qemu/hw/block/fdc.c
<<
>>
Prefs
   1/*
   2 * QEMU Floppy disk emulator (Intel 82078)
   3 *
   4 * Copyright (c) 2003, 2007 Jocelyn Mayer
   5 * Copyright (c) 2008 Hervé Poussineau
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25/*
  26 * The controller is used in Sun4m systems in a slightly different
  27 * way. There are changes in DOR register and DMA is not available.
  28 */
  29
  30#include "qemu/osdep.h"
  31#include "hw/hw.h"
  32#include "hw/block/fdc.h"
  33#include "qapi/error.h"
  34#include "qemu/error-report.h"
  35#include "qemu/timer.h"
  36#include "hw/isa/isa.h"
  37#include "hw/sysbus.h"
  38#include "sysemu/block-backend.h"
  39#include "sysemu/blockdev.h"
  40#include "sysemu/sysemu.h"
  41#include "qemu/log.h"
  42
  43/********************************************************/
  44/* debug Floppy devices */
  45
  46#define DEBUG_FLOPPY 0
  47
  48#define FLOPPY_DPRINTF(fmt, ...)                                \
  49    do {                                                        \
  50        if (DEBUG_FLOPPY) {                                     \
  51            fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
  52        }                                                       \
  53    } while (0)
  54
  55/********************************************************/
  56/* Floppy drive emulation                               */
  57
  58typedef enum FDriveRate {
  59    FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
  60    FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
  61    FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
  62    FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
  63} FDriveRate;
  64
  65typedef enum FDriveSize {
  66    FDRIVE_SIZE_UNKNOWN,
  67    FDRIVE_SIZE_350,
  68    FDRIVE_SIZE_525,
  69} FDriveSize;
  70
  71typedef struct FDFormat {
  72    FloppyDriveType drive;
  73    uint8_t last_sect;
  74    uint8_t max_track;
  75    uint8_t max_head;
  76    FDriveRate rate;
  77} FDFormat;
  78
  79/* In many cases, the total sector size of a format is enough to uniquely
  80 * identify it. However, there are some total sector collisions between
  81 * formats of different physical size, and these are noted below by
  82 * highlighting the total sector size for entries with collisions. */
  83static const FDFormat fd_formats[] = {
  84    /* First entry is default format */
  85    /* 1.44 MB 3"1/2 floppy disks */
  86    { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
  87    { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
  88    { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
  89    { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
  90    { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
  91    { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
  92    { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
  93    { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
  94    /* 2.88 MB 3"1/2 floppy disks */
  95    { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
  96    { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
  97    { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
  98    { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
  99    { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
 100    /* 720 kB 3"1/2 floppy disks */
 101    { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
 102    { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
 103    { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
 104    { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
 105    { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
 106    { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
 107    /* 1.2 MB 5"1/4 floppy disks */
 108    { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
 109    { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
 110    { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
 111    { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
 112    { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
 113    /* 720 kB 5"1/4 floppy disks */
 114    { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
 115    { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
 116    /* 360 kB 5"1/4 floppy disks */
 117    { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
 118    { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
 119    { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
 120    { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
 121    /* 320 kB 5"1/4 floppy disks */
 122    { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
 123    { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
 124    /* 360 kB must match 5"1/4 better than 3"1/2... */
 125    { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
 126    /* end */
 127    { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
 128};
 129
 130static FDriveSize drive_size(FloppyDriveType drive)
 131{
 132    switch (drive) {
 133    case FLOPPY_DRIVE_TYPE_120:
 134        return FDRIVE_SIZE_525;
 135    case FLOPPY_DRIVE_TYPE_144:
 136    case FLOPPY_DRIVE_TYPE_288:
 137        return FDRIVE_SIZE_350;
 138    default:
 139        return FDRIVE_SIZE_UNKNOWN;
 140    }
 141}
 142
 143#define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
 144#define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
 145
 146/* Will always be a fixed parameter for us */
 147#define FD_SECTOR_LEN          512
 148#define FD_SECTOR_SC           2   /* Sector size code */
 149#define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
 150
 151typedef struct FDCtrl FDCtrl;
 152
 153/* Floppy disk drive emulation */
 154typedef enum FDiskFlags {
 155    FDISK_DBL_SIDES  = 0x01,
 156} FDiskFlags;
 157
 158typedef struct FDrive {
 159    FDCtrl *fdctrl;
 160    BlockBackend *blk;
 161    /* Drive status */
 162    FloppyDriveType drive;    /* CMOS drive type        */
 163    uint8_t perpendicular;    /* 2.88 MB access mode    */
 164    /* Position */
 165    uint8_t head;
 166    uint8_t track;
 167    uint8_t sect;
 168    /* Media */
 169    FloppyDriveType disk;     /* Current disk type      */
 170    FDiskFlags flags;
 171    uint8_t last_sect;        /* Nb sector per track    */
 172    uint8_t max_track;        /* Nb of tracks           */
 173    uint16_t bps;             /* Bytes per sector       */
 174    uint8_t ro;               /* Is read-only           */
 175    uint8_t media_changed;    /* Is media changed       */
 176    uint8_t media_rate;       /* Data rate of medium    */
 177
 178    bool media_validated;     /* Have we validated the media? */
 179} FDrive;
 180
 181
 182static FloppyDriveType get_fallback_drive_type(FDrive *drv);
 183
 184/* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
 185 * currently goes through some pains to keep seeks within the bounds
 186 * established by last_sect and max_track. Correcting this is difficult,
 187 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
 188 *
 189 * For now: allow empty drives to have large bounds so we can seek around,
 190 * with the understanding that when a diskette is inserted, the bounds will
 191 * properly tighten to match the geometry of that inserted medium.
