qemu/target-arm/kvm64.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks, 64 bit specific code
   3 *
   4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
   5 * Copyright Alex Bennée 2014, Linaro
   6 *
   7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   8 * See the COPYING file in the top-level directory.
   9 *
  10 */
  11
  12#include "qemu/osdep.h"
  13#include <sys/ioctl.h>
  14#include <sys/ptrace.h>
  15
  16#include <linux/elf.h>
  17#include <linux/kvm.h>
  18
  19#include "qemu-common.h"
  20#include "cpu.h"
  21#include "qemu/timer.h"
  22#include "qemu/error-report.h"
  23#include "qemu/host-utils.h"
  24#include "exec/gdbstub.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/kvm.h"
  27#include "kvm_arm.h"
  28#include "internals.h"
  29#include "hw/arm/arm.h"
  30
  31static bool have_guest_debug;
  32
  33/*
  34 * Although the ARM implementation of hardware assisted debugging
  35 * allows for different breakpoints per-core, the current GDB
  36 * interface treats them as a global pool of registers (which seems to
  37 * be the case for x86, ppc and s390). As a result we store one copy
  38 * of registers which is used for all active cores.
  39 *
  40 * Write access is serialised by virtue of the GDB protocol which
  41 * updates things. Read access (i.e. when the values are copied to the
  42 * vCPU) is also gated by GDB's run control.
  43 *
  44 * This is not unreasonable as most of the time debugging kernels you
  45 * never know which core will eventually execute your function.
  46 */
  47
  48typedef struct {
  49    uint64_t bcr;
  50    uint64_t bvr;
  51} HWBreakpoint;
  52
  53/* The watchpoint registers can cover more area than the requested
  54 * watchpoint so we need to store the additional information
  55 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
  56 * when the watchpoint is hit.
  57 */
  58typedef struct {
  59    uint64_t wcr;
  60    uint64_t wvr;
  61    CPUWatchpoint details;
  62} HWWatchpoint;
  63
  64/* Maximum and current break/watch point counts */
  65int max_hw_bps, max_hw_wps;
  66GArray *hw_breakpoints, *hw_watchpoints;
  67
  68#define cur_hw_wps      (hw_watchpoints->len)
  69#define cur_hw_bps      (hw_breakpoints->len)
  70#define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
  71#define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
  72
  73/**
  74 * kvm_arm_init_debug() - check for guest debug capabilities
  75 * @cs: CPUState
  76 *
  77 * kvm_check_extension returns the number of debug registers we have
  78 * or 0 if we have none.
  79 *
  80 */
  81static void kvm_arm_init_debug(CPUState *cs)
  82{
  83    have_guest_debug = kvm_check_extension(cs->kvm_state,
  84                                           KVM_CAP_SET_GUEST_DEBUG);
  85
  86    max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
  87    hw_watchpoints = g_array_sized_new(true, true,
  88                                       sizeof(HWWatchpoint), max_hw_wps);
  89
  90    max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
  91    hw_breakpoints = g_array_sized_new(true, true,
  92                                       sizeof(HWBreakpoint), max_hw_bps);
  93    return;
  94}
  95
  96/**
  97 * insert_hw_breakpoint()
  98 * @addr: address of breakpoint
  99 *
 100 * See ARM ARM D2.9.1 for details but here we are only going to create
 101 * simple un-linked breakpoints (i.e. we don't chain breakpoints
 102 * together to match address and context or vmid). The hardware is
 103 * capable of fancier matching but that will require exposing that
 104 * fanciness to GDB's interface
 105 *
 106 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
 107 *
 108 *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 109 * +------+------+-------+-----+----+------+-----+------+-----+---+
 110 * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 111 * +------+------+-------+-----+----+------+-----+------+-----+---+
 112 *
 113 * BT: Breakpoint type (0 = unlinked address match)
 114 * LBN: Linked BP number (0 = unused)
 115 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 116 * BAS: Byte Address Select (RES1 for AArch64)
 117 * E: Enable bit
 118 */
 119static int insert_hw_breakpoint(target_ulong addr)
 120{
 121    HWBreakpoint brk = {
 122        .bcr = 0x1,                             /* BCR E=1, enable */
 123        .bvr = addr
 124    };
 125
 126    if (cur_hw_bps >= max_hw_bps) {
 127        return -ENOBUFS;
 128    }
 129
 130    brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
 131    brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
