
4514            .writefn = pmcr_write, .raw_writefn = raw_write,
4515        };
4516        define_one_arm_cp_reg(cpu, &pmcr);
4517        define_one_arm_cp_reg(cpu, &pmcr64);
4518#endif
4519        ARMCPRegInfo clidr = {
4520            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4521            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4522            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4523        };
4524        define_one_arm_cp_reg(cpu, &clidr);
4525        define_arm_cp_regs(cpu, v7_cp_reginfo);
4526        define_debug_regs(cpu);
4527    } else {
4528        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4529    }
4530    if (arm_feature(env, ARM_FEATURE_V8)) {
4531        /* AArch64 ID registers, which all have impdef reset values.
4532         * Note that within the ID register ranges the unused slots
4533         * must all RAZ, not UNDEF; future architecture versions may
4534         * define new registers here.
4535         */
4536        ARMCPRegInfo v8_idregs[] = {
4537            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4538              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4539              .access = PL1_R, .type = ARM_CP_CONST,
4540              .resetvalue = cpu->id_aa64pfr0 },
4541            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4542              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4543              .access = PL1_R, .type = ARM_CP_CONST,
4544              .resetvalue = cpu->id_aa64pfr1},
4545            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4546              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4547              .access = PL1_R, .type = ARM_CP_CONST,
4548              .resetvalue = 0 },
4549            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4550              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4551              .access = PL1_R, .type = ARM_CP_CONST,
4552              .resetvalue = 0 },
4553            { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4554              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4555              .access = PL1_R, .type = ARM_CP_CONST,
4556              .resetvalue = 0 },
4557            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4558              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4559              .access = PL1_R, .type = ARM_CP_CONST,
4560              .resetvalue = 0 },
4561            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4562              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4563              .access = PL1_R, .type = ARM_CP_CONST,
4564              .resetvalue = 0 },
4565            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4566              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4567              .access = PL1_R, .type = ARM_CP_CONST,
4568              .resetvalue = 0 },
4569            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4570              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4571              .access = PL1_R, .type = ARM_CP_CONST,
4572              /* We mask out the PMUVer field, because we don't currently
4573               * implement the PMU. Not advertising it prevents the guest
4574               * from trying to use it and getting UNDEFs on registers we
4575               * don't implement.
4576               */
4577              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4578            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4579              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4580              .access = PL1_R, .type = ARM_CP_CONST,
4581              .resetvalue = cpu->id_aa64dfr1 },
4582            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4583              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4584              .access = PL1_R, .type = ARM_CP_CONST,
4585              .resetvalue = 0 },
4586            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4587              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4588              .access = PL1_R, .type = ARM_CP_CONST,
4589              .resetvalue = 0 },
4590            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4591              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4592              .access = PL1_R, .type = ARM_CP_CONST,
4593              .resetvalue = cpu->id_aa64afr0 },
4594            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4595              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4596              .access = PL1_R, .type = ARM_CP_CONST,
4597              .resetvalue = cpu->id_aa64afr1 },
4598            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4599              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4600              .access = PL1_R, .type = ARM_CP_CONST,
4601              .resetvalue = 0 },
4602            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4603              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4604              .access = PL1_R, .type = ARM_CP_CONST,
4605              .resetvalue = 0 },
4606            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4607              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4608              .access = PL1_R, .type = ARM_CP_CONST,
4609              .resetvalue = cpu->id_aa64isar0 },
4610            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4611              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4612              .access = PL1_R, .type = ARM_CP_CONST,
4613              .resetvalue = cpu->id_aa64isar1 },
4614            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4615              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4616              .access = PL1_R, .type = ARM_CP_CONST,
4617              .resetvalue = 0 },
4618            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4619              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4620              .access = PL1_R, .type = ARM_CP_CONST,
4621              .resetvalue = 0 },
4622            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4623              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4624              .access = PL1_R, .type = ARM_CP_CONST,
4625              .resetvalue = 0 },
4626            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4627              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4628              .access = PL1_R, .type = ARM_CP_CONST,
4629              .resetvalue = 0 },
4630            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4631              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4632              .access = PL1_R, .type = ARM_CP_CONST,
4633              .resetvalue = 0 },
4634            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4635              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4636              .access = PL1_R, .type = ARM_CP_CONST,
4637              .resetvalue = 0 },
4638            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4639              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4640              .access = PL1_R, .type = ARM_CP_CONST,
4641              .resetvalue = cpu->id_aa64mmfr0 },
4642            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4643              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4644              .access = PL1_R, .type = ARM_CP_CONST,
4645              .resetvalue = cpu->id_aa64mmfr1 },
4646            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4647              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4648              .access = PL1_R, .type = ARM_CP_CONST,
4649              .resetvalue = 0 },
4650            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4651              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4652              .access = PL1_R, .type = ARM_CP_CONST,
4653              .resetvalue = 0 },
4654            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4655              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4656              .access = PL1_R, .type = ARM_CP_CONST,
4657              .resetvalue = 0 },
4658            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4659              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4660              .access = PL1_R, .type = ARM_CP_CONST,
4661              .resetvalue = 0 },
4662            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4663              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4664              .access = PL1_R, .type = ARM_CP_CONST,
4665              .resetvalue = 0 },
4666            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4667              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4668              .access = PL1_R, .type = ARM_CP_CONST,
4669              .resetvalue = 0 },
4670            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4671              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4672              .access = PL1_R, .type = ARM_CP_CONST,
4673              .resetvalue = cpu->mvfr0 },
4674            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4675              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4676              .access = PL1_R, .type = ARM_CP_CONST,
4677              .resetvalue = cpu->mvfr1 },
4678            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4679              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4680              .access = PL1_R, .type = ARM_CP_CONST,
4681              .resetvalue = cpu->mvfr2 },
4682            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4684              .access = PL1_R, .type = ARM_CP_CONST,
4685              .resetvalue = 0 },
4686            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4688              .access = PL1_R, .type = ARM_CP_CONST,
4689              .resetvalue = 0 },
4690            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4692              .access = PL1_R, .type = ARM_CP_CONST,
4693              .resetvalue = 0 },
4694            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4696              .access = PL1_R, .type = ARM_CP_CONST,
4697              .resetvalue = 0 },
4698            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4699              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4700              .access = PL1_R, .type = ARM_CP_CONST,
4701              .resetvalue = 0 },
4702            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4703              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4704              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4705              .resetvalue = cpu->pmceid0 },
4706            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4707              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4708              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4709              .resetvalue = cpu->pmceid0 },
4710            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4711              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4712              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4713              .resetvalue = cpu->pmceid1 },
4714            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4715              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4716              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4717              .resetvalue = cpu->pmceid1 },
4718            REGINFO_SENTINEL
4719        };
4720        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4721        if (!arm_feature(env, ARM_FEATURE_EL3) &&
4722            !arm_feature(env, ARM_FEATURE_EL2)) {
4723            ARMCPRegInfo rvbar = {
4724                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4725                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4726                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4727            };
4728            define_one_arm_cp_reg(cpu, &rvbar);
4729        }
4730        define_arm_cp_regs(cpu, v8_idregs);
4731        define_arm_cp_regs(cpu, v8_cp_reginfo);
4732    }
4733    if (arm_feature(env, ARM_FEATURE_EL2)) {
4734        uint64_t vmpidr_def = mpidr_read_val(env);
4735        ARMCPRegInfo vpidr_regs[] = {
4736            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4737              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4738              .access = PL2_RW, .accessfn = access_el3_aa32ns,
4739              .resetvalue = cpu->midr,
4740              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4741            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4742              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4743              .access = PL2_RW, .resetvalue = cpu->midr,
4744              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4745            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4746              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4747              .access = PL2_RW, .accessfn = access_el3_aa32ns,
4748              .resetvalue = vmpidr_def,
4749              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4750            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4751              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4752              .access = PL2_RW,
4753              .resetvalue = vmpidr_def,
4754              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4755            REGINFO_SENTINEL
4756        };
4757        define_arm_cp_regs(cpu, vpidr_regs);
4758        define_arm_cp_regs(cpu, el2_cp_reginfo);
4759        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4760        if (!arm_feature(env, ARM_FEATURE_EL3)) {
4761            ARMCPRegInfo rvbar = {
4762                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4763                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4764                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4765            };
4766            define_one_arm_cp_reg(cpu, &rvbar);
4767        }
4768    } else {
4769        /* If EL2 is missing but higher ELs are enabled, we need to
4770         * register the no_el2 reginfos.
4771         */
4772        if (arm_feature(env, ARM_FEATURE_EL3)) {
4773            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4774             * of MIDR_EL1 and MPIDR_EL1.
4775             */
4776            ARMCPRegInfo vpidr_regs[] = {
4777                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4778                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4779                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4780                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4781                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4782                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4783                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4784                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4785                  .type = ARM_CP_NO_RAW,
4786                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4787                REGINFO_SENTINEL
4788            };
4789            define_arm_cp_regs(cpu, vpidr_regs);
4790            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4791        }
4792    }
4793    if (arm_feature(env, ARM_FEATURE_EL3)) {
4794        define_arm_cp_regs(cpu, el3_cp_reginfo);
4795        ARMCPRegInfo el3_regs[] = {
4796            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4797              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4798              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4799            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4800              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4801              .access = PL3_RW,
4802              .raw_writefn = raw_write, .writefn = sctlr_write,
4803              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4804              .resetvalue = cpu->reset_sctlr },
4805            REGINFO_SENTINEL
4806        };
4807
4808        define_arm_cp_regs(cpu, el3_regs);
4809    }
4810    /* The behaviour of NSACR is sufficiently various that we don't
4811     * try to describe it in a single reginfo:
4812     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
4813     *     reads as constant 0xc00 from NS EL1 and NS EL2
4814     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4815     *  if v7 without EL3, register doesn't exist
4816     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4817     */
4818    if (arm_feature(env, ARM_FEATURE_EL3)) {
4819        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4820            ARMCPRegInfo nsacr = {
4821                .name = "NSACR", .type = ARM_CP_CONST,
4822                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4823                .access = PL1_RW, .accessfn = nsacr_access,
4824                .resetvalue = 0xc00
4825            };
4826            define_one_arm_cp_reg(cpu, &nsacr);
4827        } else {
4828            ARMCPRegInfo nsacr = {
4829                .name = "NSACR",
4830                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4831                .access = PL3_RW | PL1_R,
4832                .resetvalue = 0,
4833                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4834            };
4835            define_one_arm_cp_reg(cpu, &nsacr);
4836        }
4837    } else {
4838        if (arm_feature(env, ARM_FEATURE_V8)) {
4839            ARMCPRegInfo nsacr = {
4840                .name = "NSACR", .type = ARM_CP_CONST,
4841                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4842                .access = PL1_R,
4843                .resetvalue = 0xc00
4844            };
4845            define_one_arm_cp_reg(cpu, &nsacr);
4846        }
4847    }
4848
4849    if (arm_feature(env, ARM_FEATURE_MPU)) {
4850        if (arm_feature(env, ARM_FEATURE_V6)) {
4851            /* PMSAv6 not implemented */
4852            assert(arm_feature(env, ARM_FEATURE_V7));
4853            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4854            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4855        } else {
4856            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4857        }
4858    } else {
4859        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4860        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4861    }
4862    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4863        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4864    }
4865    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4866        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4867    }
4868    if (arm_feature(env, ARM_FEATURE_VAPA)) {
4869        define_arm_cp_regs(cpu, vapa_cp_reginfo);
4870    }
4871    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4872        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4873    }
4874    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4875        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4876    }
4877    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4878        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4879    }
4880    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4881        define_arm_cp_regs(cpu, omap_cp_reginfo);
4882    }
4883    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4884        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4885    }
4886    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4887        define_arm_cp_regs(cpu, xscale_cp_reginfo);
4888    }
4889    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4890        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4891    }
4892    if (arm_feature(env, ARM_FEATURE_LPAE)) {
4893        define_arm_cp_regs(cpu, lpae_cp_reginfo);
4894    }
4895    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4896     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4897     * be read-only (ie write causes UNDEF exception).
4898     */
4899    {
4900        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4901            /* Pre-v8 MIDR space.
4902             * Note that the MIDR isn't a simple constant register because
4903             * of the TI925 behaviour where writes to another register can
4904             * cause the MIDR value to change.
4905             *
4906             * Unimplemented registers in the c15 0 0 0 space default to
4907             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4908             * and friends override accordingly.
4909             */
4910            { .name = "MIDR",
4911              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4912              .access = PL1_R, .resetvalue = cpu->midr,
4913              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4914              .readfn = midr_read,
4915              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4916              .type = ARM_CP_OVERRIDE },
4917            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4918            { .name = "DUMMY",
4919              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4920              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4921            { .name = "DUMMY",
4922              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4923              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4924            { .name = "DUMMY",
4925              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4926              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4927            { .name = "DUMMY",
4928              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4929              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4930            { .name = "DUMMY",
4931              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4932              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4933            REGINFO_SENTINEL
4934        };
4935        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4936            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4937              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4938              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4939              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4940              .readfn = midr_read },
4941            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4942            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4943              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4944              .access = PL1_R, .resetvalue = cpu->midr },
4945            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4946              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4947              .access = PL1_R, .resetvalue = cpu->midr },
4948            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4949              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4950              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4951            REGINFO_SENTINEL
4952        };
4953        ARMCPRegInfo id_cp_reginfo[] = {
4954            /* These are common to v8 and pre-v8 */
4955            { .name = "CTR",
4956              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4957              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4958            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4959              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4960              .access = PL0_R, .accessfn = ctr_el0_access,
4961              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4962            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4963            { .name = "TCMTR",
4964              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4965              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4966            REGINFO_SENTINEL
4967        };
4968        /* TLBTR is specific to VMSA */
4969        ARMCPRegInfo id_tlbtr_reginfo = {
4970              .name = "TLBTR",
4971              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4972              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4973        };
4974        /* MPUIR is specific to PMSA V6+ */
4975        ARMCPRegInfo id_mpuir_reginfo = {
4976              .name = "MPUIR",
4977              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4978              .access = PL1_R, .type = ARM_CP_CONST,
4979              .resetvalue = cpu->pmsav7_dregion << 8
4980        };
4981        ARMCPRegInfo crn0_wi_reginfo = {
4982            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4983            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4984            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4985        };
4986        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4987            arm_feature(env, ARM_FEATURE_STRONGARM)) {
4988            ARMCPRegInfo *r;
4989            /* Register the blanket "writes ignored" value first to cover the
4990             * whole space. Then update the specific ID registers to allow write
4991             * access, so that they ignore writes rather than causing them to
4992             * UNDEF.
4993             */
4994            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4995            for (r = id_pre_v8_midr_cp_reginfo;
4996                 r->type != ARM_CP_SENTINEL; r++) {
4997                r->access = PL1_RW;
4998            }
4999            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5000                r->access = PL1_RW;
5001            }
5002            id_tlbtr_reginfo.access = PL1_RW;
5003            id_tlbtr_reginfo.access = PL1_RW;
5004        }
5005        if (arm_feature(env, ARM_FEATURE_V8)) {
5006            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5007        } else {
5008            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5009        }
5010        define_arm_cp_regs(cpu, id_cp_reginfo);
5011        if (!arm_feature(env, ARM_FEATURE_MPU)) {
5012            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5013        } else if (arm_feature(env, ARM_FEATURE_V7)) {
5014            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5015        }
5016    }
5017
5018    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5019        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5020    }
5021
5022    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5023        ARMCPRegInfo auxcr_reginfo[] = {
5024            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5025              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5026              .access = PL1_RW, .type = ARM_CP_CONST,
5027              .resetvalue = cpu->reset_auxcr },
5028            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5029              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5030              .access = PL2_RW, .type = ARM_CP_CONST,
5031              .resetvalue = 0 },
5032            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5033              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5034              .access = PL3_RW, .type = ARM_CP_CONST,
5035              .resetvalue = 0 },
5036            REGINFO_SENTINEL
5037        };
5038        define_arm_cp_regs(cpu, auxcr_reginfo);
5039    }
5040
5041    if (arm_feature(env, ARM_FEATURE_CBAR)) {
5042        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5043            /* 32 bit view is [31:18] 0...0 [43:32]. */
5044            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5045                | extract64(cpu->reset_cbar, 32, 12);
5046            ARMCPRegInfo cbar_reginfo[] = {
5047                { .name = "CBAR",
5048                  .type = ARM_CP_CONST,
5049                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5050                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
5051                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5052                  .type = ARM_CP_CONST,
5053                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5054                  .access = PL1_R, .resetvalue = cbar32 },
5055                REGINFO_SENTINEL
5056            };
5057            /* We don't implement a r/w 64 bit CBAR currently */
5058            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5059            define_arm_cp_regs(cpu, cbar_reginfo);
5060        } else {
5061            ARMCPRegInfo cbar = {
5062                .name = "CBAR",
5063                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5064                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5065                .fieldoffset = offsetof(CPUARMState,
5066                                        cp15.c15_config_base_address)
5067            };
5068            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5069                cbar.access = PL1_R;
5070                cbar.fieldoffset = 0;
5071                cbar.type = ARM_CP_CONST;
5072            }
5073            define_one_arm_cp_reg(cpu, &cbar);
5074        }
5075    }
5076
5077    /* Generic registers whose values depend on the implementation */
5078    {
5079        ARMCPRegInfo sctlr = {
5080            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5081            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5082            .access = PL1_RW,
5083            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5084                                   offsetof(CPUARMState, cp15.sctlr_ns) },
5085            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5086            .raw_writefn = raw_write,
5087        };
5088        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5089            /* Normally we would always end the TB on an SCTLR write, but Linux
5090             * arch/arm/mach-pxa/sleep.S expects two instructions following
5091             * an MMU enable to execute from cache.  Imitate this behaviour.
5092             */
5093            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5094        }
5095        define_one_arm_cp_reg(cpu, &sctlr);
5096    }
5097}
5098
5099ARMCPU *cpu_arm_init(const char *cpu_model)
5100{
5101    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5102}
5103
5104void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5105{
5106    CPUState *cs = CPU(cpu);
5107    CPUARMState *env = &cpu->env;
5108
5109    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5110        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5111                                 aarch64_fpu_gdb_set_reg,
5112                                 34, "aarch64-fpu.xml", 0);
5113    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5114        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5115                                 51, "arm-neon.xml", 0);
5116    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5117        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5118                                 35, "arm-vfp3.xml", 0);
5119    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5120        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5121                                 19, "arm-vfp.xml", 0);
5122    }
5123}
5124
5125/* Sort alphabetically by type name, except for "any". */
5126static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5127{
5128    ObjectClass *class_a = (ObjectClass *)a;
5129    ObjectClass *class_b = (ObjectClass *)b;
5130    const char *name_a, *name_b;
5131
5132    name_a = object_class_get_name(class_a);
5133    name_b = object_class_get_name(class_b);
5134    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5135        return 1;
5136    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5137        return -1;
5138    } else {
5139        return strcmp(name_a, name_b);
5140    }
5141}
5142
5143static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5144{
5145    ObjectClass *oc = data;
5146    CPUListState *s = user_data;
5147    const char *typename;
5148    char *name;
5149
5150    typename = object_class_get_name(oc);
5151    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5152    (*s->cpu_fprintf)(s->file, "  %s\n",
5153                      name);
5154    g_free(name);
5155}
5156
5157void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5158{
5159    CPUListState s = {
5160        .file = f,
5161        .cpu_fprintf = cpu_fprintf,
5162    };
5163    GSList *list;
5164
5165    list = object_class_get_list(TYPE_ARM_CPU, false);
5166    list = g_slist_sort(list, arm_cpu_list_compare);
5167    (*cpu_fprintf)(f, "Available CPUs:\n");
5168    g_slist_foreach(list, arm_cpu_list_entry, &s);
5169    g_slist_free(list);
5170#ifdef CONFIG_KVM
5171    /* The 'host' CPU type is dynamically registered only if KVM is
5172     * enabled, so we have to special-case it here:
5173     */
5174    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5175#endif
5176}
5177
5178static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5179{
5180    ObjectClass *oc = data;
5181    CpuDefinitionInfoList **cpu_list = user_data;
5182    CpuDefinitionInfoList *entry;
5183    CpuDefinitionInfo *info;
5184    const char *typename;
5185
5186    typename = object_class_get_name(oc);
5187    info = g_malloc0(sizeof(*info));
5188    info->name = g_strndup(typename,
5189                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
5190
5191    entry = g_malloc0(sizeof(*entry));
5192    entry->value = info;
5193    entry->next = *cpu_list;
5194    *cpu_list = entry;
5195}
5196
5197CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5198{
5199    CpuDefinitionInfoList *cpu_list = NULL;
5200    GSList *list;
5201
5202    list = object_class_get_list(TYPE_ARM_CPU, false);
5203    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5204    g_slist_free(list);
5205
5206    return cpu_list;
5207}
5208
5209static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5210                                   void *opaque, int state, int secstate,
5211                                   int crm, int opc1, int opc2)
5212{
5213    /* Private utility function for define_one_arm_cp_reg_with_opaque():
5214     * add a single reginfo struct to the hash table.