 192 */
 193static void fd_empty_seek_hack(FDrive *drv)
 194{
 195    drv->last_sect = 0xFF;
 196    drv->max_track = 0xFF;
 197}
 198
 199static void fd_init(FDrive *drv)
 200{
 201    /* Drive */
 202    drv->perpendicular = 0;
 203    /* Disk */
 204    drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 205    drv->last_sect = 0;
 206    drv->max_track = 0;
 207    drv->ro = true;
 208    drv->media_changed = 1;
 209}
 210
 211#define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
 212
 213static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
 214                          uint8_t last_sect, uint8_t num_sides)
 215{
 216    return (((track * num_sides) + head) * last_sect) + sect - 1;
 217}
 218
 219/* Returns current position, in sectors, for given drive */
 220static int fd_sector(FDrive *drv)
 221{
 222    return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
 223                          NUM_SIDES(drv));
 224}
 225
 226/* Returns current position, in bytes, for given drive */
 227static int fd_offset(FDrive *drv)
 228{
 229    g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
 230    return fd_sector(drv) << BDRV_SECTOR_BITS;
 231}
 232
 233/* Seek to a new position:
 234 * returns 0 if already on right track
 235 * returns 1 if track changed
 236 * returns 2 if track is invalid
 237 * returns 3 if sector is invalid
 238 * returns 4 if seek is disabled
 239 */
 240static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
 241                   int enable_seek)
 242{
 243    uint32_t sector;
 244    int ret;
 245
 246    if (track > drv->max_track ||
 247        (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
 248        FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
 249                       head, track, sect, 1,
 250                       (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
 251                       drv->max_track, drv->last_sect);
 252        return 2;
 253    }
 254    if (sect > drv->last_sect) {
 255        FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
 256                       head, track, sect, 1,
 257                       (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
 258                       drv->max_track, drv->last_sect);
 259        return 3;
 260    }
 261    sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
 262    ret = 0;
 263    if (sector != fd_sector(drv)) {
 264#if 0
 265        if (!enable_seek) {
 266            FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
 267                           " (max=%d %02x %02x)\n",
 268                           head, track, sect, 1, drv->max_track,
 269                           drv->last_sect);
 270            return 4;
 271        }
 272#endif
 273        drv->head = head;
 274        if (drv->track != track) {
 275            if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
 276                drv->media_changed = 0;
 277            }
 278            ret = 1;
 279        }
 280        drv->track = track;
 281        drv->sect = sect;
 282    }
 283
 284    if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
 285        ret = 2;
 286    }
 287
 288    return ret;
 289}
 290
 291/* Set drive back to track 0 */
 292static void fd_recalibrate(FDrive *drv)
 293{
 294    FLOPPY_DPRINTF("recalibrate\n");
 295    fd_seek(drv, 0, 0, 1, 1);
 296}
 297
 298/**
 299 * Determine geometry based on inserted diskette.
 300 * Will not operate on an empty drive.
 301 *
 302 * @return: 0 on success, -1 if the drive is empty.
 303 */
 304static int pick_geometry(FDrive *drv)
 305{
 306    BlockBackend *blk = drv->blk;
 307    const FDFormat *parse;
 308    uint64_t nb_sectors, size;
 309    int i;
 310    int match, size_match, type_match;
 311    bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
 312
 313    /* We can only pick a geometry if we have a diskette. */
 314    if (!drv->blk || !blk_is_inserted(drv->blk) ||
 315        drv->drive == FLOPPY_DRIVE_TYPE_NONE)
 316    {
 317        return -1;
 318    }
 319
 320    /* We need to determine the likely geometry of the inserted medium.
 321     * In order of preference, we look for:
 322     * (1) The same drive type and number of sectors,
 323     * (2) The same diskette size and number of sectors,
 324     * (3) The same drive type.
 325     *
 326     * In all cases, matches that occur higher in the drive table will take
 327     * precedence over matches that occur later in the table.
 328     */
 329    blk_get_geometry(blk, &nb_sectors);
 330    match = size_match = type_match = -1;
 331    for (i = 0; ; i++) {
 332        parse = &fd_formats[i];
 333        if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
 334            break;
 335        }
 336        size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
 337        if (nb_sectors == size) {
 338            if (magic || parse->drive == drv->drive) {
 339                /* (1) perfect match -- nb_sectors and drive type */
 340                goto out;
 341            } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
 342                /* (2) size match -- nb_sectors and physical medium size */
 343                match = (match == -1) ? i : match;
 344            } else {
 345                /* This is suspicious -- Did the user misconfigure? */
 346                size_match = (size_match == -1) ? i : size_match;
 347            }
 348        } else if (type_match == -1) {
 349            if ((parse->drive == drv->drive) ||
 350                (magic && (parse->drive == get_fallback_drive_type(drv)))) {
 351                /* (3) type match -- nb_sectors mismatch, but matches the type
 352                 *     specified explicitly by the user, or matches the fallback
 353                 *     default type when using the drive autodetect mechanism */
 354                type_match = i;
 355            }
 356        }
 357    }
 358
 359    /* No exact match found */
 360    if (match == -1) {
 361        if (size_match != -1) {
 362            parse = &fd_formats[size_match];
 363            FLOPPY_DPRINTF("User requested floppy drive type '%s', "
 364                           "but inserted medium appears to be a "
 365                           "%"PRId64" sector '%s' type\n",
 366                           FloppyDriveType_lookup[drv->drive],
 367                           nb_sectors,
 368                           FloppyDriveType_lookup[parse->drive]);
 369        }
 370        match = type_match;
 371    }
 372
 373    /* No match of any kind found -- fd_format is misconfigured, abort. */
 374    if (match == -1) {
 375        error_setg(&error_abort, "No candidate geometries present in table "
 376                   " for floppy drive type '%s'",
 377                   FloppyDriveType_lookup[drv->drive]);
 378    }
 379
 380    parse = &(fd_formats[match]);
 381
 382 out:
 383    if (parse->max_head == 0) {
 384        drv->flags &= ~FDISK_DBL_SIDES;
 385    } else {
 386        drv->flags |= FDISK_DBL_SIDES;
 387    }
 388    drv->max_track = parse->max_track;
 389    drv->last_sect = parse->last_sect;
 390    drv->disk = parse->drive;
 391    drv->media_rate = parse->rate;
 392    return 0;
 393}
 394
 395static void pick_drive_type(FDrive *drv)
 396{