 132
 133    g_array_append_val(hw_breakpoints, brk);
 134
 135    return 0;
 136}
 137
 138/**
 139 * delete_hw_breakpoint()
 140 * @pc: address of breakpoint
 141 *
 142 * Delete a breakpoint and shuffle any above down
 143 */
 144
 145static int delete_hw_breakpoint(target_ulong pc)
 146{
 147    int i;
 148    for (i = 0; i < hw_breakpoints->len; i++) {
 149        HWBreakpoint *brk = get_hw_bp(i);
 150        if (brk->bvr == pc) {
 151            g_array_remove_index(hw_breakpoints, i);
 152            return 0;
 153        }
 154    }
 155    return -ENOENT;
 156}
 157
 158/**
 159 * insert_hw_watchpoint()
 160 * @addr: address of watch point
 161 * @len: size of area
 162 * @type: type of watch point
 163 *
 164 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 165 * stuff if we want to. The watch points can be linked with the break
 166 * points above to make them context aware. However for simplicity
 167 * currently we only deal with simple read/write watch points.
 168 *
 169 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 170 *
 171 *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 172 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 173 * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 174 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 175 *
 176 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 177 * WT: 0 - unlinked, 1 - linked (not currently used)
 178 * LBN: Linked BP number (not currently used)
 179 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 180 * BAS: Byte Address Select
 181 * LSC: Load/Store control (01: load, 10: store, 11: both)
 182 * E: Enable
 183 *
 184 * The bottom 2 bits of the value register are masked. Therefore to
 185 * break on any sizes smaller than an unaligned word you need to set
 186 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 187 * need to ensure you mask the address as required and set BAS=0xff
 188 */
 189
 190static int insert_hw_watchpoint(target_ulong addr,
 191                                target_ulong len, int type)
 192{
 193    HWWatchpoint wp = {
 194        .wcr = 1, /* E=1, enable */
 195        .wvr = addr & (~0x7ULL),
 196        .details = { .vaddr = addr, .len = len }
 197    };
 198
 199    if (cur_hw_wps >= max_hw_wps) {
 200        return -ENOBUFS;
 201    }
 202
 203    /*
 204     * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
 205     * valid whether EL3 is implemented or not
 206     */
 207    wp.wcr = deposit32(wp.wcr, 1, 2, 3);
 208
 209    switch (type) {
 210    case GDB_WATCHPOINT_READ:
 211        wp.wcr = deposit32(wp.wcr, 3, 2, 1);
 212        wp.details.flags = BP_MEM_READ;
 213        break;
 214    case GDB_WATCHPOINT_WRITE:
 215        wp.wcr = deposit32(wp.wcr, 3, 2, 2);
 216        wp.details.flags = BP_MEM_WRITE;
 217        break;
 218    case GDB_WATCHPOINT_ACCESS:
 219        wp.wcr = deposit32(wp.wcr, 3, 2, 3);
 220        wp.details.flags = BP_MEM_ACCESS;
 221        break;
 222    default:
 223        g_assert_not_reached();
 224        break;
 225    }
 226    if (len <= 8) {
 227        /* we align the address and set the bits in BAS */
 228        int off = addr & 0x7;
 229        int bas = (1 << len) - 1;
 230
 231        wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
 232    } else {
 233        /* For ranges above 8 bytes we need to be a power of 2 */
 234        if (is_power_of_2(len)) {
 235            int bits = ctz64(len);
 236
 237            wp.wvr &= ~((1 << bits) - 1);
 238            wp.wcr = deposit32(wp.wcr, 24, 4, bits);
 239            wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
 240        } else {
 241            return -ENOBUFS;
 242        }
 243    }
 244
 245    g_array_append_val(hw_watchpoints, wp);
 246    return 0;
 247}
 248
 249
 250static bool check_watchpoint_in_range(int i, target_ulong addr)
 251{
 252    HWWatchpoint *wp = get_hw_wp(i);
 253    uint64_t addr_top, addr_bottom = wp->wvr;
 254    int bas = extract32(wp->wcr, 5, 8);
 255    int mask = extract32(wp->wcr, 24, 4);
 256
 257    if (mask) {
 258        addr_top = addr_bottom + (1 << mask);
 259    } else {
 260        /* BAS must be contiguous but can offset against the base
 261         * address in DBGWVR */
 262        addr_bottom = addr_bottom + ctz32(bas);
 263        addr_top = addr_bottom + clo32(bas);
 264    }
 265
 266    if (addr >= addr_bottom && addr <= addr_top) {
 267        return true;
 268    }
 269
 270    return false;
 271}
 272
 273/**
 274 * delete_hw_watchpoint()
 275 * @addr: address of breakpoint
 276 *