5215     */
5216    uint32_t *key = g_new(uint32_t, 1);
5217    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5218    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5219    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5220
5221    /* Reset the secure state to the specific incoming state.  This is
5222     * necessary as the register may have been defined with both states.
5223     */
5224    r2->secure = secstate;
5225
5226    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5227        /* Register is banked (using both entries in array).
5228         * Overwriting fieldoffset as the array is only used to define
5229         * banked registers but later only fieldoffset is used.
5230         */
5231        r2->fieldoffset = r->bank_fieldoffsets[ns];
5232    }
5233
5234    if (state == ARM_CP_STATE_AA32) {
5235        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5236            /* If the register is banked then we don't need to migrate or
5237             * reset the 32-bit instance in certain cases:
5238             *
5239             * 1) If the register has both 32-bit and 64-bit instances then we
5240             *    can count on the 64-bit instance taking care of the
5241             *    non-secure bank.
5242             * 2) If ARMv8 is enabled then we can count on a 64-bit version
5243             *    taking care of the secure bank.  This requires that separate
5244             *    32 and 64-bit definitions are provided.
5245             */
5246            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5247                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5248                r2->type |= ARM_CP_ALIAS;
5249            }
5250        } else if ((secstate != r->secure) && !ns) {
5251            /* The register is not banked so we only want to allow migration of
5252             * the non-secure instance.
5253             */
5254            r2->type |= ARM_CP_ALIAS;
5255        }
5256
5257        if (r->state == ARM_CP_STATE_BOTH) {
5258            /* We assume it is a cp15 register if the .cp field is left unset.
5259             */
5260            if (r2->cp == 0) {
5261                r2->cp = 15;
5262            }
5263
5264#ifdef HOST_WORDS_BIGENDIAN
5265            if (r2->fieldoffset) {
5266                r2->fieldoffset += sizeof(uint32_t);
5267            }
5268#endif
5269        }
5270    }
5271    if (state == ARM_CP_STATE_AA64) {
5272        /* To allow abbreviation of ARMCPRegInfo
5273         * definitions, we treat cp == 0 as equivalent to
5274         * the value for "standard guest-visible sysreg".
5275         * STATE_BOTH definitions are also always "standard
5276         * sysreg" in their AArch64 view (the .cp value may
5277         * be non-zero for the benefit of the AArch32 view).
5278         */
5279        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5280            r2->cp = CP_REG_ARM64_SYSREG_CP;
5281        }
5282        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5283                                  r2->opc0, opc1, opc2);
5284    } else {
5285        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5286    }
5287    if (opaque) {
5288        r2->opaque = opaque;
5289    }
5290    /* reginfo passed to helpers is correct for the actual access,
5291     * and is never ARM_CP_STATE_BOTH:
5292     */
5293    r2->state = state;
5294    /* Make sure reginfo passed to helpers for wildcarded regs
5295     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5296     */
5297    r2->crm = crm;
5298    r2->opc1 = opc1;
5299    r2->opc2 = opc2;
5300    /* By convention, for wildcarded registers only the first
5301     * entry is used for migration; the others are marked as
5302     * ALIAS so we don't try to transfer the register
5303     * multiple times. Special registers (ie NOP/WFI) are
5304     * never migratable and not even raw-accessible.
5305     */
5306    if ((r->type & ARM_CP_SPECIAL)) {
5307        r2->type |= ARM_CP_NO_RAW;
5308    }
5309    if (((r->crm == CP_ANY) && crm != 0) ||
5310        ((r->opc1 == CP_ANY) && opc1 != 0) ||
5311        ((r->opc2 == CP_ANY) && opc2 != 0)) {
5312        r2->type |= ARM_CP_ALIAS;
5313    }
5314
5315    /* Check that raw accesses are either forbidden or handled. Note that
5316     * we can't assert this earlier because the setup of fieldoffset for
5317     * banked registers has to be done first.
5318     */
5319    if (!(r2->type & ARM_CP_NO_RAW)) {
5320        assert(!raw_accessors_invalid(r2));
5321    }
5322
5323    /* Overriding of an existing definition must be explicitly
5324     * requested.
5325     */
5326    if (!(r->type & ARM_CP_OVERRIDE)) {
5327        ARMCPRegInfo *oldreg;
5328        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5329        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5330            fprintf(stderr, "Register redefined: cp=%d %d bit "
5331                    "crn=%d crm=%d opc1=%d opc2=%d, "
5332                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5333                    r2->crn, r2->crm, r2->opc1, r2->opc2,
5334                    oldreg->name, r2->name);
5335            g_assert_not_reached();
5336        }
5337    }
5338    g_hash_table_insert(cpu->cp_regs, key, r2);
5339}
5340
5341
5342void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5343                                       const ARMCPRegInfo *r, void *opaque)
5344{
5345    /* Define implementations of coprocessor registers.
5346     * We store these in a hashtable because typically
5347     * there are less than 150 registers in a space which
5348     * is 16*16*16*8*8 = 262144 in size.
5349     * Wildcarding is supported for the crm, opc1 and opc2 fields.
5350     * If a register is defined twice then the second definition is
5351     * used, so this can be used to define some generic registers and
5352     * then override them with implementation specific variations.
5353     * At least one of the original and the second definition should
5354     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5355     * against accidental use.
5356     *
5357     * The state field defines whether the register is to be
5358     * visible in the AArch32 or AArch64 execution state. If the
5359     * state is set to ARM_CP_STATE_BOTH then we synthesise a
5360     * reginfo structure for the AArch32 view, which sees the lower
5361     * 32 bits of the 64 bit register.
5362     *
5363     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5364     * be wildcarded. AArch64 registers are always considered to be 64
5365     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5366     * the register, if any.
5367     */
5368    int crm, opc1, opc2, state;
5369    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5370    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5371    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5372    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5373    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5374    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5375    /* 64 bit registers have only CRm and Opc1 fields */
5376    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5377    /* op0 only exists in the AArch64 encodings */
5378    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5379    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5380    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5381    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5382     * encodes a minimum access level for the register. We roll this
5383     * runtime check into our general permission check code, so check
5384     * here that the reginfo's specified permissions are strict enough
5385     * to encompass the generic architectural permission check.
5386     */
5387    if (r->state != ARM_CP_STATE_AA32) {
5388        int mask = 0;
5389        switch (r->opc1) {
5390        case 0: case 1: case 2:
5391            /* min_EL EL1 */
5392            mask = PL1_RW;
5393            break;
5394        case 3:
5395            /* min_EL EL0 */
5396            mask = PL0_RW;
5397            break;
5398        case 4:
5399            /* min_EL EL2 */
5400            mask = PL2_RW;
5401            break;
5402        case 5:
5403            /* unallocated encoding, so not possible */
5404            assert(false);
5405            break;
5406        case 6:
5407            /* min_EL EL3 */
5408            mask = PL3_RW;
5409            break;
5410        case 7:
5411            /* min_EL EL1, secure mode only (we don't check the latter) */
5412            mask = PL1_RW;
5413            break;
5414        default:
5415            /* broken reginfo with out-of-range opc1 */
5416            assert(false);
5417            break;
5418        }
5419        /* assert our permissions are not too lax (stricter is fine) */
5420        assert((r->access & ~mask) == 0);
5421    }
5422
5423    /* Check that the register definition has enough info to handle
5424     * reads and writes if they are permitted.
5425     */
5426    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5427        if (r->access & PL3_R) {
5428            assert((r->fieldoffset ||
5429                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5430                   r->readfn);
5431        }
5432        if (r->access & PL3_W) {
5433            assert((r->fieldoffset ||
5434                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5435                   r->writefn);
5436        }
5437    }
5438    /* Bad type field probably means missing sentinel at end of reg list */
5439    assert(cptype_valid(r->type));
5440    for (crm = crmmin; crm <= crmmax; crm++) {
5441        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5442            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5443                for (state = ARM_CP_STATE_AA32;
5444                     state <= ARM_CP_STATE_AA64; state++) {
5445                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5446                        continue;
5447                    }
5448                    if (state == ARM_CP_STATE_AA32) {
5449                        /* Under AArch32 CP registers can be common
5450                         * (same for secure and non-secure world) or banked.
5451                         */
5452                        switch (r->secure) {
5453                        case ARM_CP_SECSTATE_S:
5454                        case ARM_CP_SECSTATE_NS:
5455                            add_cpreg_to_hashtable(cpu, r, opaque, state,
5456                                                   r->secure, crm, opc1, opc2);
5457                            break;
5458                        default:
5459                            add_cpreg_to_hashtable(cpu, r, opaque, state,
5460                                                   ARM_CP_SECSTATE_S,
5461                                                   crm, opc1, opc2);
5462                            add_cpreg_to_hashtable(cpu, r, opaque, state,
5463                                                   ARM_CP_SECSTATE_NS,
5464                                                   crm, opc1, opc2);
5465                            break;
5466                        }
5467                    } else {
5468                        /* AArch64 registers get mapped to non-secure instance
5469                         * of AArch32 */
5470                        add_cpreg_to_hashtable(cpu, r, opaque, state,
5471                                               ARM_CP_SECSTATE_NS,
5472                                               crm, opc1, opc2);
5473                    }
5474                }
5475            }
5476        }
5477    }
5478}
5479
5480void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5481                                    const ARMCPRegInfo *regs, void *opaque)
5482{
5483    /* Define a whole list of registers */
5484    const ARMCPRegInfo *r;
5485    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5486        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5487    }
5488}
5489
5490const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5491{
5492    return g_hash_table_lookup(cpregs, &encoded_cp);
5493}
5494
5495void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5496                         uint64_t value)
5497{
5498    /* Helper coprocessor write function for write-ignore registers */
5499}
5500
5501uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5502{
5503    /* Helper coprocessor write function for read-as-zero registers */
5504    return 0;
5505}
5506
5507void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5508{
5509    /* Helper coprocessor reset function for do-nothing-on-reset registers */
5510}
5511
5512static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5513{
5514    /* Return true if it is not valid for us to switch to
5515     * this CPU mode (ie all the UNPREDICTABLE cases in
5516     * the ARM ARM CPSRWriteByInstr pseudocode).
5517     */
5518
5519    /* Changes to or from Hyp via MSR and CPS are illegal. */
5520    if (write_type == CPSRWriteByInstr &&
5521        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5522         mode == ARM_CPU_MODE_HYP)) {
5523        return 1;
5524    }
5525
5526    switch (mode) {
5527    case ARM_CPU_MODE_USR:
5528        return 0;
5529    case ARM_CPU_MODE_SYS:
5530    case ARM_CPU_MODE_SVC:
5531    case ARM_CPU_MODE_ABT:
5532    case ARM_CPU_MODE_UND:
5533    case ARM_CPU_MODE_IRQ:
5534    case ARM_CPU_MODE_FIQ:
5535        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5536         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5537         */
5538        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5539         * and CPS are treated as illegal mode changes.
5540         */
5541        if (write_type == CPSRWriteByInstr &&
5542            (env->cp15.hcr_el2 & HCR_TGE) &&
5543            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5544            !arm_is_secure_below_el3(env)) {
5545            return 1;
5546        }
5547        return 0;
5548    case ARM_CPU_MODE_HYP:
5549        return !arm_feature(env, ARM_FEATURE_EL2)
5550            || arm_current_el(env) < 2 || arm_is_secure(env);
5551    case ARM_CPU_MODE_MON:
5552        return arm_current_el(env) < 3;
5553    default:
5554        return 1;
5555    }
5556}
5557
5558uint32_t cpsr_read(CPUARMState *env)
5559{
5560    int ZF;
5561    ZF = (env->ZF == 0);
5562    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5563        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5564        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5565        | ((env->condexec_bits & 0xfc) << 8)
5566        | (env->GE << 16) | (env->daif & CPSR_AIF);
5567}
5568
5569void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5570                CPSRWriteType write_type)
5571{
5572    uint32_t changed_daif;
5573
5574    if (mask & CPSR_NZCV) {
5575        env->ZF = (~val) & CPSR_Z;
5576        env->NF = val;
5577        env->CF = (val >> 29) & 1;
5578        env->VF = (val << 3) & 0x80000000;
5579    }
5580    if (mask & CPSR_Q)
5581        env->QF = ((val & CPSR_Q) != 0);
5582    if (mask & CPSR_T)
5583        env->thumb = ((val & CPSR_T) != 0);
5584    if (mask & CPSR_IT_0_1) {
5585        env->condexec_bits &= ~3;
5586        env->condexec_bits |= (val >> 25) & 3;
5587    }
5588    if (mask & CPSR_IT_2_7) {
5589        env->condexec_bits &= 3;
5590        env->condexec_bits |= (val >> 8) & 0xfc;
5591    }
5592    if (mask & CPSR_GE) {
5593        env->GE = (val >> 16) & 0xf;
5594    }
5595
5596    /* In a V7 implementation that includes the security extensions but does
5597     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5598     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5599     * bits respectively.
5600     *
5601     * In a V8 implementation, it is permitted for privileged software to
5602     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5603     */
5604    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5605        arm_feature(env, ARM_FEATURE_EL3) &&
5606        !arm_feature(env, ARM_FEATURE_EL2) &&
5607        !arm_is_secure(env)) {
5608
5609        changed_daif = (env->daif ^ val) & mask;
5610
5611        if (changed_daif & CPSR_A) {
5612            /* Check to see if we are allowed to change the masking of async
5613             * abort exceptions from a non-secure state.
5614             */
5615            if (!(env->cp15.scr_el3 & SCR_AW)) {
5616                qemu_log_mask(LOG_GUEST_ERROR,
5617                              "Ignoring attempt to switch CPSR_A flag from "
5618                              "non-secure world with SCR.AW bit clear\n");
5619                mask &= ~CPSR_A;
5620            }
5621        }
5622
5623        if (changed_daif & CPSR_F) {
5624            /* Check to see if we are allowed to change the masking of FIQ
5625             * exceptions from a non-secure state.
5626             */
5627            if (!(env->cp15.scr_el3 & SCR_FW)) {
5628                qemu_log_mask(LOG_GUEST_ERROR,
5629                              "Ignoring attempt to switch CPSR_F flag from "
5630                              "non-secure world with SCR.FW bit clear\n");
5631                mask &= ~CPSR_F;
5632            }
5633
5634            /* Check whether non-maskable FIQ (NMFI) support is enabled.
5635             * If this bit is set software is not allowed to mask
5636             * FIQs, but is allowed to set CPSR_F to 0.
5637             */
5638            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5639                (val & CPSR_F)) {
5640                qemu_log_mask(LOG_GUEST_ERROR,
5641                              "Ignoring attempt to enable CPSR_F flag "
5642                              "(non-maskable FIQ [NMFI] support enabled)\n");
5643                mask &= ~CPSR_F;
5644            }
5645        }
5646    }
5647
5648    env->daif &= ~(CPSR_AIF & mask);
5649    env->daif |= val & CPSR_AIF & mask;
5650
5651    if (write_type != CPSRWriteRaw &&
5652        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5653        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5654            /* Note that we can only get here in USR mode if this is a
5655             * gdb stub write; for this case we follow the architectural
5656             * behaviour for guest writes in USR mode of ignoring an attempt
5657             * to switch mode. (Those are caught by translate.c for writes
5658             * triggered by guest instructions.)
5659             */
5660            mask &= ~CPSR_M;
5661        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5662            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5663             * v7, and has defined behaviour in v8:
5664             *  + leave CPSR.M untouched
5665             *  + allow changes to the other CPSR fields
5666             *  + set PSTATE.IL
5667             * For user changes via the GDB stub, we don't set PSTATE.IL,
5668             * as this would be unnecessarily harsh for a user error.
5669             */
5670            mask &= ~CPSR_M;
5671            if (write_type != CPSRWriteByGDBStub &&
5672                arm_feature(env, ARM_FEATURE_V8)) {
5673                mask |= CPSR_IL;
5674                val |= CPSR_IL;
5675            }
5676        } else {
5677            switch_mode(env, val & CPSR_M);
5678        }
5679    }
5680    mask &= ~CACHED_CPSR_BITS;
5681    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5682}
5683
5684/* Sign/zero extend */
5685uint32_t HELPER(sxtb16)(uint32_t x)
5686{
5687    uint32_t res;
5688    res = (uint16_t)(int8_t)x;
5689    res |= (uint32_t)(int8_t)(x >> 16) << 16;
5690    return res;
5691}
5692
5693uint32_t HELPER(uxtb16)(uint32_t x)
5694{
5695    uint32_t res;
5696    res = (uint16_t)(uint8_t)x;
5697    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5698    return res;
5699}
5700
5701uint32_t HELPER(clz)(uint32_t x)
5702{
5703    return clz32(x);
5704}
5705
5706int32_t HELPER(sdiv)(int32_t num, int32_t den)
5707{
5708    if (den == 0)
5709      return 0;
5710    if (num == INT_MIN && den == -1)
5711      return INT_MIN;
5712    return num / den;
5713}
5714
5715uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5716{
5717    if (den == 0)
5718      return 0;
5719    return num / den;
5720}
5721
5722uint32_t HELPER(rbit)(uint32_t x)
5723{
5724    return revbit32(x);
5725}
5726
5727#if defined(CONFIG_USER_ONLY)
5728
5729/* These should probably raise undefined insn exceptions.  */
5730void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5731{
5732    ARMCPU *cpu = arm_env_get_cpu(env);
5733
5734    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5735}
5736
5737uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5738{
5739    ARMCPU *cpu = arm_env_get_cpu(env);
5740
5741    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5742    return 0;
5743}
5744
5745void switch_mode(CPUARMState *env, int mode)
5746{
5747    ARMCPU *cpu = arm_env_get_cpu(env);
5748
5749    if (mode != ARM_CPU_MODE_USR) {
5750        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5751    }
5752}
5753
5754uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5755                                 uint32_t cur_el, bool secure)
5756{
5757    return 1;
5758}
5759
5760void aarch64_sync_64_to_32(CPUARMState *env)
5761{
5762    g_assert_not_reached();
5763}
5764
5765#else
5766
5767void switch_mode(CPUARMState *env, int mode)
5768{
5769    int old_mode;
5770    int i;
5771
5772    old_mode = env->uncached_cpsr & CPSR_M;
5773    if (mode == old_mode)
5774        return;
5775
5776    if (old_mode == ARM_CPU_MODE_FIQ) {
5777        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5778        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5779    } else if (mode == ARM_CPU_MODE_FIQ) {
5780        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5781        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5782    }
5783
5784    i = bank_number(old_mode);
5785    env->banked_r13[i] = env->regs[13];
5786    env->banked_r14[i] = env->regs[14];
5787    env->banked_spsr[i] = env->spsr;
5788
5789    i = bank_number(mode);
5790    env->regs[13] = env->banked_r13[i];
5791    env->regs[14] = env->banked_r14[i];
5792    env->spsr = env->banked_spsr[i];
5793}
5794
5795/* Physical Interrupt Target EL Lookup Table
5796 *
5797 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5798 *
5799 * The below multi-dimensional table is used for looking up the target
5800 * exception level given numerous condition criteria.  Specifically, the
5801 * target EL is based on SCR and HCR routing controls as well as the
5802 * currently executing EL and secure state.