 397    if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
 398        return;
 399    }
 400
 401    if (pick_geometry(drv) == 0) {
 402        drv->drive = drv->disk;
 403    } else {
 404        drv->drive = get_fallback_drive_type(drv);
 405    }
 406
 407    g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
 408}
 409
 410/* Revalidate a disk drive after a disk change */
 411static void fd_revalidate(FDrive *drv)
 412{
 413    int rc;
 414
 415    FLOPPY_DPRINTF("revalidate\n");
 416    if (drv->blk != NULL) {
 417        drv->ro = blk_is_read_only(drv->blk);
 418        if (!blk_is_inserted(drv->blk)) {
 419            FLOPPY_DPRINTF("No disk in drive\n");
 420            drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 421            fd_empty_seek_hack(drv);
 422        } else if (!drv->media_validated) {
 423            rc = pick_geometry(drv);
 424            if (rc) {
 425                FLOPPY_DPRINTF("Could not validate floppy drive media");
 426            } else {
 427                drv->media_validated = true;
 428                FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
 429                               (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
 430                               drv->max_track, drv->last_sect,
 431                               drv->ro ? "ro" : "rw");
 432            }
 433        }
 434    } else {
 435        FLOPPY_DPRINTF("No drive connected\n");
 436        drv->last_sect = 0;
 437        drv->max_track = 0;
 438        drv->flags &= ~FDISK_DBL_SIDES;
 439        drv->drive = FLOPPY_DRIVE_TYPE_NONE;
 440        drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 441    }
 442}
 443
 444/********************************************************/
 445/* Intel 82078 floppy disk controller emulation          */
 446
 447static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
 448static void fdctrl_to_command_phase(FDCtrl *fdctrl);
 449static int fdctrl_transfer_handler (void *opaque, int nchan,
 450                                    int dma_pos, int dma_len);
 451static void fdctrl_raise_irq(FDCtrl *fdctrl);
 452static FDrive *get_cur_drv(FDCtrl *fdctrl);
 453
 454static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
 455static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
 456static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
 457static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
 458static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
 459static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
 460static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
 461static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
 462static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
 463static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
 464static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
 465static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
 466
 467enum {
 468    FD_DIR_WRITE   = 0,
 469    FD_DIR_READ    = 1,
 470    FD_DIR_SCANE   = 2,
 471    FD_DIR_SCANL   = 3,
 472    FD_DIR_SCANH   = 4,
 473    FD_DIR_VERIFY  = 5,
 474};
 475
 476enum {
 477    FD_STATE_MULTI  = 0x01,     /* multi track flag */
 478    FD_STATE_FORMAT = 0x02,     /* format flag */
 479};
 480
 481enum {
 482    FD_REG_SRA = 0x00,
 483    FD_REG_SRB = 0x01,
 484    FD_REG_DOR = 0x02,
 485    FD_REG_TDR = 0x03,
 486    FD_REG_MSR = 0x04,
 487    FD_REG_DSR = 0x04,
 488    FD_REG_FIFO = 0x05,
 489    FD_REG_DIR = 0x07,
 490    FD_REG_CCR = 0x07,
 491};
 492
 493enum {
 494    FD_CMD_READ_TRACK = 0x02,
 495    FD_CMD_SPECIFY = 0x03,
 496    FD_CMD_SENSE_DRIVE_STATUS = 0x04,
 497    FD_CMD_WRITE = 0x05,
 498    FD_CMD_READ = 0x06,
 499    FD_CMD_RECALIBRATE = 0x07,
 500    FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
 501    FD_CMD_WRITE_DELETED = 0x09,
 502    FD_CMD_READ_ID = 0x0a,
 503    FD_CMD_READ_DELETED = 0x0c,
 504    FD_CMD_FORMAT_TRACK = 0x0d,
 505    FD_CMD_DUMPREG = 0x0e,
 506    FD_CMD_SEEK = 0x0f,
 507    FD_CMD_VERSION = 0x10,
 508    FD_CMD_SCAN_EQUAL = 0x11,
 509    FD_CMD_PERPENDICULAR_MODE = 0x12,
 510    FD_CMD_CONFIGURE = 0x13,
 511    FD_CMD_LOCK = 0x14,
 512    FD_CMD_VERIFY = 0x16,
 513    FD_CMD_POWERDOWN_MODE = 0x17,
 514    FD_CMD_PART_ID = 0x18,
 515    FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
 516    FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
 517    FD_CMD_SAVE = 0x2e,
 518    FD_CMD_OPTION = 0x33,
 519    FD_CMD_RESTORE = 0x4e,
 520    FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
 521    FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
 522    FD_CMD_FORMAT_AND_WRITE = 0xcd,
 523    FD_CMD_RELATIVE_SEEK_IN = 0xcf,
 524};
 525
 526enum {
 527    FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
 528    FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
 529    FD_CONFIG_POLL  = 0x10, /* Poll enabled */
 530    FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
 531    FD_CONFIG_EIS   = 0x40, /* No implied seeks */
 532};
 533
 534enum {
 535    FD_SR0_DS0      = 0x01,
 536    FD_SR0_DS1      = 0x02,
 537    FD_SR0_HEAD     = 0x04,
 538    FD_SR0_EQPMT    = 0x10,
 539    FD_SR0_SEEK     = 0x20,
 540    FD_SR0_ABNTERM  = 0x40,
 541    FD_SR0_INVCMD   = 0x80,
 542    FD_SR0_RDYCHG   = 0xc0,
 543};
 544
 545enum {
 546    FD_SR1_MA       = 0x01, /* Missing address mark */
 547    FD_SR1_NW       = 0x02, /* Not writable */
 548    FD_SR1_EC       = 0x80, /* End of cylinder */
 549};
 550
 551enum {
 552    FD_SR2_SNS      = 0x04, /* Scan not satisfied */
 553    FD_SR2_SEH      = 0x08, /* Scan equal hit */
 554};
 555
 556enum {
 557    FD_SRA_DIR      = 0x01,
 558    FD_SRA_nWP      = 0x02,
 559    FD_SRA_nINDX    = 0x04,
 560    FD_SRA_HDSEL    = 0x08,
 561    FD_SRA_nTRK0    = 0x10,
 562    FD_SRA_STEP     = 0x20,
 563    FD_SRA_nDRV2    = 0x40,
 564    FD_SRA_INTPEND  = 0x80,
 565};
 566
 567enum {
 568    FD_SRB_MTR0     = 0x01,
 569    FD_SRB_MTR1     = 0x02,
 570    FD_SRB_WGATE    = 0x04,
 571    FD_SRB_RDATA    = 0x08,
 572    FD_SRB_WDATA    = 0x10,
 573    FD_SRB_DR0      = 0x20,
 574};
 575
 576enum {
 577#if MAX_FD == 4
 578    FD_DOR_SELMASK  = 0x03,
 579#else
 580    FD_DOR_SELMASK  = 0x01,
 581#endif
 582    FD_DOR_nRESET   = 0x04,
 583    FD_DOR_DMAEN    = 0x08,
 584    FD_DOR_MOTEN0   = 0x10,
 585    FD_DOR_MOTEN1   = 0x20,
 586    FD_DOR_MOTEN2   = 0x40,
 587    FD_DOR_MOTEN3   = 0x80,
 588};
 589
 590enum {
 591#if MAX_FD == 4
 592    FD_TDR_BOOTSEL  = 0x0c,
 593#else
 594    FD_TDR_BOOTSEL  = 0x04,
 595#endif
 596};
 597
 598enum {
 599    FD_DSR_DRATEMASK= 0x03,
 600    FD_DSR_PWRDOWN  = 0x40,
 601    FD_DSR_SWRESET  = 0x80,
 602};
 603
 604enum {
 605    FD_MSR_DRV0BUSY = 0x01,
 606    FD_MSR_DRV1BUSY = 0x02,
 607    FD_MSR_DRV2BUSY = 0x04,
 608    FD_MSR_DRV3BUSY = 0x08,
 609    FD_MSR_CMDBUSY  = 0x10,
 610    FD_MSR_NONDMA   = 0x20,
 611    FD_MSR_DIO      = 0x40,
 612    FD_MSR_RQM      = 0x80,
 613};
 614
 615enum {
 616    FD_DIR_DSKCHG   = 0x80,
 617};
 618
 619/*
 620 * See chapter 5.0 "Controller phases" of the spec:
 621 *
 622 * Command phase:
 623 * The host writes a command and its parameters into the FIFO. The command
 624 * phase is completed when all parameters for the command have been supplied,
 625 * and execution phase is entered.