 277 * Delete a breakpoint and shuffle any above down
 278 */
 279
 280static int delete_hw_watchpoint(target_ulong addr,
 281                                target_ulong len, int type)
 282{
 283    int i;
 284    for (i = 0; i < cur_hw_wps; i++) {
 285        if (check_watchpoint_in_range(i, addr)) {
 286            g_array_remove_index(hw_watchpoints, i);
 287            return 0;
 288        }
 289    }
 290    return -ENOENT;
 291}
 292
 293
 294int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 295                                  target_ulong len, int type)
 296{
 297    switch (type) {
 298    case GDB_BREAKPOINT_HW:
 299        return insert_hw_breakpoint(addr);
 300        break;
 301    case GDB_WATCHPOINT_READ:
 302    case GDB_WATCHPOINT_WRITE:
 303    case GDB_WATCHPOINT_ACCESS:
 304        return insert_hw_watchpoint(addr, len, type);
 305    default:
 306        return -ENOSYS;
 307    }
 308}
 309
 310int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 311                                  target_ulong len, int type)
 312{
 313    switch (type) {
 314    case GDB_BREAKPOINT_HW:
 315        return delete_hw_breakpoint(addr);
 316        break;
 317    case GDB_WATCHPOINT_READ:
 318    case GDB_WATCHPOINT_WRITE:
 319    case GDB_WATCHPOINT_ACCESS:
 320        return delete_hw_watchpoint(addr, len, type);
 321    default:
 322        return -ENOSYS;
 323    }
 324}
 325
 326
 327void kvm_arch_remove_all_hw_breakpoints(void)
 328{
 329    if (cur_hw_wps > 0) {
 330        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
 331    }
 332    if (cur_hw_bps > 0) {
 333        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
 334    }
 335}
 336
 337void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 338{
 339    int i;
 340    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
 341
 342    for (i = 0; i < max_hw_wps; i++) {
 343        HWWatchpoint *wp = get_hw_wp(i);
 344        ptr->dbg_wcr[i] = wp->wcr;
 345        ptr->dbg_wvr[i] = wp->wvr;
 346    }
 347    for (i = 0; i < max_hw_bps; i++) {
 348        HWBreakpoint *bp = get_hw_bp(i);
 349        ptr->dbg_bcr[i] = bp->bcr;
 350        ptr->dbg_bvr[i] = bp->bvr;
 351    }
 352}
 353
 354bool kvm_arm_hw_debug_active(CPUState *cs)
 355{
 356    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
 357}
 358
 359static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
 360{
 361    int i;
 362
 363    for (i = 0; i < cur_hw_bps; i++) {
 364        HWBreakpoint *bp = get_hw_bp(i);
 365        if (bp->bvr == pc) {
 366            return true;
 367        }
 368    }
 369    return false;
 370}
 371
 372static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
 373{
 374    int i;
 375
 376    for (i = 0; i < cur_hw_wps; i++) {
 377        if (check_watchpoint_in_range(i, addr)) {
 378            return &get_hw_wp(i)->details;
 379        }
 380    }
 381    return NULL;
 382}
 383
 384static bool kvm_arm_pmu_support_ctrl(CPUState *cs, struct kvm_device_attr *attr)
 385{
 386    return kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr) == 0;
 387}
 388
 389int kvm_arm_pmu_create(CPUState *cs, int irq)
 390{
 391    int err;
 392
 393    struct kvm_device_attr attr = {
 394        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
 395        .addr = (intptr_t)&irq,
 396        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
 397        .flags = 0,
 398    };
 399
 400    if (!kvm_arm_pmu_support_ctrl(cs, &attr)) {
 401        return 0;
 402    }
 403
 404    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
 405    if (err < 0) {
 406        fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
 407                strerror(-err));
 408        abort();
 409    }
 410
 411    attr.group = KVM_ARM_VCPU_PMU_V3_CTRL;
 412    attr.attr = KVM_ARM_VCPU_PMU_V3_INIT;
 413    attr.addr = 0;
 414    attr.flags = 0;
 415
 416    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
 417    if (err < 0) {
 418        fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
 419                strerror(-err));
 420        abort();
 421    }
 422
 423    return 1;
 424}
 425
 426static inline void set_feature(uint64_t *features, int feature)
 427{
 428    *features |= 1ULL << feature;
 429}
 430
 431bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 432{
 433    /* Identify the feature bits corresponding to the host CPU, and
 434     * fill out the ARMHostCPUClass fields accordingly. To do this
 435     * we have to create a scratch VM, create a single CPU inside it,
 436     * and then query that CPU for the relevant ID registers.