5803 *
5804 *    Dimensions:
5805 *    target_el_table[2][2][2][2][2][4]
5806 *                    |  |  |  |  |  +--- Current EL
5807 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
5808 *                    |  |  |  +--------- HCR mask override
5809 *                    |  |  +------------ SCR exec state control
5810 *                    |  +--------------- SCR mask override
5811 *                    +------------------ 32-bit(0)/64-bit(1) EL3
5812 *
5813 *    The table values are as such:
5814 *    0-3 = EL0-EL3
5815 *     -1 = Cannot occur
5816 *
5817 * The ARM ARM target EL table includes entries indicating that an "exception
5818 * is not taken".  The two cases where this is applicable are:
5819 *    1) An exception is taken from EL3 but the SCR does not have the exception
5820 *    routed to EL3.
5821 *    2) An exception is taken from EL2 but the HCR does not have the exception
5822 *    routed to EL2.
5823 * In these two cases, the below table contain a target of EL1.  This value is
5824 * returned as it is expected that the consumer of the table data will check
5825 * for "target EL >= current EL" to ensure the exception is not taken.
5826 *
5827 *            SCR     HCR
5828 *         64  EA     AMO                 From
5829 *        BIT IRQ     IMO      Non-secure         Secure
5830 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
5831 */
5832static const int8_t target_el_table[2][2][2][2][2][4] = {
5833    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5834       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
5835      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5836       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
5837     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5838       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
5839      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5840       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
5841    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
5842       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
5843      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
5844       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
5845     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5846       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
5847      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5848       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
5849};
5850
5851/*
5852 * Determine the target EL for physical exceptions
5853 */
5854uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5855                                 uint32_t cur_el, bool secure)
5856{
5857    CPUARMState *env = cs->env_ptr;
5858    int rw;
5859    int scr;
5860    int hcr;
5861    int target_el;
5862    /* Is the highest EL AArch64? */
5863    int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5864
5865    if (arm_feature(env, ARM_FEATURE_EL3)) {
5866        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5867    } else {
5868        /* Either EL2 is the highest EL (and so the EL2 register width
5869         * is given by is64); or there is no EL2 or EL3, in which case
5870         * the value of 'rw' does not affect the table lookup anyway.
5871         */
5872        rw = is64;
5873    }
5874
5875    switch (excp_idx) {
5876    case EXCP_IRQ:
5877        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5878        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5879        break;
5880    case EXCP_FIQ:
5881        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5882        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5883        break;
5884    default:
5885        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5886        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5887        break;
5888    };
5889
5890    /* If HCR.TGE is set then HCR is treated as being 1 */
5891    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5892
5893    /* Perform a table-lookup for the target EL given the current state */
5894    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5895
5896    assert(target_el > 0);
5897
5898    return target_el;
5899}
5900
5901static void v7m_push(CPUARMState *env, uint32_t val)
5902{
5903    CPUState *cs = CPU(arm_env_get_cpu(env));
5904
5905    env->regs[13] -= 4;
5906    stl_phys(cs->as, env->regs[13], val);
5907}
5908
5909static uint32_t v7m_pop(CPUARMState *env)
5910{
5911    CPUState *cs = CPU(arm_env_get_cpu(env));
5912    uint32_t val;
5913
5914    val = ldl_phys(cs->as, env->regs[13]);
5915    env->regs[13] += 4;
5916    return val;
5917}
5918
5919/* Switch to V7M main or process stack pointer.  */
5920static void switch_v7m_sp(CPUARMState *env, int process)
5921{
5922    uint32_t tmp;
5923    if (env->v7m.current_sp != process) {
5924        tmp = env->v7m.other_sp;
5925        env->v7m.other_sp = env->regs[13];
5926        env->regs[13] = tmp;
5927        env->v7m.current_sp = process;
5928    }
5929}
5930
5931static void do_v7m_exception_exit(CPUARMState *env)
5932{
5933    uint32_t type;
5934    uint32_t xpsr;
5935
5936    type = env->regs[15];
5937    if (env->v7m.exception != 0)
5938        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5939
5940    /* Switch to the target stack.  */
5941    switch_v7m_sp(env, (type & 4) != 0);
5942    /* Pop registers.  */
5943    env->regs[0] = v7m_pop(env);
5944    env->regs[1] = v7m_pop(env);
5945    env->regs[2] = v7m_pop(env);
5946    env->regs[3] = v7m_pop(env);
5947    env->regs[12] = v7m_pop(env);
5948    env->regs[14] = v7m_pop(env);
5949    env->regs[15] = v7m_pop(env);
5950    if (env->regs[15] & 1) {
5951        qemu_log_mask(LOG_GUEST_ERROR,
5952                      "M profile return from interrupt with misaligned "
5953                      "PC is UNPREDICTABLE\n");
5954        /* Actual hardware seems to ignore the lsbit, and there are several
5955         * RTOSes out there which incorrectly assume the r15 in the stack
5956         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5957         */
5958        env->regs[15] &= ~1U;
5959    }
5960    xpsr = v7m_pop(env);
5961    xpsr_write(env, xpsr, 0xfffffdff);
5962    /* Undo stack alignment.  */
5963    if (xpsr & 0x200)
5964        env->regs[13] |= 4;
5965    /* ??? The exception return type specifies Thread/Handler mode.  However
5966       this is also implied by the xPSR value. Not sure what to do
5967       if there is a mismatch.  */
5968    /* ??? Likewise for mismatches between the CONTROL register and the stack
5969       pointer.  */
5970}
5971
5972static void arm_log_exception(int idx)
5973{
5974    if (qemu_loglevel_mask(CPU_LOG_INT)) {
5975        const char *exc = NULL;
5976
5977        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
5978            exc = excnames[idx];
5979        }
5980        if (!exc) {
5981            exc = "unknown";
5982        }
5983        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
5984    }
5985}
5986
5987void arm_v7m_cpu_do_interrupt(CPUState *cs)
5988{
5989    ARMCPU *cpu = ARM_CPU(cs);
5990    CPUARMState *env = &cpu->env;
5991    uint32_t xpsr = xpsr_read(env);
5992    uint32_t lr;
5993    uint32_t addr;
5994
5995    arm_log_exception(cs->exception_index);
5996
5997    lr = 0xfffffff1;
5998    if (env->v7m.current_sp)
5999        lr |= 4;
6000    if (env->v7m.exception == 0)
6001        lr |= 8;
6002
6003    /* For exceptions we just mark as pending on the NVIC, and let that
6004       handle it.  */
6005    /* TODO: Need to escalate if the current priority is higher than the
6006       one we're raising.  */
6007    switch (cs->exception_index) {
6008    case EXCP_UDEF:
6009        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6010        return;
6011    case EXCP_SWI:
6012        /* The PC already points to the next instruction.  */
6013        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6014        return;
6015    case EXCP_PREFETCH_ABORT:
6016    case EXCP_DATA_ABORT:
6017        /* TODO: if we implemented the MPU registers, this is where we
6018         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6019         */
6020        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6021        return;
6022    case EXCP_BKPT:
6023        if (semihosting_enabled()) {
6024            int nr;
6025            nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6026            if (nr == 0xab) {
6027                env->regs[15] += 2;
6028                qemu_log_mask(CPU_LOG_INT,
6029                              "...handling as semihosting call 0x%x\n",
6030                              env->regs[0]);
6031                env->regs[0] = do_arm_semihosting(env);
6032                return;
6033            }
6034        }
6035        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6036        return;
6037    case EXCP_IRQ:
6038        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
6039        break;
6040    case EXCP_EXCEPTION_EXIT:
6041        do_v7m_exception_exit(env);
6042        return;
6043    default:
6044        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6045        return; /* Never happens.  Keep compiler happy.  */
6046    }
6047
6048    /* Align stack pointer.  */
6049    /* ??? Should only do this if Configuration Control Register
6050       STACKALIGN bit is set.  */
6051    if (env->regs[13] & 4) {
6052        env->regs[13] -= 4;
6053        xpsr |= 0x200;
6054    }
6055    /* Switch to the handler mode.  */
6056    v7m_push(env, xpsr);
6057    v7m_push(env, env->regs[15]);
6058    v7m_push(env, env->regs[14]);
6059    v7m_push(env, env->regs[12]);
6060    v7m_push(env, env->regs[3]);
6061    v7m_push(env, env->regs[2]);
6062    v7m_push(env, env->regs[1]);
6063    v7m_push(env, env->regs[0]);
6064    switch_v7m_sp(env, 0);
6065    /* Clear IT bits */
6066    env->condexec_bits = 0;
6067    env->regs[14] = lr;
6068    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
6069    env->regs[15] = addr & 0xfffffffe;
6070    env->thumb = addr & 1;
6071}
6072
6073/* Function used to synchronize QEMU's AArch64 register set with AArch32
6074 * register set.  This is necessary when switching between AArch32 and AArch64
6075 * execution state.
6076 */
6077void aarch64_sync_32_to_64(CPUARMState *env)
6078{
6079    int i;
6080    uint32_t mode = env->uncached_cpsr & CPSR_M;
6081
6082    /* We can blanket copy R[0:7] to X[0:7] */
6083    for (i = 0; i < 8; i++) {
6084        env->xregs[i] = env->regs[i];
6085    }
6086
6087    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6088     * Otherwise, they come from the banked user regs.
6089     */
6090    if (mode == ARM_CPU_MODE_FIQ) {
6091        for (i = 8; i < 13; i++) {
6092            env->xregs[i] = env->usr_regs[i - 8];
6093        }
6094    } else {
6095        for (i = 8; i < 13; i++) {
6096            env->xregs[i] = env->regs[i];
6097        }
6098    }
6099
6100    /* Registers x13-x23 are the various mode SP and FP registers. Registers
6101     * r13 and r14 are only copied if we are in that mode, otherwise we copy
6102     * from the mode banked register.
6103     */
6104    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6105        env->xregs[13] = env->regs[13];
6106        env->xregs[14] = env->regs[14];
6107    } else {
6108        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6109        /* HYP is an exception in that it is copied from r14 */
6110        if (mode == ARM_CPU_MODE_HYP) {
6111            env->xregs[14] = env->regs[14];
6112        } else {
6113            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6114        }
6115    }
6116
6117    if (mode == ARM_CPU_MODE_HYP) {
6118        env->xregs[15] = env->regs[13];
6119    } else {
6120        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6121    }
6122
6123    if (mode == ARM_CPU_MODE_IRQ) {
6124        env->xregs[16] = env->regs[14];
6125        env->xregs[17] = env->regs[13];
6126    } else {
6127        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6128        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6129    }
6130
6131    if (mode == ARM_CPU_MODE_SVC) {
6132        env->xregs[18] = env->regs[14];
6133        env->xregs[19] = env->regs[13];
6134    } else {
6135        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6136        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6137    }
6138
6139    if (mode == ARM_CPU_MODE_ABT) {
6140        env->xregs[20] = env->regs[14];
6141        env->xregs[21] = env->regs[13];
6142    } else {
6143        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6144        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6145    }
6146
6147    if (mode == ARM_CPU_MODE_UND) {
6148        env->xregs[22] = env->regs[14];
6149        env->xregs[23] = env->regs[13];
6150    } else {
6151        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6152        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6153    }
6154
6155    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6156     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
6157     * FIQ bank for r8-r14.
6158     */
6159    if (mode == ARM_CPU_MODE_FIQ) {
6160        for (i = 24; i < 31; i++) {
6161            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
6162        }
6163    } else {
6164        for (i = 24; i < 29; i++) {
6165            env->xregs[i] = env->fiq_regs[i - 24];
6166        }
6167        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6168        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6169    }
6170
6171    env->pc = env->regs[15];
6172}
6173
6174/* Function used to synchronize QEMU's AArch32 register set with AArch64
6175 * register set.  This is necessary when switching between AArch32 and AArch64
6176 * execution state.
6177 */
6178void aarch64_sync_64_to_32(CPUARMState *env)
6179{
6180    int i;
6181    uint32_t mode = env->uncached_cpsr & CPSR_M;
6182
6183    /* We can blanket copy X[0:7] to R[0:7] */
6184    for (i = 0; i < 8; i++) {
6185        env->regs[i] = env->xregs[i];
6186    }
6187
6188    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6189     * Otherwise, we copy x8-x12 into the banked user regs.
6190     */
6191    if (mode == ARM_CPU_MODE_FIQ) {
6192        for (i = 8; i < 13; i++) {
6193            env->usr_regs[i - 8] = env->xregs[i];
6194        }
6195    } else {
6196        for (i = 8; i < 13; i++) {
6197            env->regs[i] = env->xregs[i];
6198        }
6199    }
6200
6201    /* Registers r13 & r14 depend on the current mode.
6202     * If we are in a given mode, we copy the corresponding x registers to r13
6203     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
6204     * for the mode.
6205     */
6206    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6207        env->regs[13] = env->xregs[13];
6208        env->regs[14] = env->xregs[14];
6209    } else {
6210        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6211
6212        /* HYP is an exception in that it does not have its own banked r14 but
6213         * shares the USR r14
6214         */
6215        if (mode == ARM_CPU_MODE_HYP) {
6216            env->regs[14] = env->xregs[14];
6217        } else {
6218            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6219        }
6220    }
6221
6222    if (mode == ARM_CPU_MODE_HYP) {
6223        env->regs[13] = env->xregs[15];
6224    } else {
6225        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6226    }
6227
6228    if (mode == ARM_CPU_MODE_IRQ) {
6229        env->regs[14] = env->xregs[16];
6230        env->regs[13] = env->xregs[17];
6231    } else {
6232        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6233        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6234    }
6235
6236    if (mode == ARM_CPU_MODE_SVC) {
6237        env->regs[14] = env->xregs[18];
6238        env->regs[13] = env->xregs[19];
6239    } else {
6240        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6241        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6242    }
6243
6244    if (mode == ARM_CPU_MODE_ABT) {
6245        env->regs[14] = env->xregs[20];
6246        env->regs[13] = env->xregs[21];
6247    } else {
6248        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6249        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6250    }
6251
6252    if (mode == ARM_CPU_MODE_UND) {
6253        env->regs[14] = env->xregs[22];
6254        env->regs[13] = env->xregs[23];
6255    } else {
6256        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6257        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6258    }
6259
6260    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6261     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
6262     * FIQ bank for r8-r14.
6263     */
6264    if (mode == ARM_CPU_MODE_FIQ) {
6265        for (i = 24; i < 31; i++) {
6266            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
6267        }
6268    } else {
6269        for (i = 24; i < 29; i++) {
6270            env->fiq_regs[i - 24] = env->xregs[i];
6271        }
6272        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6273        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6274    }
6275
6276    env->regs[15] = env->pc;
6277}
6278
6279static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6280{
6281    ARMCPU *cpu = ARM_CPU(cs);
6282    CPUARMState *env = &cpu->env;
6283    uint32_t addr;
6284    uint32_t mask;
6285    int new_mode;
6286    uint32_t offset;
6287    uint32_t moe;
6288
6289    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6290    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6291    case EC_BREAKPOINT:
6292    case EC_BREAKPOINT_SAME_EL:
6293        moe = 1;
6294        break;
6295    case EC_WATCHPOINT:
6296    case EC_WATCHPOINT_SAME_EL:
6297        moe = 10;
6298        break;
6299    case EC_AA32_BKPT:
6300        moe = 3;
6301        break;
6302    case EC_VECTORCATCH:
6303        moe = 5;
6304        break;
6305    default:
6306        moe = 0;
6307        break;
6308    }
6309
6310    if (moe) {
6311        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6312    }
6313
6314    /* TODO: Vectored interrupt controller.  */
6315    switch (cs->exception_index) {
6316    case EXCP_UDEF:
6317        new_mode = ARM_CPU_MODE_UND;
6318        addr = 0x04;
6319        mask = CPSR_I;
6320        if (env->thumb)
6321            offset = 2;
6322        else
6323            offset = 4;
6324        break;
6325    case EXCP_SWI:
6326        new_mode = ARM_CPU_MODE_SVC;
6327        addr = 0x08;
6328        mask = CPSR_I;
6329        /* The PC already points to the next instruction.  */
6330        offset = 0;
6331        break;
6332    case EXCP_BKPT:
6333        env->exception.fsr = 2;
6334        /* Fall through to prefetch abort.  */
6335    case EXCP_PREFETCH_ABORT:
6336        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6337        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6338        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6339                      env->exception.fsr, (uint32_t)env->exception.vaddress);
6340        new_mode = ARM_CPU_MODE_ABT;
6341        addr = 0x0c;
6342        mask = CPSR_A | CPSR_I;
6343        offset = 4;
6344        break;
6345    case EXCP_DATA_ABORT:
6346        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6347        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6348        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6349                      env->exception.fsr,
6350                      (uint32_t)env->exception.vaddress);
6351        new_mode = ARM_CPU_MODE_ABT;
6352        addr = 0x10;
6353        mask = CPSR_A | CPSR_I;
6354        offset = 8;
6355        break;
6356    case EXCP_IRQ:
6357        new_mode = ARM_CPU_MODE_IRQ;
6358        addr = 0x18;
6359        /* Disable IRQ and imprecise data aborts.  */
6360        mask = CPSR_A | CPSR_I;
6361        offset = 4;
6362        if (env->cp15.scr_el3 & SCR_IRQ) {
6363            /* IRQ routed to monitor mode */
6364            new_mode = ARM_CPU_MODE_MON;
6365            mask |= CPSR_F;
6366        }
6367        break;
6368    case EXCP_FIQ:
6369        new_mode = ARM_CPU_MODE_FIQ;
6370        addr = 0x1c;
6371        /* Disable FIQ, IRQ and imprecise data aborts.  */
6372        mask = CPSR_A | CPSR_I | CPSR_F;
6373        if (env->cp15.scr_el3 & SCR_FIQ) {
6374            /* FIQ routed to monitor mode */
6375            new_mode = ARM_CPU_MODE_MON;
6376        }
6377        offset = 4;
6378        break;
6379    case EXCP_SMC:
6380        new_mode = ARM_CPU_MODE_MON;
6381        addr = 0x08;
6382        mask = CPSR_A | CPSR_I | CPSR_F;
6383        offset = 0;
6384        break;
6385    default:
6386        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6387        return; /* Never happens.  Keep compiler happy.  */
6388    }
6389
6390    if (new_mode == ARM_CPU_MODE_MON) {
6391        addr += env->cp15.mvbar;
6392    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6393        /* High vectors. When enabled, base address cannot be remapped. */
6394        addr += 0xffff0000;
6395    } else {
6396        /* ARM v7 architectures provide a vector base address register to remap
6397         * the interrupt vector table.