 626 *
 627 * Execution phase:
 628 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
 629 * contains the payload now, otherwise it's unused. When all bytes of the
 630 * required data have been transferred, the state is switched to either result
 631 * phase (if the command produces status bytes) or directly back into the
 632 * command phase for the next command.
 633 *
 634 * Result phase:
 635 * The host reads out the FIFO, which contains one or more result bytes now.
 636 */
 637enum {
 638    /* Only for migration: reconstruct phase from registers like qemu 2.3 */
 639    FD_PHASE_RECONSTRUCT    = 0,
 640
 641    FD_PHASE_COMMAND        = 1,
 642    FD_PHASE_EXECUTION      = 2,
 643    FD_PHASE_RESULT         = 3,
 644};
 645
 646#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
 647#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
 648
 649struct FDCtrl {
 650    MemoryRegion iomem;
 651    qemu_irq irq;
 652    /* Controller state */
 653    QEMUTimer *result_timer;
 654    int dma_chann;
 655    uint8_t phase;
 656    IsaDma *dma;
 657    /* Controller's identification */
 658    uint8_t version;
 659    /* HW */
 660    uint8_t sra;
 661    uint8_t srb;
 662    uint8_t dor;
 663    uint8_t dor_vmstate; /* only used as temp during vmstate */
 664    uint8_t tdr;
 665    uint8_t dsr;
 666    uint8_t msr;
 667    uint8_t cur_drv;
 668    uint8_t status0;
 669    uint8_t status1;
 670    uint8_t status2;
 671    /* Command FIFO */
 672    uint8_t *fifo;
 673    int32_t fifo_size;
 674    uint32_t data_pos;
 675    uint32_t data_len;
 676    uint8_t data_state;
 677    uint8_t data_dir;
 678    uint8_t eot; /* last wanted sector */
 679    /* States kept only to be returned back */
 680    /* precompensation */
 681    uint8_t precomp_trk;
 682    uint8_t config;
 683    uint8_t lock;
 684    /* Power down config (also with status regB access mode */
 685    uint8_t pwrd;
 686    /* Floppy drives */
 687    uint8_t num_floppies;
 688    FDrive drives[MAX_FD];
 689    int reset_sensei;
 690    uint32_t check_media_rate;
 691    FloppyDriveType fallback; /* type=auto failure fallback */
 692    /* Timers state */
 693    uint8_t timer0;
 694    uint8_t timer1;
 695    PortioList portio_list;
 696};
 697
 698static FloppyDriveType get_fallback_drive_type(FDrive *drv)
 699{
 700    return drv->fdctrl->fallback;
 701}
 702
 703#define TYPE_SYSBUS_FDC "base-sysbus-fdc"
 704#define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
 705
 706typedef struct FDCtrlSysBus {
 707    /*< private >*/
 708    SysBusDevice parent_obj;
 709    /*< public >*/
 710
 711    struct FDCtrl state;
 712} FDCtrlSysBus;
 713
 714#define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
 715
 716typedef struct FDCtrlISABus {
 717    ISADevice parent_obj;
 718
 719    uint32_t iobase;
 720    uint32_t irq;
 721    uint32_t dma;
 722    struct FDCtrl state;
 723    int32_t bootindexA;
 724    int32_t bootindexB;
 725} FDCtrlISABus;
 726
 727static uint32_t fdctrl_read (void *opaque, uint32_t reg)
 728{
 729    FDCtrl *fdctrl = opaque;
 730    uint32_t retval;
 731
 732    reg &= 7;
 733    switch (reg) {
 734    case FD_REG_SRA:
 735        retval = fdctrl_read_statusA(fdctrl);
 736        break;
 737    case FD_REG_SRB:
 738        retval = fdctrl_read_statusB(fdctrl);
 739        break;
 740    case FD_REG_DOR:
 741        retval = fdctrl_read_dor(fdctrl);
 742        break;
 743    case FD_REG_TDR:
 744        retval = fdctrl_read_tape(fdctrl);
 745        break;
 746    case FD_REG_MSR:
 747        retval = fdctrl_read_main_status(fdctrl);
 748        break;
 749    case FD_REG_FIFO:
 750        retval = fdctrl_read_data(fdctrl);
 751        break;
 752    case FD_REG_DIR:
 753        retval = fdctrl_read_dir(fdctrl);
 754        break;
 755    default:
 756        retval = (uint32_t)(-1);
 757        break;
 758    }
 759    FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
 760
 761    return retval;
 762}
 763
 764static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
 765{
 766    FDCtrl *fdctrl = opaque;