 437     * For AArch64 we currently don't care about ID registers at
 438     * all; we just want to know the CPU type.
 439     */
 440    int fdarray[3];
 441    uint64_t features = 0;
 442    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 443     * we know these will only support creating one kind of guest CPU,
 444     * which is its preferred CPU type. Fortunately these old kernels
 445     * support only a very limited number of CPUs.
 446     */
 447    static const uint32_t cpus_to_try[] = {
 448        KVM_ARM_TARGET_AEM_V8,
 449        KVM_ARM_TARGET_FOUNDATION_V8,
 450        KVM_ARM_TARGET_CORTEX_A57,
 451        QEMU_KVM_ARM_TARGET_NONE
 452    };
 453    struct kvm_vcpu_init init;
 454
 455    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 456        return false;
 457    }
 458
 459    ahcc->target = init.target;
 460    ahcc->dtb_compatible = "arm,arm-v8";
 461
 462    kvm_arm_destroy_scratch_host_vcpu(fdarray);
 463
 464   /* We can assume any KVM supporting CPU is at least a v8
 465     * with VFPv4+Neon; this in turn implies most of the other
 466     * feature bits.
 467     */
 468    set_feature(&features, ARM_FEATURE_V8);
 469    set_feature(&features, ARM_FEATURE_VFP4);
 470    set_feature(&features, ARM_FEATURE_NEON);
 471    set_feature(&features, ARM_FEATURE_AARCH64);
 472
 473    ahcc->features = features;
 474
 475    return true;
 476}
 477
 478#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
 479
 480int kvm_arch_init_vcpu(CPUState *cs)
 481{
 482    int ret;
 483    uint64_t mpidr;
 484    ARMCPU *cpu = ARM_CPU(cs);
 485
 486    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 487        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
 488        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 489        return -EINVAL;
 490    }
 491
 492    /* Determine init features for this CPU */
 493    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 494    if (cpu->start_powered_off) {
 495        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 496    }
 497    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 498        cpu->psci_version = 2;
 499        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 500    }
 501    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 502        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
 503    }
 504    if (kvm_irqchip_in_kernel() &&
 505        kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
 506        cpu->has_pmu = true;
 507        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
 508    }
 509
 510    /* Do KVM_ARM_VCPU_INIT ioctl */
 511    ret = kvm_arm_vcpu_init(cs);
 512    if (ret) {
 513        return ret;
 514    }
 515
 516    /*
 517     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 518     * Currently KVM has its own idea about MPIDR assignment, so we
 519     * override our defaults with what we get from KVM.