6398         * This register is only followed in non-monitor mode, and is banked.
6399         * Note: only bits 31:5 are valid.
6400         */
6401        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6402    }
6403
6404    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6405        env->cp15.scr_el3 &= ~SCR_NS;
6406    }
6407
6408    switch_mode (env, new_mode);
6409    /* For exceptions taken to AArch32 we must clear the SS bit in both
6410     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6411     */
6412    env->uncached_cpsr &= ~PSTATE_SS;
6413    env->spsr = cpsr_read(env);
6414    /* Clear IT bits.  */
6415    env->condexec_bits = 0;
6416    /* Switch to the new mode, and to the correct instruction set.  */
6417    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6418    /* Set new mode endianness */
6419    env->uncached_cpsr &= ~CPSR_E;
6420    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6421        env->uncached_cpsr |= ~CPSR_E;
6422    }
6423    env->daif |= mask;
6424    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6425     * and we should just guard the thumb mode on V4 */
6426    if (arm_feature(env, ARM_FEATURE_V4T)) {
6427        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6428    }
6429    env->regs[14] = env->regs[15] + offset;
6430    env->regs[15] = addr;
6431}
6432
6433/* Handle exception entry to a target EL which is using AArch64 */
6434static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6435{
6436    ARMCPU *cpu = ARM_CPU(cs);
6437    CPUARMState *env = &cpu->env;
6438    unsigned int new_el = env->exception.target_el;
6439    target_ulong addr = env->cp15.vbar_el[new_el];
6440    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6441
6442    if (arm_current_el(env) < new_el) {
6443        /* Entry vector offset depends on whether the implemented EL
6444         * immediately lower than the target level is using AArch32 or AArch64
6445         */
6446        bool is_aa64;
6447
6448        switch (new_el) {
6449        case 3:
6450            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6451            break;
6452        case 2:
6453            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6454            break;
6455        case 1:
6456            is_aa64 = is_a64(env);
6457            break;
6458        default:
6459            g_assert_not_reached();
6460        }
6461
6462        if (is_aa64) {
6463            addr += 0x400;
6464        } else {
6465            addr += 0x600;
6466        }
6467    } else if (pstate_read(env) & PSTATE_SP) {
6468        addr += 0x200;
6469    }
6470
6471    switch (cs->exception_index) {
6472    case EXCP_PREFETCH_ABORT:
6473    case EXCP_DATA_ABORT:
6474        env->cp15.far_el[new_el] = env->exception.vaddress;
6475        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6476                      env->cp15.far_el[new_el]);
6477        /* fall through */
6478    case EXCP_BKPT:
6479    case EXCP_UDEF:
6480    case EXCP_SWI:
6481    case EXCP_HVC:
6482    case EXCP_HYP_TRAP:
6483    case EXCP_SMC:
6484        env->cp15.esr_el[new_el] = env->exception.syndrome;
6485        break;
6486    case EXCP_IRQ:
6487    case EXCP_VIRQ:
6488        addr += 0x80;
6489        break;
6490    case EXCP_FIQ:
6491    case EXCP_VFIQ:
6492        addr += 0x100;
6493        break;
6494    case EXCP_SEMIHOST:
6495        qemu_log_mask(CPU_LOG_INT,
6496                      "...handling as semihosting call 0x%" PRIx64 "\n",
6497                      env->xregs[0]);
6498        env->xregs[0] = do_arm_semihosting(env);
6499        return;
6500    default:
6501        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6502    }
6503
6504    if (is_a64(env)) {
6505        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6506        aarch64_save_sp(env, arm_current_el(env));
6507        env->elr_el[new_el] = env->pc;
6508    } else {
6509        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6510        env->elr_el[new_el] = env->regs[15];
6511
6512        aarch64_sync_32_to_64(env);
6513
6514        env->condexec_bits = 0;
6515    }
6516    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6517                  env->elr_el[new_el]);
6518
6519    pstate_write(env, PSTATE_DAIF | new_mode);
6520    env->aarch64 = 1;
6521    aarch64_restore_sp(env, new_el);
6522
6523    env->pc = addr;
6524
6525    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6526                  new_el, env->pc, pstate_read(env));
6527}
6528
6529static inline bool check_for_semihosting(CPUState *cs)
6530{
6531    /* Check whether this exception is a semihosting call; if so
6532     * then handle it and return true; otherwise return false.
6533     */
6534    ARMCPU *cpu = ARM_CPU(cs);
6535    CPUARMState *env = &cpu->env;
6536
6537    if (is_a64(env)) {
6538        if (cs->exception_index == EXCP_SEMIHOST) {
6539            /* This is always the 64-bit semihosting exception.
6540             * The "is this usermode" and "is semihosting enabled"
6541             * checks have been done at translate time.
6542             */
6543            qemu_log_mask(CPU_LOG_INT,
6544                          "...handling as semihosting call 0x%" PRIx64 "\n",
6545                          env->xregs[0]);
6546            env->xregs[0] = do_arm_semihosting(env);
6547            return true;
6548        }
6549        return false;
6550    } else {
6551        uint32_t imm;
6552
6553        /* Only intercept calls from privileged modes, to provide some
6554         * semblance of security.
6555         */
6556        if (!semihosting_enabled() ||
6557            ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6558            return false;
6559        }
6560
6561        switch (cs->exception_index) {
6562        case EXCP_SWI:
6563            /* Check for semihosting interrupt.  */
6564            if (env->thumb) {
6565                imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6566                    & 0xff;
6567                if (imm == 0xab) {
6568                    break;
6569                }
6570            } else {
6571                imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6572                    & 0xffffff;
6573                if (imm == 0x123456) {
6574                    break;
6575                }
6576            }
6577            return false;
6578        case EXCP_BKPT:
6579            /* See if this is a semihosting syscall.  */
6580            if (env->thumb) {
6581                imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6582                    & 0xff;
6583                if (imm == 0xab) {
6584                    env->regs[15] += 2;
6585                    break;
6586                }
6587            }
6588            return false;
6589        default:
6590            return false;
6591        }
6592
6593        qemu_log_mask(CPU_LOG_INT,
6594                      "...handling as semihosting call 0x%x\n",
6595                      env->regs[0]);
6596        env->regs[0] = do_arm_semihosting(env);
6597        return true;
6598    }
6599}
6600
6601/* Handle a CPU exception for A and R profile CPUs.
6602 * Do any appropriate logging, handle PSCI calls, and then hand off
6603 * to the AArch64-entry or AArch32-entry function depending on the
6604 * target exception level's register width.
6605 */
6606void arm_cpu_do_interrupt(CPUState *cs)
6607{
6608    ARMCPU *cpu = ARM_CPU(cs);
6609    CPUARMState *env = &cpu->env;
6610    unsigned int new_el = env->exception.target_el;
6611
6612    assert(!IS_M(env));
6613
6614    arm_log_exception(cs->exception_index);
6615    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6616                  new_el);
6617    if (qemu_loglevel_mask(CPU_LOG_INT)
6618        && !excp_is_internal(cs->exception_index)) {
6619        qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6620                      env->exception.syndrome >> ARM_EL_EC_SHIFT,
6621                      env->exception.syndrome);
6622    }
6623
6624    if (arm_is_psci_call(cpu, cs->exception_index)) {
6625        arm_handle_psci_call(cpu);
6626        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6627        return;
6628    }
6629
6630    /* Semihosting semantics depend on the register width of the
6631     * code that caused the exception, not the target exception level,
6632     * so must be handled here.
6633     */
6634    if (check_for_semihosting(cs)) {
6635        return;
6636    }
6637
6638    assert(!excp_is_internal(cs->exception_index));
6639    if (arm_el_is_aa64(env, new_el)) {
6640        arm_cpu_do_interrupt_aarch64(cs);
6641    } else {
6642        arm_cpu_do_interrupt_aarch32(cs);
6643    }
6644
6645    arm_call_el_change_hook(cpu);
6646
6647    if (!kvm_enabled()) {
6648        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6649    }
6650}
6651
6652/* Return the exception level which controls this address translation regime */
6653static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6654{
6655    switch (mmu_idx) {
6656    case ARMMMUIdx_S2NS:
6657    case ARMMMUIdx_S1E2:
6658        return 2;
6659    case ARMMMUIdx_S1E3:
6660        return 3;
6661    case ARMMMUIdx_S1SE0:
6662        return arm_el_is_aa64(env, 3) ? 1 : 3;
6663    case ARMMMUIdx_S1SE1:
6664    case ARMMMUIdx_S1NSE0:
6665    case ARMMMUIdx_S1NSE1:
6666        return 1;
6667    default:
6668        g_assert_not_reached();
6669    }
6670}
6671
6672/* Return true if this address translation regime is secure */
6673static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6674{
6675    switch (mmu_idx) {
6676    case ARMMMUIdx_S12NSE0:
6677    case ARMMMUIdx_S12NSE1:
6678    case ARMMMUIdx_S1NSE0:
6679    case ARMMMUIdx_S1NSE1:
6680    case ARMMMUIdx_S1E2:
6681    case ARMMMUIdx_S2NS:
6682        return false;
6683    case ARMMMUIdx_S1E3:
6684    case ARMMMUIdx_S1SE0:
6685    case ARMMMUIdx_S1SE1:
6686        return true;
6687    default:
6688        g_assert_not_reached();
6689    }
6690}
6691
6692/* Return the SCTLR value which controls this address translation regime */
6693static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6694{
6695    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6696}
6697
6698/* Return true if the specified stage of address translation is disabled */
6699static inline bool regime_translation_disabled(CPUARMState *env,
6700                                               ARMMMUIdx mmu_idx)
6701{
6702    if (mmu_idx == ARMMMUIdx_S2NS) {
6703        return (env->cp15.hcr_el2 & HCR_VM) == 0;
6704    }
6705    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6706}
6707
6708static inline bool regime_translation_big_endian(CPUARMState *env,
6709                                                 ARMMMUIdx mmu_idx)
6710{
6711    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6712}
6713
6714/* Return the TCR controlling this translation regime */
6715static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6716{
6717    if (mmu_idx == ARMMMUIdx_S2NS) {
6718        return &env->cp15.vtcr_el2;
6719    }
6720    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6721}
6722
6723/* Return the TTBR associated with this translation regime */
6724static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6725                                   int ttbrn)
6726{
6727    if (mmu_idx == ARMMMUIdx_S2NS) {
6728        return env->cp15.vttbr_el2;
6729    }
6730    if (ttbrn == 0) {
6731        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6732    } else {
6733        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6734    }
6735}
6736
6737/* Return true if the translation regime is using LPAE format page tables */
6738static inline bool regime_using_lpae_format(CPUARMState *env,
6739                                            ARMMMUIdx mmu_idx)
6740{
6741    int el = regime_el(env, mmu_idx);
6742    if (el == 2 || arm_el_is_aa64(env, el)) {
6743        return true;
6744    }
6745    if (arm_feature(env, ARM_FEATURE_LPAE)
6746        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6747        return true;
6748    }
6749    return false;
6750}
6751
6752/* Returns true if the stage 1 translation regime is using LPAE format page
6753 * tables. Used when raising alignment exceptions, whose FSR changes depending
6754 * on whether the long or short descriptor format is in use. */
6755bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6756{
6757    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6758        mmu_idx += ARMMMUIdx_S1NSE0;
6759    }
6760
6761    return regime_using_lpae_format(env, mmu_idx);
6762}
6763
6764static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6765{
6766    switch (mmu_idx) {
6767    case ARMMMUIdx_S1SE0:
6768    case ARMMMUIdx_S1NSE0:
6769        return true;
6770    default:
6771        return false;
6772    case ARMMMUIdx_S12NSE0:
6773    case ARMMMUIdx_S12NSE1:
6774        g_assert_not_reached();
6775    }
6776}
6777
6778/* Translate section/page access permissions to page
6779 * R/W protection flags
6780 *
6781 * @env:         CPUARMState
6782 * @mmu_idx:     MMU index indicating required translation regime
6783 * @ap:          The 3-bit access permissions (AP[2:0])
6784 * @domain_prot: The 2-bit domain access permissions
6785 */
6786static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6787                                int ap, int domain_prot)
6788{
6789    bool is_user = regime_is_user(env, mmu_idx);
6790
6791    if (domain_prot == 3) {
6792        return PAGE_READ | PAGE_WRITE;
6793    }
6794
6795    switch (ap) {
6796    case 0:
6797        if (arm_feature(env, ARM_FEATURE_V7)) {
6798            return 0;
6799        }
6800        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6801        case SCTLR_S:
6802            return is_user ? 0 : PAGE_READ;
6803        case SCTLR_R:
6804            return PAGE_READ;
6805        default:
6806            return 0;
6807        }
6808    case 1:
6809        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6810    case 2:
6811        if (is_user) {
6812            return PAGE_READ;
6813        } else {
6814            return PAGE_READ | PAGE_WRITE;
6815        }
6816    case 3:
6817        return PAGE_READ | PAGE_WRITE;
6818    case 4: /* Reserved.  */
6819        return 0;
6820    case 5:
6821        return is_user ? 0 : PAGE_READ;
6822    case 6:
6823        return PAGE_READ;
6824    case 7:
6825        if (!arm_feature(env, ARM_FEATURE_V6K)) {
6826            return 0;
6827        }
6828        return PAGE_READ;
6829    default:
6830        g_assert_not_reached();
6831    }
6832}
6833
6834/* Translate section/page access permissions to page
6835 * R/W protection flags.
6836 *
6837 * @ap:      The 2-bit simple AP (AP[2:1])
6838 * @is_user: TRUE if accessing from PL0
6839 */
6840static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6841{
6842    switch (ap) {
6843    case 0:
6844        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6845    case 1:
6846        return PAGE_READ | PAGE_WRITE;
6847    case 2:
6848        return is_user ? 0 : PAGE_READ;
6849    case 3:
6850        return PAGE_READ;
6851    default:
6852        g_assert_not_reached();
6853    }
6854}
6855
6856static inline int
6857simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6858{
6859    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6860}
6861
6862/* Translate S2 section/page access permissions to protection flags
6863 *
6864 * @env:     CPUARMState
6865 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
6866 * @xn:      XN (execute-never) bit
6867 */
6868static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6869{
6870    int prot = 0;
6871
6872    if (s2ap & 1) {
6873        prot |= PAGE_READ;
6874    }
6875    if (s2ap & 2) {
6876        prot |= PAGE_WRITE;
6877    }
6878    if (!xn) {
6879        if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
6880            prot |= PAGE_EXEC;
6881        }
6882    }
6883    return prot;
6884}
6885
6886/* Translate section/page access permissions to protection flags
6887 *
6888 * @env:     CPUARMState
6889 * @mmu_idx: MMU index indicating required translation regime
6890 * @is_aa64: TRUE if AArch64
6891 * @ap:      The 2-bit simple AP (AP[2:1])
6892 * @ns:      NS (non-secure) bit
6893 * @xn:      XN (execute-never) bit
6894 * @pxn:     PXN (privileged execute-never) bit
6895 */
6896static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6897                      int ap, int ns, int xn, int pxn)
6898{
6899    bool is_user = regime_is_user(env, mmu_idx);
6900    int prot_rw, user_rw;
6901    bool have_wxn;
6902    int wxn = 0;
6903
6904    assert(mmu_idx != ARMMMUIdx_S2NS);
6905
6906    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6907    if (is_user) {
6908        prot_rw = user_rw;
6909    } else {
6910        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6911    }
6912
6913    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6914        return prot_rw;
6915    }
6916
6917    /* TODO have_wxn should be replaced with
6918     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6919     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6920     * compatible processors have EL2, which is required for [U]WXN.
6921     */
6922    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6923
6924    if (have_wxn) {
6925        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6926    }
6927
6928    if (is_aa64) {
6929        switch (regime_el(env, mmu_idx)) {
6930        case 1:
6931            if (!is_user) {
6932                xn = pxn || (user_rw & PAGE_WRITE);
6933            }
6934            break;
6935        case 2:
6936        case 3:
6937            break;
6938        }
6939    } else if (arm_feature(env, ARM_FEATURE_V7)) {
6940        switch (regime_el(env, mmu_idx)) {
6941        case 1:
6942        case 3:
6943            if (is_user) {
6944                xn = xn || !(user_rw & PAGE_READ);
6945            } else {
6946                int uwxn = 0;
6947                if (have_wxn) {
6948                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6949                }
6950                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6951                     (uwxn && (user_rw & PAGE_WRITE));
6952            }
6953            break;
6954        case 2:
6955            break;
6956        }
6957    } else {
6958        xn = wxn = 0;
6959    }
6960
6961    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6962        return prot_rw;
6963    }
6964    return prot_rw | PAGE_EXEC;
6965}
6966
6967static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6968                                     uint32_t *table, uint32_t address)
6969{
6970    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6971    TCR *tcr = regime_tcr(env, mmu_idx);
6972
6973    if (address & tcr->mask) {
6974        if (tcr->raw_tcr & TTBCR_PD1) {
6975            /* Translation table walk disabled for TTBR1 */
6976            return false;
6977        }
6978        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6979    } else {
6980        if (tcr->raw_tcr & TTBCR_PD0) {
6981            /* Translation table walk disabled for TTBR0 */
6982            return false;
6983        }
6984        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6985    }
6986    *table |= (address >> 18) & 0x3ffc;
6987    return true;
6988}
6989
6990/* Translate a S1 pagetable walk through S2 if needed.  */
6991static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6992                               hwaddr addr, MemTxAttrs txattrs,
6993                               uint32_t *fsr,
6994                               ARMMMUFaultInfo *fi)
6995{
6996    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6997        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6998        target_ulong s2size;
6999        hwaddr s2pa;
7000        int s2prot;
7001        int ret;
7002
7003        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7004                                 &txattrs, &s2prot, &s2size, fsr, fi);
7005        if (ret) {
7006            fi->s2addr = addr;
7007            fi->stage2 = true;
7008            fi->s1ptw = true;
7009            return ~0;
7010        }
7011        addr = s2pa;
7012    }
7013    return addr;
7014}
7015
7016/* All loads done in the course of a page table walk go through here.
7017 * TODO: rather than ignoring errors from physical memory reads (which
7018 * are external aborts in ARM terminology) we should propagate this
7019 * error out so that we can turn it into a Data Abort if this walk
7020 * was being done for a CPU load/store or an address translation instruction
7021 * (but not if it was for a debug access).