 767
 768    FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
 769
 770    reg &= 7;
 771    switch (reg) {
 772    case FD_REG_DOR:
 773        fdctrl_write_dor(fdctrl, value);
 774        break;
 775    case FD_REG_TDR:
 776        fdctrl_write_tape(fdctrl, value);
 777        break;
 778    case FD_REG_DSR:
 779        fdctrl_write_rate(fdctrl, value);
 780        break;
 781    case FD_REG_FIFO:
 782        fdctrl_write_data(fdctrl, value);
 783        break;
 784    case FD_REG_CCR:
 785        fdctrl_write_ccr(fdctrl, value);
 786        break;
 787    default:
 788        break;
 789    }
 790}
 791
 792static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
 793                                 unsigned ize)
 794{
 795    return fdctrl_read(opaque, (uint32_t)reg);
 796}
 797
 798static void fdctrl_write_mem (void *opaque, hwaddr reg,
 799                              uint64_t value, unsigned size)
 800{
 801    fdctrl_write(opaque, (uint32_t)reg, value);
 802}
 803
 804static const MemoryRegionOps fdctrl_mem_ops = {
 805    .read = fdctrl_read_mem,
 806    .write = fdctrl_write_mem,
 807    .endianness = DEVICE_NATIVE_ENDIAN,
 808};
 809
 810static const MemoryRegionOps fdctrl_mem_strict_ops = {
 811    .read = fdctrl_read_mem,
 812    .write = fdctrl_write_mem,
 813    .endianness = DEVICE_NATIVE_ENDIAN,
 814    .valid = {
 815        .min_access_size = 1,
 816        .max_access_size = 1,
 817    },
 818};
 819
 820static bool fdrive_media_changed_needed(void *opaque)
 821{
 822    FDrive *drive = opaque;
 823
 824    return (drive->blk != NULL && drive->media_changed != 1);
 825}
 826
 827static const VMStateDescription vmstate_fdrive_media_changed = {
 828    .name = "fdrive/media_changed",
 829    .version_id = 1,
 830    .minimum_version_id = 1,
 831    .needed = fdrive_media_changed_needed,
 832    .fields = (VMStateField[]) {
 833        VMSTATE_UINT8(media_changed, FDrive),
 834        VMSTATE_END_OF_LIST()
 835    }
 836};
 837
 838static bool fdrive_media_rate_needed(void *opaque)
 839{
 840    FDrive *drive = opaque;
 841
 842    return drive->fdctrl->check_media_rate;
 843}
 844
 845static const VMStateDescription vmstate_fdrive_media_rate = {
 846    .name = "fdrive/media_rate",
 847    .version_id = 1,
 848    .minimum_version_id = 1,
 849    .needed = fdrive_media_rate_needed,
 850    .fields = (VMStateField[]) {
 851        VMSTATE_UINT8(media_rate, FDrive),
 852        VMSTATE_END_OF_LIST()
 853    }
 854};
 855
 856static bool fdrive_perpendicular_needed(void *opaque)
 857{
 858    FDrive *drive = opaque;
 859
 860    return drive->perpendicular != 0;
 861}
 862
 863static const VMStateDescription vmstate_fdrive_perpendicular = {
 864    .name = "fdrive/perpendicular",
 865    .version_id = 1,
 866    .minimum_version_id = 1,
 867    .needed = fdrive_perpendicular_needed,
 868    .fields = (VMStateField[]) {
 869        VMSTATE_UINT8(perpendicular, FDrive),
 870        VMSTATE_END_OF_LIST()
 871    }
 872};
 873
 874static int fdrive_post_load(void *opaque, int version_id)
 875{
 876    fd_revalidate(opaque);
 877    return 0;
 878}
 879
 880static const VMStateDescription vmstate_fdrive = {
 881    .name = "fdrive",
 882    .version_id = 1,
 883    .minimum_version_id = 1,
 884    .post_load = fdrive_post_load,
 885    .fields = (VMStateField[]) {
 886        VMSTATE_UINT8(head, FDrive),
 887        VMSTATE_UINT8(track, FDrive),
 888        VMSTATE_UINT8(sect, FDrive),
 889        VMSTATE_END_OF_LIST()
 890    },
 891    .subsections = (const VMStateDescription*[]) {
 892        &vmstate_fdrive_media_changed,
 893        &vmstate_fdrive_media_rate,
 894        &vmstate_fdrive_perpendicular,
 895        NULL
 896    }
 897};
 898
 899/*
 900 * Reconstructs the phase from register values according to the logic that was
 901 * implemented in qemu 2.3. This is the default value that is used if the phase
 902 * subsection is not present on migration.
 903 *
 904 * Don't change this function to reflect newer qemu versions, it is part of
 905 * the migration ABI.