 520     */
 521    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
 522    if (ret) {
 523        return ret;
 524    }
 525    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
 526
 527    kvm_arm_init_debug(cs);
 528
 529    return kvm_arm_init_cpreg_list(cpu);
 530}
 531
 532bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 533{
 534    /* Return true if the regidx is a register we should synchronize
 535     * via the cpreg_tuples array (ie is not a core reg we sync by
 536     * hand in kvm_arch_get/put_registers())
 537     */
 538    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 539    case KVM_REG_ARM_CORE:
 540        return false;
 541    default:
 542        return true;
 543    }
 544}
 545
 546typedef struct CPRegStateLevel {
 547    uint64_t regidx;
 548    int level;
 549} CPRegStateLevel;
 550
 551/* All system registers not listed in the following table are assumed to be
 552 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 553 * often, you must add it to this table with a state of either
 554 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 555 */
 556static const CPRegStateLevel non_runtime_cpregs[] = {
 557    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 558};
 559
 560int kvm_arm_cpreg_level(uint64_t regidx)
 561{
 562    int i;
 563
 564    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 565        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 566        if (l->regidx == regidx) {
 567            return l->level;
 568        }
 569    }
 570
 571    return KVM_PUT_RUNTIME_STATE;
 572}
 573
 574#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 575                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 576
 577#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
 578                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 579
 580#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
 581                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 582
 583int kvm_arch_put_registers(CPUState *cs, int level)
 584{
 585    struct kvm_one_reg reg;
 586    uint32_t fpr;
 587    uint64_t val;
 588    int i;
 589    int ret;
 590    unsigned int el;
 591
 592    ARMCPU *cpu = ARM_CPU(cs);
 593    CPUARMState *env = &cpu->env;
 594
 595    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
 596     * AArch64 registers before pushing them out to 64-bit KVM.
 597     */
 598    if (!is_a64(env)) {
 599        aarch64_sync_32_to_64(env);
 600    }
 601
 602    for (i = 0; i < 31; i++) {
 603        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 604        reg.addr = (uintptr_t) &env->xregs[i];
 605        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 606        if (ret) {
 607            return ret;
 608        }
 609    }
 610
 611    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 612     * QEMU side we keep the current SP in xregs[31] as well.
 613     */
 614    aarch64_save_sp(env, 1);
 615
 616    reg.id = AARCH64_CORE_REG(regs.sp);
 617    reg.addr = (uintptr_t) &env->sp_el[0];
 618    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 619    if (ret) {
 620        return ret;
 621    }
 622
 623    reg.id = AARCH64_CORE_REG(sp_el1);
 624    reg.addr = (uintptr_t) &env->sp_el[1];
 625    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 626    if (ret) {
 627        return ret;
 628    }
 629
 630    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 631    if (is_a64(env)) {
 632        val = pstate_read(env);
 633    } else {
 634        val = cpsr_read(env);
 635    }
 636    reg.id = AARCH64_CORE_REG(regs.pstate);
 637    reg.addr = (uintptr_t) &val;
 638    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 639    if (ret) {
 640        return ret;
 641    }
 642
 643    reg.id = AARCH64_CORE_REG(regs.pc);
 644    reg.addr = (uintptr_t) &env->pc;
 645    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 646    if (ret) {
 647        return ret;
 648    }
 649
 650    reg.id = AARCH64_CORE_REG(elr_el1);
 651    reg.addr = (uintptr_t) &env->elr_el[1];
 652    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 653    if (ret) {
 654        return ret;
 655    }
 656
 657    /* Saved Program State Registers
 658     *
 659     * Before we restore from the banked_spsr[] array we need to
 660     * ensure that any modifications to env->spsr are correctly
 661     * reflected in the banks.