7022 */
7023static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7024                            ARMMMUIdx mmu_idx, uint32_t *fsr,
7025                            ARMMMUFaultInfo *fi)
7026{
7027    ARMCPU *cpu = ARM_CPU(cs);
7028    CPUARMState *env = &cpu->env;
7029    MemTxAttrs attrs = {};
7030    AddressSpace *as;
7031
7032    attrs.secure = is_secure;
7033    as = arm_addressspace(cs, attrs);
7034    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7035    if (fi->s1ptw) {
7036        return 0;
7037    }
7038    if (regime_translation_big_endian(env, mmu_idx)) {
7039        return address_space_ldl_be(as, addr, attrs, NULL);
7040    } else {
7041        return address_space_ldl_le(as, addr, attrs, NULL);
7042    }
7043}
7044
7045static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7046                            ARMMMUIdx mmu_idx, uint32_t *fsr,
7047                            ARMMMUFaultInfo *fi)
7048{
7049    ARMCPU *cpu = ARM_CPU(cs);
7050    CPUARMState *env = &cpu->env;
7051    MemTxAttrs attrs = {};
7052    AddressSpace *as;
7053
7054    attrs.secure = is_secure;
7055    as = arm_addressspace(cs, attrs);
7056    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7057    if (fi->s1ptw) {
7058        return 0;
7059    }
7060    if (regime_translation_big_endian(env, mmu_idx)) {
7061        return address_space_ldq_be(as, addr, attrs, NULL);
7062    } else {
7063        return address_space_ldq_le(as, addr, attrs, NULL);
7064    }
7065}
7066
7067static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7068                             int access_type, ARMMMUIdx mmu_idx,
7069                             hwaddr *phys_ptr, int *prot,
7070                             target_ulong *page_size, uint32_t *fsr,
7071                             ARMMMUFaultInfo *fi)
7072{
7073    CPUState *cs = CPU(arm_env_get_cpu(env));
7074    int code;
7075    uint32_t table;
7076    uint32_t desc;
7077    int type;
7078    int ap;
7079    int domain = 0;
7080    int domain_prot;
7081    hwaddr phys_addr;
7082    uint32_t dacr;
7083
7084    /* Pagetable walk.  */
7085    /* Lookup l1 descriptor.  */
7086    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7087        /* Section translation fault if page walk is disabled by PD0 or PD1 */
7088        code = 5;
7089        goto do_fault;
7090    }
7091    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7092                       mmu_idx, fsr, fi);
7093    type = (desc & 3);
7094    domain = (desc >> 5) & 0x0f;
7095    if (regime_el(env, mmu_idx) == 1) {
7096        dacr = env->cp15.dacr_ns;
7097    } else {
7098        dacr = env->cp15.dacr_s;
7099    }
7100    domain_prot = (dacr >> (domain * 2)) & 3;
7101    if (type == 0) {
7102        /* Section translation fault.  */
7103        code = 5;
7104        goto do_fault;
7105    }
7106    if (domain_prot == 0 || domain_prot == 2) {
7107        if (type == 2)
7108            code = 9; /* Section domain fault.  */
7109        else
7110            code = 11; /* Page domain fault.  */
7111        goto do_fault;
7112    }
7113    if (type == 2) {
7114        /* 1Mb section.  */
7115        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7116        ap = (desc >> 10) & 3;
7117        code = 13;
7118        *page_size = 1024 * 1024;
7119    } else {
7120        /* Lookup l2 entry.  */
7121        if (type == 1) {
7122            /* Coarse pagetable.  */
7123            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7124        } else {
7125            /* Fine pagetable.  */
7126            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7127        }
7128        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7129                           mmu_idx, fsr, fi);
7130        switch (desc & 3) {
7131        case 0: /* Page translation fault.  */
7132            code = 7;
7133            goto do_fault;
7134        case 1: /* 64k page.  */
7135            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7136            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7137            *page_size = 0x10000;
7138            break;
7139        case 2: /* 4k page.  */
7140            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7141            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7142            *page_size = 0x1000;
7143            break;
7144        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7145            if (type == 1) {
7146                /* ARMv6/XScale extended small page format */
7147                if (arm_feature(env, ARM_FEATURE_XSCALE)
7148                    || arm_feature(env, ARM_FEATURE_V6)) {
7149                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7150                    *page_size = 0x1000;
7151                } else {
7152                    /* UNPREDICTABLE in ARMv5; we choose to take a
7153                     * page translation fault.
7154                     */
7155                    code = 7;
7156                    goto do_fault;
7157                }
7158            } else {
7159                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7160                *page_size = 0x400;
7161            }
7162            ap = (desc >> 4) & 3;
7163            break;
7164        default:
7165            /* Never happens, but compiler isn't smart enough to tell.  */
7166            abort();
7167        }
7168        code = 15;
7169    }
7170    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7171    *prot |= *prot ? PAGE_EXEC : 0;
7172    if (!(*prot & (1 << access_type))) {
7173        /* Access permission fault.  */
7174        goto do_fault;
7175    }
7176    *phys_ptr = phys_addr;
7177    return false;
7178do_fault:
7179    *fsr = code | (domain << 4);
7180    return true;
7181}
7182
7183static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7184                             int access_type, ARMMMUIdx mmu_idx,
7185                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7186                             target_ulong *page_size, uint32_t *fsr,
7187                             ARMMMUFaultInfo *fi)
7188{
7189    CPUState *cs = CPU(arm_env_get_cpu(env));
7190    int code;
7191    uint32_t table;
7192    uint32_t desc;
7193    uint32_t xn;
7194    uint32_t pxn = 0;
7195    int type;
7196    int ap;
7197    int domain = 0;
7198    int domain_prot;
7199    hwaddr phys_addr;
7200    uint32_t dacr;
7201    bool ns;
7202
7203    /* Pagetable walk.  */
7204    /* Lookup l1 descriptor.  */
7205    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7206        /* Section translation fault if page walk is disabled by PD0 or PD1 */
7207        code = 5;
7208        goto do_fault;
7209    }
7210    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7211                       mmu_idx, fsr, fi);
7212    type = (desc & 3);
7213    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7214        /* Section translation fault, or attempt to use the encoding
7215         * which is Reserved on implementations without PXN.
7216         */
7217        code = 5;
7218        goto do_fault;
7219    }
7220    if ((type == 1) || !(desc & (1 << 18))) {
7221        /* Page or Section.  */
7222        domain = (desc >> 5) & 0x0f;
7223    }
7224    if (regime_el(env, mmu_idx) == 1) {
7225        dacr = env->cp15.dacr_ns;
7226    } else {
7227        dacr = env->cp15.dacr_s;
7228    }
7229    domain_prot = (dacr >> (domain * 2)) & 3;
7230    if (domain_prot == 0 || domain_prot == 2) {
7231        if (type != 1) {
7232            code = 9; /* Section domain fault.  */
7233        } else {
7234            code = 11; /* Page domain fault.  */
7235        }
7236        goto do_fault;
7237    }
7238    if (type != 1) {
7239        if (desc & (1 << 18)) {
7240            /* Supersection.  */
7241            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7242            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7243            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7244            *page_size = 0x1000000;
7245        } else {
7246            /* Section.  */
7247            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7248            *page_size = 0x100000;
7249        }
7250        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7251        xn = desc & (1 << 4);
7252        pxn = desc & 1;
7253        code = 13;
7254        ns = extract32(desc, 19, 1);
7255    } else {
7256        if (arm_feature(env, ARM_FEATURE_PXN)) {
7257            pxn = (desc >> 2) & 1;
7258        }
7259        ns = extract32(desc, 3, 1);
7260        /* Lookup l2 entry.  */
7261        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7262        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7263                           mmu_idx, fsr, fi);
7264        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7265        switch (desc & 3) {
7266        case 0: /* Page translation fault.  */
7267            code = 7;
7268            goto do_fault;
7269        case 1: /* 64k page.  */
7270            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7271            xn = desc & (1 << 15);
7272            *page_size = 0x10000;
7273            break;
7274        case 2: case 3: /* 4k page.  */
7275            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7276            xn = desc & 1;
7277            *page_size = 0x1000;
7278            break;
7279        default:
7280            /* Never happens, but compiler isn't smart enough to tell.  */
7281            abort();
7282        }
7283        code = 15;
7284    }
7285    if (domain_prot == 3) {
7286        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7287    } else {
7288        if (pxn && !regime_is_user(env, mmu_idx)) {
7289            xn = 1;
7290        }
7291        if (xn && access_type == 2)
7292            goto do_fault;
7293
7294        if (arm_feature(env, ARM_FEATURE_V6K) &&
7295                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7296            /* The simplified model uses AP[0] as an access control bit.  */
7297            if ((ap & 1) == 0) {
7298                /* Access flag fault.  */
7299                code = (code == 15) ? 6 : 3;
7300                goto do_fault;
7301            }
7302            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7303        } else {
7304            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7305        }
7306        if (*prot && !xn) {
7307            *prot |= PAGE_EXEC;
7308        }
7309        if (!(*prot & (1 << access_type))) {
7310            /* Access permission fault.  */
7311            goto do_fault;
7312        }
7313    }
7314    if (ns) {
7315        /* The NS bit will (as required by the architecture) have no effect if
7316         * the CPU doesn't support TZ or this is a non-secure translation
7317         * regime, because the attribute will already be non-secure.
7318         */
7319        attrs->secure = false;
7320    }
7321    *phys_ptr = phys_addr;
7322    return false;
7323do_fault:
7324    *fsr = code | (domain << 4);
7325    return true;
7326}
7327
7328/* Fault type for long-descriptor MMU fault reporting; this corresponds
7329 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7330 */
7331typedef enum {
7332    translation_fault = 1,
7333    access_fault = 2,
7334    permission_fault = 3,
7335} MMUFaultType;
7336
7337/*
7338 * check_s2_mmu_setup
7339 * @cpu:        ARMCPU
7340 * @is_aa64:    True if the translation regime is in AArch64 state
7341 * @startlevel: Suggested starting level
7342 * @inputsize:  Bitsize of IPAs
7343 * @stride:     Page-table stride (See the ARM ARM)
7344 *
7345 * Returns true if the suggested S2 translation parameters are OK and
7346 * false otherwise.
7347 */
7348static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7349                               int inputsize, int stride)
7350{
7351    const int grainsize = stride + 3;
7352    int startsizecheck;
7353
7354    /* Negative levels are never allowed.  */
7355    if (level < 0) {
7356        return false;
7357    }
7358
7359    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7360    if (startsizecheck < 1 || startsizecheck > stride + 4) {
7361        return false;
7362    }
7363
7364    if (is_aa64) {
7365        CPUARMState *env = &cpu->env;
7366        unsigned int pamax = arm_pamax(cpu);
7367
7368        switch (stride) {
7369        case 13: /* 64KB Pages.  */
7370            if (level == 0 || (level == 1 && pamax <= 42)) {
7371                return false;
7372            }
7373            break;
7374        case 11: /* 16KB Pages.  */
7375            if (level == 0 || (level == 1 && pamax <= 40)) {
7376                return false;
7377            }
7378            break;
7379        case 9: /* 4KB Pages.  */
7380            if (level == 0 && pamax <= 42) {
7381                return false;
7382            }
7383            break;
7384        default:
7385            g_assert_not_reached();
7386        }
7387
7388        /* Inputsize checks.  */
7389        if (inputsize > pamax &&
7390            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7391            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
7392            return false;
7393        }
7394    } else {
7395        /* AArch32 only supports 4KB pages. Assert on that.  */
7396        assert(stride == 9);
7397
7398        if (level == 0) {
7399            return false;
7400        }
7401    }
7402    return true;
7403}
7404
7405static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7406                               int access_type, ARMMMUIdx mmu_idx,
7407                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7408                               target_ulong *page_size_ptr, uint32_t *fsr,
7409                               ARMMMUFaultInfo *fi)
7410{
7411    ARMCPU *cpu = arm_env_get_cpu(env);
7412    CPUState *cs = CPU(cpu);
7413    /* Read an LPAE long-descriptor translation table. */
7414    MMUFaultType fault_type = translation_fault;
7415    uint32_t level;
7416    uint32_t epd = 0;
7417    int32_t t0sz, t1sz;
7418    uint32_t tg;
7419    uint64_t ttbr;
7420    int ttbr_select;
7421    hwaddr descaddr, indexmask, indexmask_grainsize;
7422    uint32_t tableattrs;
7423    target_ulong page_size;
7424    uint32_t attrs;
7425    int32_t stride = 9;
7426    int32_t addrsize;
7427    int inputsize;
7428    int32_t tbi = 0;
7429    TCR *tcr = regime_tcr(env, mmu_idx);
7430    int ap, ns, xn, pxn;
7431    uint32_t el = regime_el(env, mmu_idx);
7432    bool ttbr1_valid = true;
7433    uint64_t descaddrmask;
7434    bool aarch64 = arm_el_is_aa64(env, el);
7435
7436    /* TODO:
7437     * This code does not handle the different format TCR for VTCR_EL2.
7438     * This code also does not support shareability levels.
7439     * Attribute and permission bit handling should also be checked when adding
7440     * support for those page table walks.
7441     */
7442    if (aarch64) {
7443        level = 0;
7444        addrsize = 64;
7445        if (el > 1) {
7446            if (mmu_idx != ARMMMUIdx_S2NS) {
7447                tbi = extract64(tcr->raw_tcr, 20, 1);
7448            }
7449        } else {
7450            if (extract64(address, 55, 1)) {
7451                tbi = extract64(tcr->raw_tcr, 38, 1);
7452            } else {
7453                tbi = extract64(tcr->raw_tcr, 37, 1);
7454            }
7455        }
7456        tbi *= 8;
7457
7458        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7459         * invalid.
7460         */
7461        if (el > 1) {
7462            ttbr1_valid = false;
7463        }
7464    } else {
7465        level = 1;
7466        addrsize = 32;
7467        /* There is no TTBR1 for EL2 */
7468        if (el == 2) {
7469            ttbr1_valid = false;
7470        }
7471    }
7472
7473    /* Determine whether this address is in the region controlled by
7474     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7475     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7476     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7477     */
7478    if (aarch64) {
7479        /* AArch64 translation.  */
7480        t0sz = extract32(tcr->raw_tcr, 0, 6);
7481        t0sz = MIN(t0sz, 39);
7482        t0sz = MAX(t0sz, 16);
7483    } else if (mmu_idx != ARMMMUIdx_S2NS) {
7484        /* AArch32 stage 1 translation.  */
7485        t0sz = extract32(tcr->raw_tcr, 0, 3);
7486    } else {
7487        /* AArch32 stage 2 translation.  */
7488        bool sext = extract32(tcr->raw_tcr, 4, 1);
7489        bool sign = extract32(tcr->raw_tcr, 3, 1);
7490        /* Address size is 40-bit for a stage 2 translation,
7491         * and t0sz can be negative (from -8 to 7),
7492         * so we need to adjust it to use the TTBR selecting logic below.
7493         */
7494        addrsize = 40;
7495        t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7496
7497        /* If the sign-extend bit is not the same as t0sz[3], the result
7498         * is unpredictable. Flag this as a guest error.  */
7499        if (sign != sext) {
7500            qemu_log_mask(LOG_GUEST_ERROR,
7501                          "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7502        }
7503    }
7504    t1sz = extract32(tcr->raw_tcr, 16, 6);
7505    if (aarch64) {
7506        t1sz = MIN(t1sz, 39);
7507        t1sz = MAX(t1sz, 16);
7508    }
7509    if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7510        /* there is a ttbr0 region and we are in it (high bits all zero) */
7511        ttbr_select = 0;
7512    } else if (ttbr1_valid && t1sz &&
7513               !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7514        /* there is a ttbr1 region and we are in it (high bits all one) */
7515        ttbr_select = 1;
7516    } else if (!t0sz) {
7517        /* ttbr0 region is "everything not in the ttbr1 region" */
7518        ttbr_select = 0;
7519    } else if (!t1sz && ttbr1_valid) {
7520        /* ttbr1 region is "everything not in the ttbr0 region" */
7521        ttbr_select = 1;
7522    } else {
7523        /* in the gap between the two regions, this is a Translation fault */
7524        fault_type = translation_fault;
7525        goto do_fault;
7526    }
7527
7528    /* Note that QEMU ignores shareability and cacheability attributes,
7529     * so we don't need to do anything with the SH, ORGN, IRGN fields
7530     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
7531     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7532     * implement any ASID-like capability so we can ignore it (instead
7533     * we will always flush the TLB any time the ASID is changed).
7534     */
7535    if (ttbr_select == 0) {
7536        ttbr = regime_ttbr(env, mmu_idx, 0);
7537        if (el < 2) {
7538            epd = extract32(tcr->raw_tcr, 7, 1);
7539        }
7540        inputsize = addrsize - t0sz;
7541
7542        tg = extract32(tcr->raw_tcr, 14, 2);
7543        if (tg == 1) { /* 64KB pages */
7544            stride = 13;
7545        }
7546        if (tg == 2) { /* 16KB pages */
7547            stride = 11;
7548        }
7549    } else {
7550        /* We should only be here if TTBR1 is valid */
7551        assert(ttbr1_valid);
7552
7553        ttbr = regime_ttbr(env, mmu_idx, 1);
7554        epd = extract32(tcr->raw_tcr, 23, 1);
7555        inputsize = addrsize - t1sz;
7556
7557        tg = extract32(tcr->raw_tcr, 30, 2);
7558        if (tg == 3)  { /* 64KB pages */
7559            stride = 13;
7560        }
7561        if (tg == 1) { /* 16KB pages */
7562            stride = 11;
7563        }
7564    }
7565
7566    /* Here we should have set up all the parameters for the translation:
7567     * inputsize, ttbr, epd, stride, tbi
7568     */
7569
7570    if (epd) {
7571        /* Translation table walk disabled => Translation fault on TLB miss
7572         * Note: This is always 0 on 64-bit EL2 and EL3.
7573         */
7574        goto do_fault;
7575    }
7576
7577    if (mmu_idx != ARMMMUIdx_S2NS) {
7578        /* The starting level depends on the virtual address size (which can
7579         * be up to 48 bits) and the translation granule size. It indicates
7580         * the number of strides (stride bits at a time) needed to
7581         * consume the bits of the input address. In the pseudocode this is:
7582         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
7583         * where their 'inputsize' is our 'inputsize', 'grainsize' is
7584         * our 'stride + 3' and 'stride' is our 'stride'.
7585         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7586         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7587         * = 4 - (inputsize - 4) / stride;
7588         */
7589        level = 4 - (inputsize - 4) / stride;
7590    } else {
7591        /* For stage 2 translations the starting level is specified by the
7592         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7593         */
7594        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7595        uint32_t startlevel;
7596        bool ok;
7597
7598        if (!aarch64 || stride == 9) {
7599            /* AArch32 or 4KB pages */
7600            startlevel = 2 - sl0;
7601        } else {
7602            /* 16KB or 64KB pages */
7603            startlevel = 3 - sl0;
7604        }
7605
7606        /* Check that the starting level is valid. */
7607        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7608                                inputsize, stride);
7609        if (!ok) {
7610            fault_type = translation_fault;
7611            goto do_fault;
7612        }
7613        level = startlevel;
7614    }
7615
7616    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7617    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7618
7619    /* Now we can extract the actual base address from the TTBR */
7620    descaddr = extract64(ttbr, 0, 48);
7621    descaddr &= ~indexmask;
7622
7623    /* The address field in the descriptor goes up to bit 39 for ARMv7
7624     * but up to bit 47 for ARMv8, but we use the descaddrmask
7625     * up to bit 39 for AArch32, because we don't need other bits in that case
7626     * to construct next descriptor address (anyway they should be all zeroes).
7627     */
7628    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7629                   ~indexmask_grainsize;
7630
7631    /* Secure accesses start with the page table in secure memory and
7632     * can be downgraded to non-secure at any step. Non-secure accesses
7633     * remain non-secure. We implement this by just ORing in the NSTable/NS
7634     * bits at each step.
7635     */
7636    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7637    for (;;) {
7638        uint64_t descriptor;
7639        bool nstable;
7640
7641        descaddr |= (address >> (stride * (4 - level))) & indexmask;
7642        descaddr &= ~7ULL;
7643        nstable = extract32(tableattrs, 4, 1);
7644        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7645        if (fi->s1ptw) {
7646            goto do_fault;
7647        }
7648
7649        if (!(descriptor & 1) ||
7650            (!(descriptor & 2) && (level == 3))) {
7651            /* Invalid, or the Reserved level 3 encoding */
7652            goto do_fault;
7653        }
7654        descaddr = descriptor & descaddrmask;
7655
7656        if ((descriptor & 2) && (level < 3)) {
7657            /* Table entry. The top five bits are attributes which  may
7658             * propagate down through lower levels of the table (and
7659             * which are all arranged so that 0 means "no effect", so
7660             * we can gather them up by ORing in the bits at each level).