 906 */
 907static int reconstruct_phase(FDCtrl *fdctrl)
 908{
 909    if (fdctrl->msr & FD_MSR_NONDMA) {
 910        return FD_PHASE_EXECUTION;
 911    } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
 912        /* qemu 2.3 disabled RQM only during DMA transfers */
 913        return FD_PHASE_EXECUTION;
 914    } else if (fdctrl->msr & FD_MSR_DIO) {
 915        return FD_PHASE_RESULT;
 916    } else {
 917        return FD_PHASE_COMMAND;
 918    }
 919}
 920
 921static void fdc_pre_save(void *opaque)
 922{
 923    FDCtrl *s = opaque;
 924
 925    s->dor_vmstate = s->dor | GET_CUR_DRV(s);
 926}
 927
 928static int fdc_pre_load(void *opaque)
 929{
 930    FDCtrl *s = opaque;
 931    s->phase = FD_PHASE_RECONSTRUCT;
 932    return 0;
 933}
 934
 935static int fdc_post_load(void *opaque, int version_id)
 936{
 937    FDCtrl *s = opaque;
 938
 939    SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
 940    s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
 941
 942    if (s->phase == FD_PHASE_RECONSTRUCT) {
 943        s->phase = reconstruct_phase(s);
 944    }
 945
 946    return 0;
 947}
 948
 949static bool fdc_reset_sensei_needed(void *opaque)
 950{
 951    FDCtrl *s = opaque;
 952
 953    return s->reset_sensei != 0;
 954}
 955
 956static const VMStateDescription vmstate_fdc_reset_sensei = {
 957    .name = "fdc/reset_sensei",
 958    .version_id = 1,
 959    .minimum_version_id = 1,
 960    .needed = fdc_reset_sensei_needed,
 961    .fields = (VMStateField[]) {
 962        VMSTATE_INT32(reset_sensei, FDCtrl),
 963        VMSTATE_END_OF_LIST()
 964    }
 965};
 966
 967static bool fdc_result_timer_needed(void *opaque)
 968{
 969    FDCtrl *s = opaque;
 970
 971    return timer_pending(s->result_timer);
 972}
 973
 974static const VMStateDescription vmstate_fdc_result_timer = {
 975    .name = "fdc/result_timer",
 976    .version_id = 1,
 977    .minimum_version_id = 1,
 978    .needed = fdc_result_timer_needed,
 979    .fields = (VMStateField[]) {
 980        VMSTATE_TIMER_PTR(result_timer, FDCtrl),
 981        VMSTATE_END_OF_LIST()
 982    }
 983};
 984
 985static bool fdc_phase_needed(void *opaque)
 986{
 987    FDCtrl *fdctrl = opaque;
 988
 989    return reconstruct_phase(fdctrl) != fdctrl->phase;
 990}
 991
 992static const VMStateDescription vmstate_fdc_phase = {
 993    .name = "fdc/phase",
 994    .version_id = 1,
 995    .minimum_version_id = 1,
 996    .needed = fdc_phase_needed,
 997    .fields = (VMStateField[]) {
 998        VMSTATE_UINT8(phase, FDCtrl),
 999        VMSTATE_END_OF_LIST()
1000    }
1001};
1002
1003static const VMStateDescription vmstate_fdc = {
1004    .name = "fdc",
1005    .version_id = 2,
1006    .minimum_version_id = 2,
1007    .pre_save = fdc_pre_save,
1008    .pre_load = fdc_pre_load,
1009    .post_load = fdc_post_load,
1010    .fields = (VMStateField[]) {
1011        /* Controller State */
1012        VMSTATE_UINT8(sra, FDCtrl),
1013        VMSTATE_UINT8(srb, FDCtrl),
1014        VMSTATE_UINT8(dor_vmstate, FDCtrl),
1015        VMSTATE_UINT8(tdr, FDCtrl),
1016        VMSTATE_UINT8(dsr, FDCtrl),
1017        VMSTATE_UINT8(msr, FDCtrl),
1018        VMSTATE_UINT8(status0, FDCtrl),
1019        VMSTATE_UINT8(status1, FDCtrl),
1020        VMSTATE_UINT8(status2, FDCtrl),
1021        /* Command FIFO */
1022        VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1023                             uint8_t),
1024        VMSTATE_UINT32(data_pos, FDCtrl),
1025        VMSTATE_UINT32(data_len, FDCtrl),
1026        VMSTATE_UINT8(data_state, FDCtrl),
1027        VMSTATE_UINT8(data_dir, FDCtrl),
1028        VMSTATE_UINT8(eot, FDCtrl),
1029        /* States kept only to be returned back */
1030        VMSTATE_UINT8(timer0, FDCtrl),
1031        VMSTATE_UINT8(timer1, FDCtrl),
1032        VMSTATE_UINT8(precomp_trk, FDCtrl),
1033        VMSTATE_UINT8(config, FDCtrl),
1034        VMSTATE_UINT8(lock, FDCtrl),
1035        VMSTATE_UINT8(pwrd, FDCtrl),
1036        VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1037        VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1038                             vmstate_fdrive, FDrive),
1039        VMSTATE_END_OF_LIST()
1040    },
1041    .subsections = (const VMStateDescription*[]) {
1042        &vmstate_fdc_reset_sensei,
1043        &vmstate_fdc_result_timer,
1044        &vmstate_fdc_phase,
1045        NULL
1046    }
1047};
1048
1049static void fdctrl_external_reset_sysbus(DeviceState *d)
1050{
1051    FDCtrlSysBus *sys = SYSBUS_FDC(d);
1052    FDCtrl *s = &sys->state;
1053
1054    fdctrl_reset(s, 0);
1055}
1056
1057static void fdctrl_external_reset_isa(DeviceState *d)
1058{
1059    FDCtrlISABus *isa = ISA_FDC(d);
1060    FDCtrl *s = &isa->state;
1061
1062    fdctrl_reset(s, 0);
1063}
1064
1065static void fdctrl_handle_tc(void *opaque, int irq, int level)
1066{
1067    //FDCtrl *s = opaque;
1068
1069    if (level) {
1070        // XXX
1071        FLOPPY_DPRINTF("TC pulsed\n");
1072    }
1073}
1074
1075/* Change IRQ state */
1076static void fdctrl_reset_irq(FDCtrl *fdctrl)
1077{
1078    fdctrl->status0 = 0;
1079    if (!(fdctrl->sra & FD_SRA_INTPEND))
1080        return;
1081    FLOPPY_DPRINTF("Reset interrupt\n");
1082    qemu_set_irq(fdctrl->irq, 0);
1083    fdctrl->sra &= ~FD_SRA_INTPEND;
1084}
1085
1086static void fdctrl_raise_irq(FDCtrl *fdctrl)
1087{
1088    if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1089        qemu_set_irq(fdctrl->irq, 1);
1090        fdctrl->sra |= FD_SRA_INTPEND;
1091    }
1092
1093    fdctrl->reset_sensei = 0;
1094    FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1095}
1096
1097/* Reset controller */
1098static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1099{
1100    int i;
1101
1102    FLOPPY_DPRINTF("reset controller\n");
1103    fdctrl_reset_irq(fdctrl);
1104    /* Initialise controller */
1105    fdctrl->sra = 0;
1106    fdctrl->srb = 0xc0;
1107    if (!fdctrl->drives[1].blk) {
1108        fdctrl->sra |= FD_SRA_nDRV2;
1109    }
1110    fdctrl->cur_drv = 0;
1111    fdctrl->dor = FD_DOR_nRESET;
1112    fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1113    fdctrl->msr = FD_MSR_RQM;
1114    fdctrl->reset_sensei = 0;
1115    timer_del(fdctrl->result_timer);
1116    /* FIFO state */
1117    fdctrl->data_pos = 0;
1118    fdctrl->data_len = 0;
1119    fdctrl->data_state = 0;
1120    fdctrl->data_dir = FD_DIR_WRITE;
1121    for (i = 0; i < MAX_FD; i++)
1122        fd_recalibrate(&fdctrl->drives[i]);
1123    fdctrl_to_command_phase(fdctrl);
1124    if (do_irq) {
1125        fdctrl->status0 |= FD_SR0_RDYCHG;