 662     */
 663    el = arm_current_el(env);
 664    if (el > 0 && !is_a64(env)) {
 665        i = bank_number(env->uncached_cpsr & CPSR_M);
 666        env->banked_spsr[i] = env->spsr;
 667    }
 668
 669    /* KVM 0-4 map to QEMU banks 1-5 */
 670    for (i = 0; i < KVM_NR_SPSR; i++) {
 671        reg.id = AARCH64_CORE_REG(spsr[i]);
 672        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 673        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 674        if (ret) {
 675            return ret;
 676        }
 677    }
 678
 679    /* Advanced SIMD and FP registers
 680     * We map Qn = regs[2n+1]:regs[2n]
 681     */
 682    for (i = 0; i < 32; i++) {
 683        int rd = i << 1;
 684        uint64_t fp_val[2];
 685#ifdef HOST_WORDS_BIGENDIAN
 686        fp_val[0] = env->vfp.regs[rd + 1];
 687        fp_val[1] = env->vfp.regs[rd];
 688#else
 689        fp_val[1] = env->vfp.regs[rd + 1];
 690        fp_val[0] = env->vfp.regs[rd];
 691#endif
 692        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 693        reg.addr = (uintptr_t)(&fp_val);
 694        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 695        if (ret) {
 696            return ret;
 697        }
 698    }
 699
 700    reg.addr = (uintptr_t)(&fpr);
 701    fpr = vfp_get_fpsr(env);
 702    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 703    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 704    if (ret) {
 705        return ret;
 706    }
 707
 708    fpr = vfp_get_fpcr(env);
 709    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 710    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 711    if (ret) {
 712        return ret;
 713    }
 714
 715    if (!write_list_to_kvmstate(cpu, level)) {
 716        return EINVAL;
 717    }
 718
 719    kvm_arm_sync_mpstate_to_kvm(cpu);
 720
 721    return ret;
 722}
 723
 724int kvm_arch_get_registers(CPUState *cs)
 725{
 726    struct kvm_one_reg reg;
 727    uint64_t val;
 728    uint32_t fpr;
 729    unsigned int el;
 730    int i;
 731    int ret;
 732
 733    ARMCPU *cpu = ARM_CPU(cs);
 734    CPUARMState *env = &cpu->env;
 735
 736    for (i = 0; i < 31; i++) {
 737        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 738        reg.addr = (uintptr_t) &env->xregs[i];
 739        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 740        if (ret) {
 741            return ret;
 742        }
 743    }
 744
 745    reg.id = AARCH64_CORE_REG(regs.sp);
 746    reg.addr = (uintptr_t) &env->sp_el[0];
 747    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 748    if (ret) {
 749        return ret;
 750    }
 751
 752    reg.id = AARCH64_CORE_REG(sp_el1);
 753    reg.addr = (uintptr_t) &env->sp_el[1];
 754    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 755    if (ret) {
 756        return ret;
 757    }
 758
 759    reg.id = AARCH64_CORE_REG(regs.pstate);
 760    reg.addr = (uintptr_t) &val;
 761    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 762    if (ret) {
 763        return ret;
 764    }
 765
 766    env->aarch64 = ((val & PSTATE_nRW) == 0);
 767    if (is_a64(env)) {
 768        pstate_write(env, val);
 769    } else {
 770        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
 771    }
 772
 773    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 774     * QEMU side we keep the current SP in xregs[31] as well.
 775     */
 776    aarch64_restore_sp(env, 1);
 777
 778    reg.id = AARCH64_CORE_REG(regs.pc);
 779    reg.addr = (uintptr_t) &env->pc;
 780    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 781    if (ret) {
 782        return ret;
 783    }
 784
 785    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
 786     * incoming AArch64 regs received from 64-bit KVM.
 787     * We must perform this after all of the registers have been acquired from
 788     * the kernel.
 789     */
 790    if (!is_a64(env)) {
 791        aarch64_sync_64_to_32(env);
 792    }
 793
 794    reg.id = AARCH64_CORE_REG(elr_el1);
 795    reg.addr = (uintptr_t) &env->elr_el[1];
 796    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 797    if (ret) {
 798        return ret;
 799    }
 800
 801    /* Fetch the SPSR registers
 802     *
 803     * KVM SPSRs 0-4 map to QEMU banks 1-5
 804     */
 805    for (i = 0; i < KVM_NR_SPSR; i++) {
 806        reg.id = AARCH64_CORE_REG(spsr[i]);
 807        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 808        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 809        if (ret) {
 810            return ret;
 811        }
 812    }
 813
 814    el = arm_current_el(env);
 815    if (el > 0 && !is_a64(env)) {
 816        i = bank_number(env->uncached_cpsr & CPSR_M);
 817        env->spsr = env->banked_spsr[i];
 818    }
 819
 820    /* Advanced SIMD and FP registers
 821     * We map Qn = regs[2n+1]:regs[2n]
 822     */
 823    for (i = 0; i < 32; i++) {
 824        uint64_t fp_val[2];
 825        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 826        reg.addr = (uintptr_t)(&fp_val);
 827        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 828        if (ret) {
 829            return ret;
 830        } else {
 831            int rd = i << 1;
 832#ifdef HOST_WORDS_BIGENDIAN
 833            env->vfp.regs[rd + 1] = fp_val[0];
 834            env->vfp.regs[rd] = fp_val[1];
 835#else
 836            env->vfp.regs[rd + 1] = fp_val[1];
 837            env->vfp.regs[rd] = fp_val[0];
 838#endif
 839        }
 840    }
 841
 842    reg.addr = (uintptr_t)(&fpr);
 843    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 844    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 845    if (ret) {
 846        return ret;
 847    }
 848    vfp_set_fpsr(env, fpr);
 849
 850    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 851    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 852    if (ret) {
 853        return ret;
 854    }
 855    vfp_set_fpcr(env, fpr);
 856
 857    if (!write_kvmstate_to_list(cpu)) {
 858        return EINVAL;
 859    }
 860    /* Note that it's OK to have registers which aren't in CPUState,
 861     * so we can ignore a failure return here.