7661             */
7662            tableattrs |= extract64(descriptor, 59, 5);
7663            level++;
7664            indexmask = indexmask_grainsize;
7665            continue;
7666        }
7667        /* Block entry at level 1 or 2, or page entry at level 3.
7668         * These are basically the same thing, although the number
7669         * of bits we pull in from the vaddr varies.
7670         */
7671        page_size = (1ULL << ((stride * (4 - level)) + 3));
7672        descaddr |= (address & (page_size - 1));
7673        /* Extract attributes from the descriptor */
7674        attrs = extract64(descriptor, 2, 10)
7675            | (extract64(descriptor, 52, 12) << 10);
7676
7677        if (mmu_idx == ARMMMUIdx_S2NS) {
7678            /* Stage 2 table descriptors do not include any attribute fields */
7679            break;
7680        }
7681        /* Merge in attributes from table descriptors */
7682        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7683        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7684        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7685         * means "force PL1 access only", which means forcing AP[1] to 0.
7686         */
7687        if (extract32(tableattrs, 2, 1)) {
7688            attrs &= ~(1 << 4);
7689        }
7690        attrs |= nstable << 3; /* NS */
7691        break;
7692    }
7693    /* Here descaddr is the final physical address, and attributes
7694     * are all in attrs.
7695     */
7696    fault_type = access_fault;
7697    if ((attrs & (1 << 8)) == 0) {
7698        /* Access flag */
7699        goto do_fault;
7700    }
7701
7702    ap = extract32(attrs, 4, 2);
7703    xn = extract32(attrs, 12, 1);
7704
7705    if (mmu_idx == ARMMMUIdx_S2NS) {
7706        ns = true;
7707        *prot = get_S2prot(env, ap, xn);
7708    } else {
7709        ns = extract32(attrs, 3, 1);
7710        pxn = extract32(attrs, 11, 1);
7711        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
7712    }
7713
7714    fault_type = permission_fault;
7715    if (!(*prot & (1 << access_type))) {
7716        goto do_fault;
7717    }
7718
7719    if (ns) {
7720        /* The NS bit will (as required by the architecture) have no effect if
7721         * the CPU doesn't support TZ or this is a non-secure translation
7722         * regime, because the attribute will already be non-secure.
7723         */
7724        txattrs->secure = false;
7725    }
7726    *phys_ptr = descaddr;
7727    *page_size_ptr = page_size;
7728    return false;
7729
7730do_fault:
7731    /* Long-descriptor format IFSR/DFSR value */
7732    *fsr = (1 << 9) | (fault_type << 2) | level;
7733    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
7734    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7735    return true;
7736}
7737
7738static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7739                                                ARMMMUIdx mmu_idx,
7740                                                int32_t address, int *prot)
7741{
7742    *prot = PAGE_READ | PAGE_WRITE;
7743    switch (address) {
7744    case 0xF0000000 ... 0xFFFFFFFF:
7745        if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7746            *prot |= PAGE_EXEC;
7747        }
7748        break;
7749    case 0x00000000 ... 0x7FFFFFFF:
7750        *prot |= PAGE_EXEC;
7751        break;
7752    }
7753
7754}
7755
7756static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7757                                 int access_type, ARMMMUIdx mmu_idx,
7758                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7759{
7760    ARMCPU *cpu = arm_env_get_cpu(env);
7761    int n;
7762    bool is_user = regime_is_user(env, mmu_idx);
7763
7764    *phys_ptr = address;
7765    *prot = 0;
7766
7767    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7768        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7769    } else { /* MPU enabled */
7770        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7771            /* region search */
7772            uint32_t base = env->pmsav7.drbar[n];
7773            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7774            uint32_t rmask;
7775            bool srdis = false;
7776
7777            if (!(env->pmsav7.drsr[n] & 0x1)) {
7778                continue;
7779            }
7780
7781            if (!rsize) {
7782                qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7783                continue;
7784            }
7785            rsize++;
7786            rmask = (1ull << rsize) - 1;
7787
7788            if (base & rmask) {
7789                qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7790                              "to DRSR region size, mask = %" PRIx32,
7791                              base, rmask);
7792                continue;
7793            }
7794
7795            if (address < base || address > base + rmask) {
7796                continue;
7797            }
7798
7799            /* Region matched */
7800
7801            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7802                int i, snd;
7803                uint32_t srdis_mask;
7804
7805                rsize -= 3; /* sub region size (power of 2) */
7806                snd = ((address - base) >> rsize) & 0x7;
7807                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7808
7809                srdis_mask = srdis ? 0x3 : 0x0;
7810                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7811                    /* This will check in groups of 2, 4 and then 8, whether
7812                     * the subregion bits are consistent. rsize is incremented
7813                     * back up to give the region size, considering consistent
7814                     * adjacent subregions as one region. Stop testing if rsize
7815                     * is already big enough for an entire QEMU page.
7816                     */
7817                    int snd_rounded = snd & ~(i - 1);
7818                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7819                                                     snd_rounded + 8, i);
7820                    if (srdis_mask ^ srdis_multi) {
7821                        break;
7822                    }
7823                    srdis_mask = (srdis_mask << i) | srdis_mask;
7824                    rsize++;
7825                }
7826            }
7827            if (rsize < TARGET_PAGE_BITS) {
7828                qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7829                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
7830                              rsize, TARGET_PAGE_BITS);
7831                continue;
7832            }
7833            if (srdis) {
7834                continue;
7835            }
7836            break;
7837        }
7838
7839        if (n == -1) { /* no hits */
7840            if (cpu->pmsav7_dregion &&
7841                (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7842                /* background fault */
7843                *fsr = 0;
7844                return true;
7845            }
7846            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7847        } else { /* a MPU hit! */
7848            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7849
7850            if (is_user) { /* User mode AP bit decoding */
7851                switch (ap) {
7852                case 0:
7853                case 1:
7854                case 5:
7855                    break; /* no access */
7856                case 3:
7857                    *prot |= PAGE_WRITE;
7858                    /* fall through */
7859                case 2:
7860                case 6:
7861                    *prot |= PAGE_READ | PAGE_EXEC;
7862                    break;
7863                default:
7864                    qemu_log_mask(LOG_GUEST_ERROR,
7865                                  "Bad value for AP bits in DRACR %"
7866                                  PRIx32 "\n", ap);
7867                }
7868            } else { /* Priv. mode AP bits decoding */
7869                switch (ap) {
7870                case 0:
7871                    break; /* no access */
7872                case 1:
7873                case 2:
7874                case 3:
7875                    *prot |= PAGE_WRITE;
7876                    /* fall through */
7877                case 5:
7878                case 6:
7879                    *prot |= PAGE_READ | PAGE_EXEC;
7880                    break;
7881                default:
7882                    qemu_log_mask(LOG_GUEST_ERROR,
7883                                  "Bad value for AP bits in DRACR %"
7884                                  PRIx32 "\n", ap);
7885                }
7886            }
7887
7888            /* execute never */
7889            if (env->pmsav7.dracr[n] & (1 << 12)) {
7890                *prot &= ~PAGE_EXEC;
7891            }
7892        }
7893    }
7894
7895    *fsr = 0x00d; /* Permission fault */
7896    return !(*prot & (1 << access_type));
7897}
7898
7899static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7900                                 int access_type, ARMMMUIdx mmu_idx,
7901                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7902{
7903    int n;
7904    uint32_t mask;
7905    uint32_t base;
7906    bool is_user = regime_is_user(env, mmu_idx);
7907
7908    *phys_ptr = address;
7909    for (n = 7; n >= 0; n--) {
7910        base = env->cp15.c6_region[n];
7911        if ((base & 1) == 0) {
7912            continue;
7913        }
7914        mask = 1 << ((base >> 1) & 0x1f);
7915        /* Keep this shift separate from the above to avoid an
7916           (undefined) << 32.  */
7917        mask = (mask << 1) - 1;
7918        if (((base ^ address) & ~mask) == 0) {
7919            break;
7920        }
7921    }
7922    if (n < 0) {
7923        *fsr = 2;
7924        return true;
7925    }
7926
7927    if (access_type == 2) {
7928        mask = env->cp15.pmsav5_insn_ap;
7929    } else {
7930        mask = env->cp15.pmsav5_data_ap;
7931    }
7932    mask = (mask >> (n * 4)) & 0xf;
7933    switch (mask) {
7934    case 0:
7935        *fsr = 1;
7936        return true;
7937    case 1:
7938        if (is_user) {
7939            *fsr = 1;
7940            return true;
7941        }
7942        *prot = PAGE_READ | PAGE_WRITE;
7943        break;
7944    case 2:
7945        *prot = PAGE_READ;
7946        if (!is_user) {
7947            *prot |= PAGE_WRITE;
7948        }
7949        break;
7950    case 3:
7951        *prot = PAGE_READ | PAGE_WRITE;
7952        break;
7953    case 5:
7954        if (is_user) {
7955            *fsr = 1;
7956            return true;
7957        }
7958        *prot = PAGE_READ;
7959        break;
7960    case 6:
7961        *prot = PAGE_READ;
7962        break;
7963    default:
7964        /* Bad permission.  */
7965        *fsr = 1;
7966        return true;
7967    }
7968    *prot |= PAGE_EXEC;
7969    return false;
7970}
7971
7972/* get_phys_addr - get the physical address for this virtual address
7973 *
7974 * Find the physical address corresponding to the given virtual address,
7975 * by doing a translation table walk on MMU based systems or using the
7976 * MPU state on MPU based systems.
7977 *
7978 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7979 * prot and page_size may not be filled in, and the populated fsr value provides
7980 * information on why the translation aborted, in the format of a
7981 * DFSR/IFSR fault register, with the following caveats:
7982 *  * we honour the short vs long DFSR format differences.
7983 *  * the WnR bit is never set (the caller must do this).
7984 *  * for PSMAv5 based systems we don't bother to return a full FSR format
7985 *    value.
7986 *
7987 * @env: CPUARMState
7988 * @address: virtual address to get physical address for
7989 * @access_type: 0 for read, 1 for write, 2 for execute
7990 * @mmu_idx: MMU index indicating required translation regime
7991 * @phys_ptr: set to the physical address corresponding to the virtual address
7992 * @attrs: set to the memory transaction attributes to use
7993 * @prot: set to the permissions for the page containing phys_ptr
7994 * @page_size: set to the size of the page containing phys_ptr
7995 * @fsr: set to the DFSR/IFSR value on failure
7996 */
7997static bool get_phys_addr(CPUARMState *env, target_ulong address,
7998                          int access_type, ARMMMUIdx mmu_idx,
7999                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8000                          target_ulong *page_size, uint32_t *fsr,
8001                          ARMMMUFaultInfo *fi)
8002{
8003    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8004        /* Call ourselves recursively to do the stage 1 and then stage 2
8005         * translations.
8006         */
8007        if (arm_feature(env, ARM_FEATURE_EL2)) {
8008            hwaddr ipa;
8009            int s2_prot;
8010            int ret;
8011
8012            ret = get_phys_addr(env, address, access_type,
8013                                mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8014                                prot, page_size, fsr, fi);
8015
8016            /* If S1 fails or S2 is disabled, return early.  */
8017            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8018                *phys_ptr = ipa;
8019                return ret;
8020            }
8021
8022            /* S1 is done. Now do S2 translation.  */
8023            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8024                                     phys_ptr, attrs, &s2_prot,
8025                                     page_size, fsr, fi);
8026            fi->s2addr = ipa;
8027            /* Combine the S1 and S2 perms.  */
8028            *prot &= s2_prot;
8029            return ret;
8030        } else {
8031            /*
8032             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8033             */
8034            mmu_idx += ARMMMUIdx_S1NSE0;
8035        }
8036    }
8037
8038    /* The page table entries may downgrade secure to non-secure, but
8039     * cannot upgrade an non-secure translation regime's attributes
8040     * to secure.
8041     */
8042    attrs->secure = regime_is_secure(env, mmu_idx);
8043    attrs->user = regime_is_user(env, mmu_idx);
8044
8045    /* Fast Context Switch Extension. This doesn't exist at all in v8.
8046     * In v7 and earlier it affects all stage 1 translations.
8047     */
8048    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8049        && !arm_feature(env, ARM_FEATURE_V8)) {
8050        if (regime_el(env, mmu_idx) == 3) {
8051            address += env->cp15.fcseidr_s;
8052        } else {
8053            address += env->cp15.fcseidr_ns;
8054        }
8055    }
8056
8057    /* pmsav7 has special handling for when MPU is disabled so call it before
8058     * the common MMU/MPU disabled check below.
8059     */
8060    if (arm_feature(env, ARM_FEATURE_MPU) &&
8061        arm_feature(env, ARM_FEATURE_V7)) {
8062        *page_size = TARGET_PAGE_SIZE;
8063        return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8064                                    phys_ptr, prot, fsr);
8065    }
8066
8067    if (regime_translation_disabled(env, mmu_idx)) {
8068        /* MMU/MPU disabled.  */
8069        *phys_ptr = address;
8070        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8071        *page_size = TARGET_PAGE_SIZE;
8072        return 0;
8073    }
8074
8075    if (arm_feature(env, ARM_FEATURE_MPU)) {
8076        /* Pre-v7 MPU */
8077        *page_size = TARGET_PAGE_SIZE;
8078        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8079                                    phys_ptr, prot, fsr);
8080    }
8081
8082    if (regime_using_lpae_format(env, mmu_idx)) {
8083        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8084                                  attrs, prot, page_size, fsr, fi);
8085    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8086        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8087                                attrs, prot, page_size, fsr, fi);
8088    } else {
8089        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8090                                prot, page_size, fsr, fi);
8091    }
8092}
8093
8094/* Walk the page table and (if the mapping exists) add the page
8095 * to the TLB. Return false on success, or true on failure. Populate
8096 * fsr with ARM DFSR/IFSR fault register format value on failure.
8097 */
8098bool arm_tlb_fill(CPUState *cs, vaddr address,
8099                  int access_type, int mmu_idx, uint32_t *fsr,
8100                  ARMMMUFaultInfo *fi)
8101{
8102    ARMCPU *cpu = ARM_CPU(cs);
8103    CPUARMState *env = &cpu->env;
8104    hwaddr phys_addr;
8105    target_ulong page_size;
8106    int prot;
8107    int ret;
8108    MemTxAttrs attrs = {};
8109
8110    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8111                        &attrs, &prot, &page_size, fsr, fi);
8112    if (!ret) {
8113        /* Map a single [sub]page.  */
8114        phys_addr &= TARGET_PAGE_MASK;
8115        address &= TARGET_PAGE_MASK;
8116        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8117                                prot, mmu_idx, page_size);
8118        return 0;
8119    }
8120
8121    return ret;
8122}
8123
8124hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8125                                         MemTxAttrs *attrs)
8126{
8127    ARMCPU *cpu = ARM_CPU(cs);
8128    CPUARMState *env = &cpu->env;
8129    hwaddr phys_addr;
8130    target_ulong page_size;
8131    int prot;
8132    bool ret;
8133    uint32_t fsr;
8134    ARMMMUFaultInfo fi = {};
8135
8136    *attrs = (MemTxAttrs) {};
8137
8138    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8139                        attrs, &prot, &page_size, &fsr, &fi);
8140
8141    if (ret) {
8142        return -1;
8143    }
8144    return phys_addr;
8145}
8146
8147uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8148{
8149    ARMCPU *cpu = arm_env_get_cpu(env);
8150
8151    switch (reg) {
8152    case 0: /* APSR */
8153        return xpsr_read(env) & 0xf8000000;
8154    case 1: /* IAPSR */
8155        return xpsr_read(env) & 0xf80001ff;
8156    case 2: /* EAPSR */
8157        return xpsr_read(env) & 0xff00fc00;
8158    case 3: /* xPSR */
8159        return xpsr_read(env) & 0xff00fdff;
8160    case 5: /* IPSR */
8161        return xpsr_read(env) & 0x000001ff;
8162    case 6: /* EPSR */
8163        return xpsr_read(env) & 0x0700fc00;
8164    case 7: /* IEPSR */
8165        return xpsr_read(env) & 0x0700edff;
8166    case 8: /* MSP */
8167        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
8168    case 9: /* PSP */
8169        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
8170    case 16: /* PRIMASK */
8171        return (env->daif & PSTATE_I) != 0;
8172    case 17: /* BASEPRI */
8173    case 18: /* BASEPRI_MAX */
8174        return env->v7m.basepri;
8175    case 19: /* FAULTMASK */
8176        return (env->daif & PSTATE_F) != 0;
8177    case 20: /* CONTROL */
8178        return env->v7m.control;
8179    default:
8180        /* ??? For debugging only.  */
8181        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
8182        return 0;
8183    }
8184}
8185
8186void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8187{
8188    ARMCPU *cpu = arm_env_get_cpu(env);
8189
8190    switch (reg) {
8191    case 0: /* APSR */
8192        xpsr_write(env, val, 0xf8000000);
8193        break;
8194    case 1: /* IAPSR */
8195        xpsr_write(env, val, 0xf8000000);
8196        break;
8197    case 2: /* EAPSR */
8198        xpsr_write(env, val, 0xfe00fc00);
8199        break;
8200    case 3: /* xPSR */
8201        xpsr_write(env, val, 0xfe00fc00);
8202        break;
8203    case 5: /* IPSR */
8204        /* IPSR bits are readonly.  */
8205        break;
8206    case 6: /* EPSR */
8207        xpsr_write(env, val, 0x0600fc00);
8208        break;
8209    case 7: /* IEPSR */
8210        xpsr_write(env, val, 0x0600fc00);
8211        break;
8212    case 8: /* MSP */
8213        if (env->v7m.current_sp)
8214            env->v7m.other_sp = val;
8215        else
8216            env->regs[13] = val;
8217        break;
8218    case 9: /* PSP */
8219        if (env->v7m.current_sp)
8220            env->regs[13] = val;
8221        else
8222            env->v7m.other_sp = val;
8223        break;
8224    case 16: /* PRIMASK */
8225        if (val & 1) {
8226            env->daif |= PSTATE_I;
8227        } else {
8228            env->daif &= ~PSTATE_I;
8229        }
8230        break;
8231    case 17: /* BASEPRI */
8232        env->v7m.basepri = val & 0xff;
8233        break;
8234    case 18: /* BASEPRI_MAX */
8235        val &= 0xff;
8236        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8237            env->v7m.basepri = val;
8238        break;
8239    case 19: /* FAULTMASK */
8240        if (val & 1) {
8241            env->daif |= PSTATE_F;
8242        } else {
8243            env->daif &= ~PSTATE_F;
8244        }
8245        break;
8246    case 20: /* CONTROL */
8247        env->v7m.control = val & 3;
8248        switch_v7m_sp(env, (val & 2) != 0);
8249        break;
8250    default:
8251        /* ??? For debugging only.  */
8252        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
8253        return;
8254    }
8255}
8256
8257#endif
8258
8259void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8260{
8261    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8262     * Note that we do not implement the (architecturally mandated)
8263     * alignment fault for attempts to use this on Device memory
8264     * (which matches the usual QEMU behaviour of not implementing either
8265     * alignment faults or any memory attribute handling).
8266     */
8267
8268    ARMCPU *cpu = arm_env_get_cpu(env);
8269    uint64_t blocklen = 4 << cpu->dcz_blocksize;
8270    uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8271
8272#ifndef CONFIG_USER_ONLY
8273    {
8274        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8275         * the block size so we might have to do more than one TLB lookup.
8276         * We know that in fact for any v8 CPU the page size is at least 4K
8277         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8278         * 1K as an artefact of legacy v5 subpage support being present in the
8279         * same QEMU executable.