1126        fdctrl_raise_irq(fdctrl);
1127        fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1128    }
1129}
1130
1131static inline FDrive *drv0(FDCtrl *fdctrl)
1132{
1133    return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1134}
1135
1136static inline FDrive *drv1(FDCtrl *fdctrl)
1137{
1138    if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1139        return &fdctrl->drives[1];
1140    else
1141        return &fdctrl->drives[0];
1142}
1143
1144#if MAX_FD == 4
1145static inline FDrive *drv2(FDCtrl *fdctrl)
1146{
1147    if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1148        return &fdctrl->drives[2];
1149    else
1150        return &fdctrl->drives[1];
1151}
1152
1153static inline FDrive *drv3(FDCtrl *fdctrl)
1154{
1155    if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1156        return &fdctrl->drives[3];
1157    else
1158        return &fdctrl->drives[2];
1159}
1160#endif
1161
1162static FDrive *get_cur_drv(FDCtrl *fdctrl)
1163{
1164    switch (fdctrl->cur_drv) {
1165        case 0: return drv0(fdctrl);
1166        case 1: return drv1(fdctrl);
1167#if MAX_FD == 4
1168        case 2: return drv2(fdctrl);
1169        case 3: return drv3(fdctrl);
1170#endif
1171        default: return NULL;
1172    }
1173}
1174
1175/* Status A register : 0x00 (read-only) */
1176static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1177{
1178    uint32_t retval = fdctrl->sra;
1179
1180    FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1181
1182    return retval;
1183}
1184
1185/* Status B register : 0x01 (read-only) */
1186static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1187{
1188    uint32_t retval = fdctrl->srb;
1189
1190    FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1191
1192    return retval;
1193}
1194
1195/* Digital output register : 0x02 */
1196static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1197{
1198    uint32_t retval = fdctrl->dor;
1199
1200    /* Selected drive */
1201    retval |= fdctrl->cur_drv;
1202    FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1203
1204    return retval;
1205}
1206
1207static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1208{
1209    FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1210
1211    /* Motors */
1212    if (value & FD_DOR_MOTEN0)
1213        fdctrl->srb |= FD_SRB_MTR0;
1214    else
1215        fdctrl->srb &= ~FD_SRB_MTR0;
1216    if (value & FD_DOR_MOTEN1)
1217        fdctrl->srb |= FD_SRB_MTR1;
1218    else
1219        fdctrl->srb &= ~FD_SRB_MTR1;
1220
1221    /* Drive */
1222    if (value & 1)
1223        fdctrl->srb |= FD_SRB_DR0;
1224    else
1225        fdctrl->srb &= ~FD_SRB_DR0;
1226
1227    /* Reset */
1228    if (!(value & FD_DOR_nRESET)) {
1229        if (fdctrl->dor & FD_DOR_nRESET) {
1230            FLOPPY_DPRINTF("controller enter RESET state\n");
1231        }
1232    } else {
1233        if (!(fdctrl->dor & FD_DOR_nRESET)) {
1234            FLOPPY_DPRINTF("controller out of RESET state\n");
1235            fdctrl_reset(fdctrl, 1);
1236            fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1237        }
1238    }
1239    /* Selected drive */
1240    fdctrl->cur_drv = value & FD_DOR_SELMASK;
1241
1242    fdctrl->dor = value;
1243}
1244
1245/* Tape drive register : 0x03 */
1246static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1247{
1248    uint32_t retval = fdctrl->tdr;
1249
1250    FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1251
1252    return retval;
1253}
1254
1255static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1256{
1257    /* Reset mode */
1258    if (!(fdctrl->dor & FD_DOR_nRESET)) {
1259        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1260        return;
1261    }
1262    FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1263    /* Disk boot selection indicator */
1264    fdctrl->tdr = value & FD_TDR_BOOTSEL;
1265    /* Tape indicators: never allow */
1266}
1267
1268/* Main status register : 0x04 (read) */
1269static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1270{
1271    uint32_t retval = fdctrl->msr;
1272
1273    fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1274    fdctrl->dor |= FD_DOR_nRESET;
1275
1276    FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1277
1278    return retval;
1279}
1280
1281/* Data select rate register : 0x04 (write) */
1282static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1283{
1284    /* Reset mode */
1285    if (!(fdctrl->dor & FD_DOR_nRESET)) {
1286        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1287        return;
1288    }
1289    FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1290    /* Reset: autoclear */
1291    if (value & FD_DSR_SWRESET) {
1292        fdctrl->dor &= ~FD_DOR_nRESET;
1293        fdctrl_reset(fdctrl, 1);
1294        fdctrl->dor |= FD_DOR_nRESET;
1295    }
1296    if (value & FD_DSR_PWRDOWN) {
1297        fdctrl_reset(fdctrl, 1);
1298    }
1299    fdctrl->dsr = value;
1300}
1301
1302/* Configuration control register: 0x07 (write) */
1303static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1304{
1305    /* Reset mode */
1306    if (!(fdctrl->dor & FD_DOR_nRESET)) {
1307        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1308        return;
1309    }
1310    FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1311
1312    /* Only the rate selection bits used in AT mode, and we
1313     * store those in the DSR.
1314     */
1315    fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1316                  (value & FD_DSR_DRATEMASK);
1317}
1318
1319static int fdctrl_media_changed(FDrive *drv)
1320{
1321    return drv->media_changed;
1322}
1323
1324/* Digital input register : 0x07 (read-only) */
1325static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1326{
1327    uint32_t retval = 0;
1328
1329    if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1330        retval |= FD_DIR_DSKCHG;
1331    }
1332    if (retval != 0) {
1333        FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1334    }
1335
1336    return retval;
1337}
1338
1339/* Clear the FIFO and update the state for receiving the next command */
1340static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1341{
1342    fdctrl->phase = FD_PHASE_COMMAND;
1343    fdctrl->data_dir = FD_DIR_WRITE;
1344    fdctrl->data_pos = 0;
1345    fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1346    fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1347    fdctrl->msr |= FD_MSR_RQM;
1348}
1349
1350/* Update the state to allow the guest to read out the command status.