 862     */
 863    write_list_to_cpustate(cpu);
 864
 865    kvm_arm_sync_mpstate_to_qemu(cpu);
 866
 867    /* TODO: other registers */
 868    return ret;
 869}
 870
 871/* C6.6.29 BRK instruction */
 872static const uint32_t brk_insn = 0xd4200000;
 873
 874int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 875{
 876    if (have_guest_debug) {
 877        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
 878            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
 879            return -EINVAL;
 880        }
 881        return 0;
 882    } else {
 883        error_report("guest debug not supported on this kernel");
 884        return -EINVAL;
 885    }
 886}
 887
 888int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 889{
 890    static uint32_t brk;
 891
 892    if (have_guest_debug) {
 893        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
 894            brk != brk_insn ||
 895            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
 896            return -EINVAL;
 897        }
 898        return 0;
 899    } else {
 900        error_report("guest debug not supported on this kernel");
 901        return -EINVAL;
 902    }
 903}
 904
 905/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
 906 *
 907 * To minimise translating between kernel and user-space the kernel
 908 * ABI just provides user-space with the full exception syndrome
 909 * register value to be decoded in QEMU.
 910 */
 911
 912bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 913{
 914    int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
 915    ARMCPU *cpu = ARM_CPU(cs);
 916    CPUClass *cc = CPU_GET_CLASS(cs);
 917    CPUARMState *env = &cpu->env;
 918
 919    /* Ensure PC is synchronised */
 920    kvm_cpu_synchronize_state(cs);
 921
 922    switch (hsr_ec) {
 923    case EC_SOFTWARESTEP:
 924        if (cs->singlestep_enabled) {
 925            return true;
 926        } else {
 927            /*
 928             * The kernel should have suppressed the guest's ability to
 929             * single step at this point so something has gone wrong.
 930             */
 931            error_report("%s: guest single-step while debugging unsupported"
 932                         " (%"PRIx64", %"PRIx32")\n",
 933                         __func__, env->pc, debug_exit->hsr);
 934            return false;
 935        }
 936        break;
 937    case EC_AA64_BKPT:
 938        if (kvm_find_sw_breakpoint(cs, env->pc)) {
 939            return true;
 940        }
 941        break;
 942    case EC_BREAKPOINT:
 943        if (find_hw_breakpoint(cs, env->pc)) {
 944            return true;
 945        }
 946        break;
 947    case EC_WATCHPOINT:
 948    {
 949        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
 950        if (wp) {
 951            cs->watchpoint_hit = wp;
 952            return true;
 953        }
 954        break;
 955    }
 956    default:
 957        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
 958                     __func__, debug_exit->hsr, env->pc);
 959    }
 960
 961    /* If we are not handling the debug exception it must belong to
 962     * the guest. Let's re-use the existing TCG interrupt code to set
 963     * everything up properly.
 964     */
 965    cs->exception_index = EXCP_BKPT;
 966    env->exception.syndrome = debug_exit->hsr;
 967    env->exception.vaddress = debug_exit->far;
 968    cc->do_interrupt(cs);
 969
 970    return false;
 971}
 972