8280         */
8281        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8282        void *hostaddr[maxidx];
8283        int try, i;
8284        unsigned mmu_idx = cpu_mmu_index(env, false);
8285        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8286
8287        for (try = 0; try < 2; try++) {
8288
8289            for (i = 0; i < maxidx; i++) {
8290                hostaddr[i] = tlb_vaddr_to_host(env,
8291                                                vaddr + TARGET_PAGE_SIZE * i,
8292                                                1, mmu_idx);
8293                if (!hostaddr[i]) {
8294                    break;
8295                }
8296            }
8297            if (i == maxidx) {
8298                /* If it's all in the TLB it's fair game for just writing to;
8299                 * we know we don't need to update dirty status, etc.
8300                 */
8301                for (i = 0; i < maxidx - 1; i++) {
8302                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8303                }
8304                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8305                return;
8306            }
8307            /* OK, try a store and see if we can populate the tlb. This
8308             * might cause an exception if the memory isn't writable,
8309             * in which case we will longjmp out of here. We must for
8310             * this purpose use the actual register value passed to us
8311             * so that we get the fault address right.
8312             */
8313            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
8314            /* Now we can populate the other TLB entries, if any */
8315            for (i = 0; i < maxidx; i++) {
8316                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8317                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8318                    helper_ret_stb_mmu(env, va, 0, oi, GETRA());
8319                }
8320            }
8321        }
8322
8323        /* Slow path (probably attempt to do this to an I/O device or
8324         * similar, or clearing of a block of code we have translations
8325         * cached for). Just do a series of byte writes as the architecture
8326         * demands. It's not worth trying to use a cpu_physical_memory_map(),
8327         * memset(), unmap() sequence here because:
8328         *  + we'd need to account for the blocksize being larger than a page
8329         *  + the direct-RAM access case is almost always going to be dealt
8330         *    with in the fastpath code above, so there's no speed benefit
8331         *  + we would have to deal with the map returning NULL because the
8332         *    bounce buffer was in use
8333         */
8334        for (i = 0; i < blocklen; i++) {
8335            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
8336        }
8337    }
8338#else
8339    memset(g2h(vaddr), 0, blocklen);
8340#endif
8341}
8342
8343/* Note that signed overflow is undefined in C.  The following routines are
8344   careful to use unsigned types where modulo arithmetic is required.
8345   Failure to do so _will_ break on newer gcc.  */
8346
8347/* Signed saturating arithmetic.  */
8348
8349/* Perform 16-bit signed saturating addition.  */
8350static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8351{
8352    uint16_t res;
8353
8354    res = a + b;
8355    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8356        if (a & 0x8000)
8357            res = 0x8000;
8358        else
8359            res = 0x7fff;
8360    }
8361    return res;
8362}
8363
8364/* Perform 8-bit signed saturating addition.  */
8365static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8366{
8367    uint8_t res;
8368
8369    res = a + b;
8370    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8371        if (a & 0x80)
8372            res = 0x80;
8373        else
8374            res = 0x7f;
8375    }
8376    return res;
8377}
8378
8379/* Perform 16-bit signed saturating subtraction.  */
8380static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8381{
8382    uint16_t res;
8383
8384    res = a - b;
8385    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8386        if (a & 0x8000)
8387            res = 0x8000;
8388        else
8389            res = 0x7fff;
8390    }
8391    return res;
8392}
8393
8394/* Perform 8-bit signed saturating subtraction.  */
8395static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8396{
8397    uint8_t res;
8398
8399    res = a - b;
8400    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8401        if (a & 0x80)
8402            res = 0x80;
8403        else
8404            res = 0x7f;
8405    }
8406    return res;
8407}
8408
8409#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8410#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8411#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
8412#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
8413#define PFX q
8414
8415#include "op_addsub.h"
8416
8417/* Unsigned saturating arithmetic.  */
8418static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8419{
8420    uint16_t res;
8421    res = a + b;
8422    if (res < a)
8423        res = 0xffff;
8424    return res;
8425}
8426
8427static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8428{
8429    if (a > b)
8430        return a - b;
8431    else
8432        return 0;
8433}
8434
8435static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8436{
8437    uint8_t res;
8438    res = a + b;
8439    if (res < a)
8440        res = 0xff;
8441    return res;
8442}
8443
8444static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8445{
8446    if (a > b)
8447        return a - b;
8448    else
8449        return 0;
8450}
8451
8452#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8453#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8454#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
8455#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
8456#define PFX uq
8457
8458#include "op_addsub.h"
8459
8460/* Signed modulo arithmetic.  */
8461#define SARITH16(a, b, n, op) do { \
8462    int32_t sum; \
8463    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8464    RESULT(sum, n, 16); \
8465    if (sum >= 0) \
8466        ge |= 3 << (n * 2); \
8467    } while(0)
8468
8469#define SARITH8(a, b, n, op) do { \
8470    int32_t sum; \
8471    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8472    RESULT(sum, n, 8); \
8473    if (sum >= 0) \
8474        ge |= 1 << n; \
8475    } while(0)
8476
8477
8478#define ADD16(a, b, n) SARITH16(a, b, n, +)
8479#define SUB16(a, b, n) SARITH16(a, b, n, -)
8480#define ADD8(a, b, n)  SARITH8(a, b, n, +)
8481#define SUB8(a, b, n)  SARITH8(a, b, n, -)
8482#define PFX s
8483#define ARITH_GE
8484
8485#include "op_addsub.h"
8486
8487/* Unsigned modulo arithmetic.  */
8488#define ADD16(a, b, n) do { \
8489    uint32_t sum; \
8490    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8491    RESULT(sum, n, 16); \
8492    if ((sum >> 16) == 1) \
8493        ge |= 3 << (n * 2); \
8494    } while(0)
8495
8496#define ADD8(a, b, n) do { \
8497    uint32_t sum; \
8498    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8499    RESULT(sum, n, 8); \
8500    if ((sum >> 8) == 1) \
8501        ge |= 1 << n; \
8502    } while(0)
8503
8504#define SUB16(a, b, n) do { \
8505    uint32_t sum; \
8506    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8507    RESULT(sum, n, 16); \
8508    if ((sum >> 16) == 0) \
8509        ge |= 3 << (n * 2); \
8510    } while(0)
8511
8512#define SUB8(a, b, n) do { \
8513    uint32_t sum; \
8514    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8515    RESULT(sum, n, 8); \
8516    if ((sum >> 8) == 0) \
8517        ge |= 1 << n; \
8518    } while(0)
8519
8520#define PFX u
8521#define ARITH_GE
8522
8523#include "op_addsub.h"
8524
8525/* Halved signed arithmetic.  */
8526#define ADD16(a, b, n) \
8527  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8528#define SUB16(a, b, n) \
8529  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8530#define ADD8(a, b, n) \
8531  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8532#define SUB8(a, b, n) \
8533  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8534#define PFX sh
8535
8536#include "op_addsub.h"
8537
8538/* Halved unsigned arithmetic.  */
8539#define ADD16(a, b, n) \
8540  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8541#define SUB16(a, b, n) \
8542  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8543#define ADD8(a, b, n) \
8544  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8545#define SUB8(a, b, n) \
8546  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8547#define PFX uh
8548
8549#include "op_addsub.h"
8550
8551static inline uint8_t do_usad(uint8_t a, uint8_t b)
8552{
8553    if (a > b)
8554        return a - b;
8555    else
8556        return b - a;
8557}
8558
8559/* Unsigned sum of absolute byte differences.  */
8560uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8561{
8562    uint32_t sum;
8563    sum = do_usad(a, b);
8564    sum += do_usad(a >> 8, b >> 8);
8565    sum += do_usad(a >> 16, b >>16);
8566    sum += do_usad(a >> 24, b >> 24);
8567    return sum;
8568}
8569
8570/* For ARMv6 SEL instruction.  */
8571uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8572{
8573    uint32_t mask;
8574
8575    mask = 0;
8576    if (flags & 1)
8577        mask |= 0xff;
8578    if (flags & 2)
8579        mask |= 0xff00;
8580    if (flags & 4)
8581        mask |= 0xff0000;
8582    if (flags & 8)
8583        mask |= 0xff000000;
8584    return (a & mask) | (b & ~mask);
8585}
8586
8587/* VFP support.  We follow the convention used for VFP instructions:
8588   Single precision routines have a "s" suffix, double precision a
8589   "d" suffix.  */
8590
8591/* Convert host exception flags to vfp form.  */
8592static inline int vfp_exceptbits_from_host(int host_bits)
8593{
8594    int target_bits = 0;
8595
8596    if (host_bits & float_flag_invalid)
8597        target_bits |= 1;
8598    if (host_bits & float_flag_divbyzero)
8599        target_bits |= 2;
8600    if (host_bits & float_flag_overflow)
8601        target_bits |= 4;
8602    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8603        target_bits |= 8;
8604    if (host_bits & float_flag_inexact)
8605        target_bits |= 0x10;
8606    if (host_bits & float_flag_input_denormal)
8607        target_bits |= 0x80;
8608    return target_bits;
8609}
8610
8611uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8612{
8613    int i;
8614    uint32_t fpscr;
8615
8616    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8617            | (env->vfp.vec_len << 16)
8618            | (env->vfp.vec_stride << 20);
8619    i = get_float_exception_flags(&env->vfp.fp_status);
8620    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8621    fpscr |= vfp_exceptbits_from_host(i);
8622    return fpscr;
8623}
8624
8625uint32_t vfp_get_fpscr(CPUARMState *env)
8626{
8627    return HELPER(vfp_get_fpscr)(env);
8628}
8629
8630/* Convert vfp exception flags to target form.  */
8631static inline int vfp_exceptbits_to_host(int target_bits)
8632{
8633    int host_bits = 0;
8634
8635    if (target_bits & 1)
8636        host_bits |= float_flag_invalid;
8637    if (target_bits & 2)
8638        host_bits |= float_flag_divbyzero;
8639    if (target_bits & 4)
8640        host_bits |= float_flag_overflow;
8641    if (target_bits & 8)
8642        host_bits |= float_flag_underflow;
8643    if (target_bits & 0x10)
8644        host_bits |= float_flag_inexact;
8645    if (target_bits & 0x80)
8646        host_bits |= float_flag_input_denormal;
8647    return host_bits;
8648}
8649
8650void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8651{
8652    int i;
8653    uint32_t changed;
8654
8655    changed = env->vfp.xregs[ARM_VFP_FPSCR];
8656    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8657    env->vfp.vec_len = (val >> 16) & 7;
8658    env->vfp.vec_stride = (val >> 20) & 3;
8659
8660    changed ^= val;
8661    if (changed & (3 << 22)) {
8662        i = (val >> 22) & 3;
8663        switch (i) {
8664        case FPROUNDING_TIEEVEN:
8665            i = float_round_nearest_even;
8666            break;
8667        case FPROUNDING_POSINF:
8668            i = float_round_up;
8669            break;
8670        case FPROUNDING_NEGINF:
8671            i = float_round_down;
8672            break;
8673        case FPROUNDING_ZERO:
8674            i = float_round_to_zero;
8675            break;
8676        }
8677        set_float_rounding_mode(i, &env->vfp.fp_status);
8678    }
8679    if (changed & (1 << 24)) {
8680        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8681        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8682    }
8683    if (changed & (1 << 25))
8684        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8685
8686    i = vfp_exceptbits_to_host(val);
8687    set_float_exception_flags(i, &env->vfp.fp_status);
8688    set_float_exception_flags(0, &env->vfp.standard_fp_status);
8689}
8690
8691void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8692{
8693    HELPER(vfp_set_fpscr)(env, val);
8694}
8695
8696#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8697
8698#define VFP_BINOP(name) \
8699float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8700{ \
8701    float_status *fpst = fpstp; \
8702    return float32_ ## name(a, b, fpst); \
8703} \
8704float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8705{ \
8706    float_status *fpst = fpstp; \
8707    return float64_ ## name(a, b, fpst); \
8708}
8709VFP_BINOP(add)
8710VFP_BINOP(sub)
8711VFP_BINOP(mul)
8712VFP_BINOP(div)
8713VFP_BINOP(min)
8714VFP_BINOP(max)
8715VFP_BINOP(minnum)
8716VFP_BINOP(maxnum)
8717#undef VFP_BINOP
8718
8719float32 VFP_HELPER(neg, s)(float32 a)
8720{
8721    return float32_chs(a);
8722}
8723
8724float64 VFP_HELPER(neg, d)(float64 a)
8725{
8726    return float64_chs(a);
8727}
8728
8729float32 VFP_HELPER(abs, s)(float32 a)
8730{
8731    return float32_abs(a);
8732}
8733
8734float64 VFP_HELPER(abs, d)(float64 a)
8735{
8736    return float64_abs(a);
8737}
8738
8739float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8740{
8741    return float32_sqrt(a, &env->vfp.fp_status);
8742}
8743
8744float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8745{
8746    return float64_sqrt(a, &env->vfp.fp_status);
8747}
8748
8749/* XXX: check quiet/signaling case */
8750#define DO_VFP_cmp(p, type) \
8751void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
8752{ \
8753    uint32_t flags; \
8754    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8755    case 0: flags = 0x6; break; \
8756    case -1: flags = 0x8; break; \
8757    case 1: flags = 0x2; break; \
8758    default: case 2: flags = 0x3; break; \
8759    } \
8760    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8761        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8762} \
8763void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8764{ \
8765    uint32_t flags; \
8766    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8767    case 0: flags = 0x6; break; \
8768    case -1: flags = 0x8; break; \
8769    case 1: flags = 0x2; break; \
8770    default: case 2: flags = 0x3; break; \
8771    } \
8772    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8773        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8774}
8775DO_VFP_cmp(s, float32)
8776DO_VFP_cmp(d, float64)
8777#undef DO_VFP_cmp
8778
8779/* Integer to float and float to integer conversions */
8780
8781#define CONV_ITOF(name, fsz, sign) \
8782    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8783{ \
8784    float_status *fpst = fpstp; \
8785    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8786}
8787
8788#define CONV_FTOI(name, fsz, sign, round) \
8789uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8790{ \
8791    float_status *fpst = fpstp; \
8792    if (float##fsz##_is_any_nan(x)) { \
8793        float_raise(float_flag_invalid, fpst); \
8794        return 0; \
8795    } \
8796    return float##fsz##_to_##sign##int32##round(x, fpst); \
8797}
8798
8799#define FLOAT_CONVS(name, p, fsz, sign) \
8800CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8801CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8802CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8803
8804FLOAT_CONVS(si, s, 32, )
8805FLOAT_CONVS(si, d, 64, )
8806FLOAT_CONVS(ui, s, 32, u)
8807FLOAT_CONVS(ui, d, 64, u)
8808
8809#undef CONV_ITOF
8810#undef CONV_FTOI
8811#undef FLOAT_CONVS
8812
8813/* floating point conversion */
8814float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8815{
8816    float64 r = float32_to_float64(x, &env->vfp.fp_status);
8817    /* ARM requires that S<->D conversion of any kind of NaN generates
8818     * a quiet NaN by forcing the most significant frac bit to 1.
8819     */
8820    return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8821}
8822
8823float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8824{
8825    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
8826    /* ARM requires that S<->D conversion of any kind of NaN generates
8827     * a quiet NaN by forcing the most significant frac bit to 1.
8828     */
8829    return float32_maybe_silence_nan(r, &env->vfp.fp_status);
8830}
8831
8832/* VFP3 fixed point conversion.  */
8833#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8834float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
8835                                     void *fpstp) \
8836{ \
8837    float_status *fpst = fpstp; \
8838    float##fsz tmp; \
8839    tmp = itype##_to_##float##fsz(x, fpst); \
8840    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8841}
8842
8843/* Notice that we want only input-denormal exception flags from the
8844 * scalbn operation: the other possible flags (overflow+inexact if
8845 * we overflow to infinity, output-denormal) aren't correct for the
8846 * complete scale-and-convert operation.
8847 */
8848#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8849uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8850                                             uint32_t shift, \
8851                                             void *fpstp) \
8852{ \
8853    float_status *fpst = fpstp; \
8854    int old_exc_flags = get_float_exception_flags(fpst); \
8855    float##fsz tmp; \
8856    if (float##fsz##_is_any_nan(x)) { \
8857        float_raise(float_flag_invalid, fpst); \
8858        return 0; \
8859    } \
8860    tmp = float##fsz##_scalbn(x, shift, fpst); \
8861    old_exc_flags |= get_float_exception_flags(fpst) \
8862        & float_flag_input_denormal; \
8863    set_float_exception_flags(old_exc_flags, fpst); \
8864    return float##fsz##_to_##itype##round(tmp, fpst); \
8865}
8866
8867#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
8868VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
8869VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8870VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8871
8872#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
8873VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
8874VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8875
8876VFP_CONV_FIX(sh, d, 64, 64, int16)
8877VFP_CONV_FIX(sl, d, 64, 64, int32)
8878VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8879VFP_CONV_FIX(uh, d, 64, 64, uint16)
8880VFP_CONV_FIX(ul, d, 64, 64, uint32)
8881VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8882VFP_CONV_FIX(sh, s, 32, 32, int16)
8883VFP_CONV_FIX(sl, s, 32, 32, int32)
8884VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8885VFP_CONV_FIX(uh, s, 32, 32, uint16)
8886VFP_CONV_FIX(ul, s, 32, 32, uint32)
8887VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8888#undef VFP_CONV_FIX
8889#undef VFP_CONV_FIX_FLOAT
8890#undef VFP_CONV_FLOAT_FIX_ROUND
8891
8892/* Set the current fp rounding mode and return the old one.
8893 * The argument is a softfloat float_round_ value.
8894 */
8895uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8896{
8897    float_status *fp_status = &env->vfp.fp_status;
8898
8899    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8900    set_float_rounding_mode(rmode, fp_status);
8901
8902    return prev_rmode;
8903}
8904
8905/* Set the current fp rounding mode in the standard fp status and return
8906 * the old one. This is for NEON instructions that need to change the
8907 * rounding mode but wish to use the standard FPSCR values for everything
8908 * else. Always set the rounding mode back to the correct value after
8909 * modifying it.
8910 * The argument is a softfloat float_round_ value.
8911 */
8912uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8913{
8914    float_status *fp_status = &env->vfp.standard_fp_status;
8915
8916    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8917    set_float_rounding_mode(rmode, fp_status);
8918
8919    return prev_rmode;
8920}
8921
8922/* Half precision conversions.  */
8923static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
8924{
8925    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8926    float32 r = float16_to_float32(make_float16(a), ieee, s);
8927    if (ieee) {
8928        return float32_maybe_silence_nan(r, s);
8929    }
8930    return r;
8931}
8932
8933static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
8934{
8935    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8936    float16 r = float32_to_float16(a, ieee, s);
8937    if (ieee) {
8938        r = float16_maybe_silence_nan(r, s);
8939    }
8940    return float16_val(r);
8941}
8942
8943float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8944{
8945    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8946}
8947
8948uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8949{
8950    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8951}
8952
8953float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8954{
8955    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8956}
8957
8958uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8959{
8960    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8961}
8962
8963float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8964{
8965    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8966    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8967    if (ieee) {
8968        return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8969    }
8970    return r;
8971}
8972
8973uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8974{
8975    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8976    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8977    if (ieee) {
8978        r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
8979    }
8980    return float16_val(r);
8981}
8982
8983#define float32_two make_float32(0x40000000)
8984#define float32_three make_float32(0x40400000)
8985#define float32_one_point_five make_float32(0x3fc00000)
8986
8987float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
8988{
8989    float_status *s = &env->vfp.standard_fp_status;
8990    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8991        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8992        if (!(float32_is_zero(a) || float32_is_zero(b))) {
8993            float_raise(float_flag_input_denormal, s);
8994        }
8995        return float32_two;
8996    }
8997    return float32_sub(float32_two, float32_mul(a, b, s), s);
8998}
8999
9000float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9001{
9002    float_status *s = &env->vfp.standard_fp_status;
9003    float32 product;
9004    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9005        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9006        if (!(float32_is_zero(a) || float32_is_zero(b))) {
9007            float_raise(float_flag_input_denormal, s);
9008        }
9009        return float32_one_point_five;
9010    }
9011    product = float32_mul(a, b, s);
9012    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9013}
9014
9015/* NEON helpers.  */
9016
9017/* Constants 256 and 512 are used in some helpers; we avoid relying on
9018 * int->float conversions at run-time.  */
9019#define float64_256 make_float64(0x4070000000000000LL)
9020#define float64_512 make_float64(0x4080000000000000LL)
9021#define float32_maxnorm make_float32(0x7f7fffff)
9022#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9023
9024/* Reciprocal functions
9025 *
9026 * The algorithm that must be used to calculate the estimate
9027 * is specified by the ARM ARM, see FPRecipEstimate()
9028 */
9029
9030static float64 recip_estimate(float64 a, float_status *real_fp_status)
9031{
9032    /* These calculations mustn't set any fp exception flags,
9033     * so we use a local copy of the fp_status.
9034     */
9035    float_status dummy_status = *real_fp_status;
9036    float_status *s = &dummy_status;
9037    /* q = (int)(a * 512.0) */
9038    float64 q = float64_mul(float64_512, a, s);
9039    int64_t q_int = float64_to_int64_round_to_zero(q, s);
9040
9041    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9042    q = int64_to_float64(q_int, s);
9043    q = float64_add(q, float64_half, s);
9044    q = float64_div(q, float64_512, s);
9045    q = float64_div(float64_one, q, s);
9046
9047    /* s = (int)(256.0 * r + 0.5) */
9048    q = float64_mul(q, float64_256, s);
9049    q = float64_add(q, float64_half, s);
9050    q_int = float64_to_int64_round_to_zero(q, s);
9051
9052    /* return (double)s / 256.0 */
9053    return float64_div(int64_to_float64(q_int, s), float64_256, s);
9054}
9055
9056/* Common wrapper to call recip_estimate */
9057static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9058{
9059    uint64_t val64 = float64_val(num);
9060    uint64_t frac = extract64(val64, 0, 52);
9061    int64_t exp = extract64(val64, 52, 11);
9062    uint64_t sbit;
9063    float64 scaled, estimate;
9064
9065    /* Generate the scaled number for the estimate function */
9066    if (exp == 0) {
9067        if (extract64(frac, 51, 1) == 0) {
9068            exp = -1;
9069            frac = extract64(frac, 0, 50) << 2;
9070        } else {
9071            frac = extract64(frac, 0, 51) << 1;
9072        }
9073    }
9074
9075    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9076    scaled = make_float64((0x3feULL << 52)
9077                          | extract64(frac, 44, 8) << 44);
9078
9079    estimate = recip_estimate(scaled, fpst);
9080
9081    /* Build new result */
9082    val64 = float64_val(estimate);
9083    sbit = 0x8000000000000000ULL & val64;
9084    exp = off - exp;
9085    frac = extract64(val64, 0, 52);
9086
9087    if (exp == 0) {
9088        frac = 1ULL << 51 | extract64(frac, 1, 51);
9089    } else if (exp == -1) {
9090        frac = 1ULL << 50 | extract64(frac, 2, 50);
9091        exp = 0;
9092    }
9093
9094    return make_float64(sbit | (exp << 52) | frac);
9095}
9096
9097static bool round_to_inf(float_status *fpst, bool sign_bit)
9098{
9099    switch (fpst->float_rounding_mode) {
9100    case float_round_nearest_even: /* Round to Nearest */
9101        return true;
9102    case float_round_up: /* Round to +Inf */
9103        return !sign_bit;
9104    case float_round_down: /* Round to -Inf */
9105        return sign_bit;
9106    case float_round_to_zero: /* Round to Zero */
9107        return false;
9108    }
9109
9110    g_assert_not_reached();
9111}
9112
9113float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9114{
9115    float_status *fpst = fpstp;
9116    float32 f32 = float32_squash_input_denormal(input, fpst);
9117    uint32_t f32_val = float32_val(f32);
9118    uint32_t f32_sbit = 0x80000000ULL & f32_val;
9119    int32_t f32_exp = extract32(f32_val, 23, 8);
9120    uint32_t f32_frac = extract32(f32_val, 0, 23);
9121    float64 f64, r64;
9122    uint64_t r64_val;
9123    int64_t r64_exp;
9124    uint64_t r64_frac;
9125
9126    if (float32_is_any_nan(f32)) {
9127        float32 nan = f32;
9128        if (float32_is_signaling_nan(f32, fpst)) {
9129            float_raise(float_flag_invalid, fpst);
9130            nan = float32_maybe_silence_nan(f32, fpst);
9131        }
9132        if (fpst->default_nan_mode) {
9133            nan =  float32_default_nan(fpst);
9134        }
9135        return nan;
9136    } else if (float32_is_infinity(f32)) {
9137        return float32_set_sign(float32_zero, float32_is_neg(f32));
9138    } else if (float32_is_zero(f32)) {
9139        float_raise(float_flag_divbyzero, fpst);
9140        return float32_set_sign(float32_infinity, float32_is_neg(f32));
9141    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9142        /* Abs(value) < 2.0^-128 */
9143        float_raise(float_flag_overflow | float_flag_inexact, fpst);
9144        if (round_to_inf(fpst, f32_sbit)) {
9145            return float32_set_sign(float32_infinity, float32_is_neg(f32));
9146        } else {
9147            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9148        }
9149    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9150        float_raise(float_flag_underflow, fpst);
9151        return float32_set_sign(float32_zero, float32_is_neg(f32));
9152    }
9153
9154
9155    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9156    r64 = call_recip_estimate(f64, 253, fpst);
9157    r64_val = float64_val(r64);
9158    r64_exp = extract64(r64_val, 52, 11);
9159    r64_frac = extract64(r64_val, 0, 52);
9160
9161    /* result = sign : result_exp<7:0> : fraction<51:29>; */
9162    return make_float32(f32_sbit |
9163                        (r64_exp & 0xff) << 23 |
9164                        extract64(r64_frac, 29, 24));
9165}
9166
9167float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9168{
9169    float_status *fpst = fpstp;
9170    float64 f64 = float64_squash_input_denormal(input, fpst);
9171    uint64_t f64_val = float64_val(f64);
9172    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9173    int64_t f64_exp = extract64(f64_val, 52, 11);
9174    float64 r64;
9175    uint64_t r64_val;
9176    int64_t r64_exp;
9177    uint64_t r64_frac;
9178
9179    /* Deal with any special cases */
9180    if (float64_is_any_nan(f64)) {
9181        float64 nan = f64;
9182        if (float64_is_signaling_nan(f64, fpst)) {
9183            float_raise(float_flag_invalid, fpst);
9184            nan = float64_maybe_silence_nan(f64, fpst);
9185        }
9186        if (fpst->default_nan_mode) {
9187            nan =  float64_default_nan(fpst);
9188        }
9189        return nan;
9190    } else if (float64_is_infinity(f64)) {
9191        return float64_set_sign(float64_zero, float64_is_neg(f64));
9192    } else if (float64_is_zero(f64)) {
9193        float_raise(float_flag_divbyzero, fpst);
9194        return float64_set_sign(float64_infinity, float64_is_neg(f64));
9195    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9196        /* Abs(value) < 2.0^-1024 */
9197        float_raise(float_flag_overflow | float_flag_inexact, fpst);
9198        if (round_to_inf(fpst, f64_sbit)) {
9199            return float64_set_sign(float64_infinity, float64_is_neg(f64));
9200        } else {
9201            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9202        }
9203    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9204        float_raise(float_flag_underflow, fpst);
9205        return float64_set_sign(float64_zero, float64_is_neg(f64));
9206    }
9207
9208    r64 = call_recip_estimate(f64, 2045, fpst);
9209    r64_val = float64_val(r64);
9210    r64_exp = extract64(r64_val, 52, 11);
9211    r64_frac = extract64(r64_val, 0, 52);
9212
9213    /* result = sign : result_exp<10:0> : fraction<51:0> */
9214    return make_float64(f64_sbit |
9215                        ((r64_exp & 0x7ff) << 52) |
9216                        r64_frac);
9217}
9218
9219/* The algorithm that must be used to calculate the estimate
9220 * is specified by the ARM ARM.
9221 */
9222static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9223{
9224    /* These calculations mustn't set any fp exception flags,
9225     * so we use a local copy of the fp_status.
9226     */
9227    float_status dummy_status = *real_fp_status;
9228    float_status *s = &dummy_status;
9229    float64 q;
9230    int64_t q_int;
9231
9232    if (float64_lt(a, float64_half, s)) {
9233        /* range 0.25 <= a < 0.5 */
9234
9235        /* a in units of 1/512 rounded down */
9236        /* q0 = (int)(a * 512.0);  */
9237        q = float64_mul(float64_512, a, s);
9238        q_int = float64_to_int64_round_to_zero(q, s);
9239
9240        /* reciprocal root r */
9241        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
9242        q = int64_to_float64(q_int, s);
9243        q = float64_add(q, float64_half, s);
9244        q = float64_div(q, float64_512, s);
9245        q = float64_sqrt(q, s);
9246        q = float64_div(float64_one, q, s);
9247    } else {
9248        /* range 0.5 <= a < 1.0 */
9249
9250        /* a in units of 1/256 rounded down */
9251        /* q1 = (int)(a * 256.0); */
9252        q = float64_mul(float64_256, a, s);
9253        int64_t q_int = float64_to_int64_round_to_zero(q, s);
9254
9255        /* reciprocal root r */
9256        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9257        q = int64_to_float64(q_int, s);
9258        q = float64_add(q, float64_half, s);
9259        q = float64_div(q, float64_256, s);
9260        q = float64_sqrt(q, s);
9261        q = float64_div(float64_one, q, s);
9262    }
9263    /* r in units of 1/256 rounded to nearest */
9264    /* s = (int)(256.0 * r + 0.5); */
9265
9266    q = float64_mul(q, float64_256,s );
9267    q = float64_add(q, float64_half, s);
9268    q_int = float64_to_int64_round_to_zero(q, s);
9269
9270    /* return (double)s / 256.0;*/
9271    return float64_div(int64_to_float64(q_int, s), float64_256, s);
9272}
9273
9274float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9275{
9276    float_status *s = fpstp;
9277    float32 f32 = float32_squash_input_denormal(input, s);
9278    uint32_t val = float32_val(f32);
9279    uint32_t f32_sbit = 0x80000000 & val;
9280    int32_t f32_exp = extract32(val, 23, 8);
9281    uint32_t f32_frac = extract32(val, 0, 23);
9282    uint64_t f64_frac;
9283    uint64_t val64;
9284    int result_exp;
9285    float64 f64;
9286
9287    if (float32_is_any_nan(f32)) {
9288        float32 nan = f32;
9289        if (float32_is_signaling_nan(f32, s)) {
9290            float_raise(float_flag_invalid, s);
9291            nan = float32_maybe_silence_nan(f32, s);
9292        }
9293        if (s->default_nan_mode) {
9294            nan =  float32_default_nan(s);
9295        }
9296        return nan;
9297    } else if (float32_is_zero(f32)) {
9298        float_raise(float_flag_divbyzero, s);
9299        return float32_set_sign(float32_infinity, float32_is_neg(f32));
9300    } else if (float32_is_neg(f32)) {
9301        float_raise(float_flag_invalid, s);
9302        return float32_default_nan(s);
9303    } else if (float32_is_infinity(f32)) {
9304        return float32_zero;
9305    }
9306
9307    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9308     * preserving the parity of the exponent.  */
9309
9310    f64_frac = ((uint64_t) f32_frac) << 29;
9311    if (f32_exp == 0) {
9312        while (extract64(f64_frac, 51, 1) == 0) {
9313            f64_frac = f64_frac << 1;
9314            f32_exp = f32_exp-1;
9315        }
9316        f64_frac = extract64(f64_frac, 0, 51) << 1;
9317    }
9318
9319    if (extract64(f32_exp, 0, 1) == 0) {
9320        f64 = make_float64(((uint64_t) f32_sbit) << 32
9321                           | (0x3feULL << 52)
9322                           | f64_frac);
9323    } else {
9324        f64 = make_float64(((uint64_t) f32_sbit) << 32
9325                           | (0x3fdULL << 52)
9326                           | f64_frac);
9327    }
9328
9329    result_exp = (380 - f32_exp) / 2;
9330
9331    f64 = recip_sqrt_estimate(f64, s);
9332
9333    val64 = float64_val(f64);
9334
9335    val = ((result_exp & 0xff) << 23)
9336        | ((val64 >> 29)  & 0x7fffff);
9337    return make_float32(val);
9338}
9339
9340float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9341{
9342    float_status *s = fpstp;
9343    float64 f64 = float64_squash_input_denormal(input, s);
9344    uint64_t val = float64_val(f64);
9345    uint64_t f64_sbit = 0x8000000000000000ULL & val;
9346    int64_t f64_exp = extract64(val, 52, 11);
9347    uint64_t f64_frac = extract64(val, 0, 52);
9348    int64_t result_exp;
9349    uint64_t result_frac;
9350
9351    if (float64_is_any_nan(f64)) {
9352        float64 nan = f64;
9353        if (float64_is_signaling_nan(f64, s)) {
9354            float_raise(float_flag_invalid, s);
9355            nan = float64_maybe_silence_nan(f64, s);
9356        }
9357        if (s->default_nan_mode) {
9358            nan =  float64_default_nan(s);
9359        }
9360        return nan;
9361    } else if (float64_is_zero(f64)) {
9362        float_raise(float_flag_divbyzero, s);
9363        return float64_set_sign(float64_infinity, float64_is_neg(f64));
9364    } else if (float64_is_neg(f64)) {
9365        float_raise(float_flag_invalid, s);
9366        return float64_default_nan(s);
9367    } else if (float64_is_infinity(f64)) {
9368        return float64_zero;
9369    }
9370
9371    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9372     * preserving the parity of the exponent.  */
9373
9374    if (f64_exp == 0) {
9375        while (extract64(f64_frac, 51, 1) == 0) {
9376            f64_frac = f64_frac << 1;
9377            f64_exp = f64_exp - 1;
9378        }
9379        f64_frac = extract64(f64_frac, 0, 51) << 1;
9380    }
9381
9382    if (extract64(f64_exp, 0, 1) == 0) {
9383        f64 = make_float64(f64_sbit
9384                           | (0x3feULL << 52)
9385                           | f64_frac);
9386    } else {
9387        f64 = make_float64(f64_sbit
9388                           | (0x3fdULL << 52)
9389                           | f64_frac);
9390    }
9391
9392    result_exp = (3068 - f64_exp) / 2;
9393
9394    f64 = recip_sqrt_estimate(f64, s);
9395
9396    result_frac = extract64(float64_val(f64), 0, 52);
9397
9398    return make_float64(f64_sbit |
9399                        ((result_exp & 0x7ff) << 52) |
9400                        result_frac);
9401}
9402
9403uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9404{
9405    float_status *s = fpstp;
9406    float64 f64;
9407
9408    if ((a & 0x80000000) == 0) {
9409        return 0xffffffff;
9410    }
9411
9412    f64 = make_float64((0x3feULL << 52)
9413                       | ((int64_t)(a & 0x7fffffff) << 21));
9414
9415    f64 = recip_estimate(f64, s);
9416
9417    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9418}
9419
9420uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9421{
9422    float_status *fpst = fpstp;
9423    float64 f64;
9424
9425    if ((a & 0xc0000000) == 0) {
9426        return 0xffffffff;
9427    }
9428
9429    if (a & 0x80000000) {
9430        f64 = make_float64((0x3feULL << 52)
9431                           | ((uint64_t)(a & 0x7fffffff) << 21));
9432    } else { /* bits 31-30 == '01' */
9433        f64 = make_float64((0x3fdULL << 52)
9434                           | ((uint64_t)(a & 0x3fffffff) << 22));
9435    }
9436
9437    f64 = recip_sqrt_estimate(f64, fpst);
9438
9439    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9440}
9441
9442/* VFPv4 fused multiply-accumulate */
9443float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9444{
9445    float_status *fpst = fpstp;
9446    return float32_muladd(a, b, c, 0, fpst);
9447}
9448
9449float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9450{
9451    float_status *fpst = fpstp;
9452    return float64_muladd(a, b, c, 0, fpst);
9453}
9454
9455/* ARMv8 round to integral */
9456float32 HELPER(rints_exact)(float32 x, void *fp_status)
9457{
9458    return float32_round_to_int(x, fp_status);
9459}
9460
9461float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9462{
9463    return float64_round_to_int(x, fp_status);
9464}
9465
9466float32 HELPER(rints)(float32 x, void *fp_status)
9467{
9468    int old_flags = get_float_exception_flags(fp_status), new_flags;
9469    float32 ret;
9470
9471    ret = float32_round_to_int(x, fp_status);
9472
9473    /* Suppress any inexact exceptions the conversion produced */
9474    if (!(old_flags & float_flag_inexact)) {
9475        new_flags = get_float_exception_flags(fp_status);
9476        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9477    }
9478
9479    return ret;
9480}
9481
9482float64 HELPER(rintd)(float64 x, void *fp_status)
9483{
9484    int old_flags = get_float_exception_flags(fp_status), new_flags;
9485    float64 ret;
9486
9487    ret = float64_round_to_int(x, fp_status);
9488
9489    new_flags = get_float_exception_flags(fp_status);
9490
9491    /* Suppress any inexact exceptions the conversion produced */
9492    if (!(old_flags & float_flag_inexact)) {
9493        new_flags = get_float_exception_flags(fp_status);
9494        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9495    }
9496
9497    return ret;
9498}
9499
9500/* Convert ARM rounding mode to softfloat */
9501int arm_rmode_to_sf(int rmode)
9502{
9503    switch (rmode) {
9504    case FPROUNDING_TIEAWAY:
9505        rmode = float_round_ties_away;
9506        break;
9507    case FPROUNDING_ODD:
9508        /* FIXME: add support for TIEAWAY and ODD */
9509        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9510                      rmode);
9511    case FPROUNDING_TIEEVEN:
9512    default:
9513        rmode = float_round_nearest_even;
9514        break;
9515    case FPROUNDING_POSINF:
9516        rmode = float_round_up;
9517        break;
9518    case FPROUNDING_NEGINF:
9519        rmode = float_round_down;
9520        break;
9521    case FPROUNDING_ZERO:
9522        rmode = float_round_to_zero;
9523        break;
9524    }
9525    return rmode;
9526}
9527
9528/* CRC helpers.
9529 * The upper bytes of val (above the number specified by 'bytes') must have
9530 * been zeroed out by the caller.
9531 */
9532uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9533{
9534    uint8_t buf[4];
9535
9536    stl_le_p(buf, val);
9537
9538    /* zlib crc32 converts the accumulator and output to one's complement.  */
9539    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9540}
9541
9542uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9543{
9544    uint8_t buf[4];
9545
9546    stl_le_p(buf, val);
9547
9548    /* Linux crc32c converts the output to one's complement.  */
9549    return crc32c(acc, buf, bytes) ^ 0xffffffff;
9550}
9551