1351 * @fifo_len is the number of result bytes to be read out. */
1352static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1353{
1354    fdctrl->phase = FD_PHASE_RESULT;
1355    fdctrl->data_dir = FD_DIR_READ;
1356    fdctrl->data_len = fifo_len;
1357    fdctrl->data_pos = 0;
1358    fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1359}
1360
1361/* Set an error: unimplemented/unknown command */
1362static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1363{
1364    qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1365                  fdctrl->fifo[0]);
1366    fdctrl->fifo[0] = FD_SR0_INVCMD;
1367    fdctrl_to_result_phase(fdctrl, 1);
1368}
1369
1370/* Seek to next sector
1371 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1372 * otherwise returns 1
1373 */
1374static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1375{
1376    FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1377                   cur_drv->head, cur_drv->track, cur_drv->sect,
1378                   fd_sector(cur_drv));
1379    /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1380       error in fact */
1381    uint8_t new_head = cur_drv->head;
1382    uint8_t new_track = cur_drv->track;
1383    uint8_t new_sect = cur_drv->sect;
1384
1385    int ret = 1;
1386
1387    if (new_sect >= cur_drv->last_sect ||
1388        new_sect == fdctrl->eot) {
1389        new_sect = 1;
1390        if (FD_MULTI_TRACK(fdctrl->data_state)) {
1391            if (new_head == 0 &&
1392                (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1393                new_head = 1;
1394            } else {
1395                new_head = 0;
1396                new_track++;
1397                fdctrl->status0 |= FD_SR0_SEEK;
1398                if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1399                    ret = 0;
1400                }
1401            }
1402        } else {
1403            fdctrl->status0 |= FD_SR0_SEEK;
1404            new_track++;
1405            ret = 0;
1406        }
1407        if (ret == 1) {
1408            FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1409                    new_head, new_track, new_sect, fd_sector(cur_drv));
1410        }
1411    } else {
1412        new_sect++;
1413    }
1414    fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1415    return ret;
1416}
1417
1418/* Callback for transfer end (stop or abort) */
1419static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1420                                 uint8_t status1, uint8_t status2)
1421{
1422    FDrive *cur_drv;
1423    cur_drv = get_cur_drv(fdctrl);
1424
1425    fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1426    fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1427    if (cur_drv->head) {
1428        fdctrl->status0 |= FD_SR0_HEAD;
1429    }
1430    fdctrl->status0 |= status0;
1431
1432    FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1433                   status0, status1, status2, fdctrl->status0);
1434    fdctrl->fifo[0] = fdctrl->status0;
1435    fdctrl->fifo[1] = status1;
1436    fdctrl->fifo[2] = status2;
1437    fdctrl->fifo[3] = cur_drv->track;
1438    fdctrl->fifo[4] = cur_drv->head;
1439    fdctrl->fifo[5] = cur_drv->sect;
1440    fdctrl->fifo[6] = FD_SECTOR_SC;
1441    fdctrl->data_dir = FD_DIR_READ;
1442    if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1443        IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1444        k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1445    }
1446    fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1447    fdctrl->msr &= ~FD_MSR_NONDMA;
1448
1449    fdctrl_to_result_phase(fdctrl, 7);
1450    fdctrl_raise_irq(fdctrl);
1451}
1452
1453/* Prepare a data transfer (either DMA or FIFO) */
1454static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1455{
1456    FDrive *cur_drv;
1457    uint8_t kh, kt, ks;
1458
1459    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1460    cur_drv = get_cur_drv(fdctrl);
1461    kt = fdctrl->fifo[2];
1462    kh = fdctrl->fifo[3];
1463    ks = fdctrl->fifo[4];
1464    FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1465                   GET_CUR_DRV(fdctrl), kh, kt, ks,
1466                   fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1467                                  NUM_SIDES(cur_drv)));
1468    switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1469    case 2:
1470        /* sect too big */
1471        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1472        fdctrl->fifo[3] = kt;
1473        fdctrl->fifo[4] = kh;
1474        fdctrl->fifo[5] = ks;
1475        return;
1476    case 3:
1477        /* track too big */
1478        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1479        fdctrl->fifo[3] = kt;
1480        fdctrl->fifo[4] = kh;
1481        fdctrl->fifo[5] = ks;
1482        return;
1483    case 4:
1484        /* No seek enabled */
1485        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1486        fdctrl->fifo[3] = kt;
1487        fdctrl->fifo[4] = kh;
1488        fdctrl->fifo[5] = ks;
1489        return;
1490    case 1:
1491        fdctrl->status0 |= FD_SR0_SEEK;
1492        break;
1493    default:
1494        break;
1495    }
1496
1497    /* Check the data rate. If the programmed data rate does not match
1498     * the currently inserted medium, the operation has to fail. */
1499    if (fdctrl->check_media_rate &&
1500        (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1501        FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1502                       fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1503        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1504        fdctrl->fifo[3] = kt;
1505        fdctrl->fifo[4] = kh;
1506        fdctrl->fifo[5] = ks;
1507        return;
1508    }
1509
1510    /* Set the FIFO state */
1511    fdctrl->data_dir = direction;
1512    fdctrl->data_pos = 0;
1513    assert(fdctrl->msr & FD_MSR_CMDBUSY);
1514    if (fdctrl->fifo[0] & 0x80)
1515        fdctrl->data_state |= FD_STATE_MULTI;
1516    else
1517        fdctrl->data_state &= ~FD_STATE_MULTI;
1518    if (fdctrl->fifo[5] == 0) {
1519        fdctrl->data_len = fdctrl->fifo[8];
1520    } else {
1521        int tmp;
1522        fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1523        tmp = (fdctrl->fifo[6] - ks + 1);
1524        if (fdctrl->fifo[0] & 0x80)
1525            tmp += fdctrl->fifo[6];
1526        fdctrl->data_len *= tmp;
1527    }
1528    fdctrl->eot = fdctrl->fifo[6];
1529    if (fdctrl->dor & FD_DOR_DMAEN) {
1530        IsaDmaTransferMode dma_mode;
1531        IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1532        bool dma_mode_ok;
1533        /* DMA transfer are enabled. Check if DMA channel is well programmed */
1534        dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1535        FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1536                       dma_mode, direction,
1537                       (128 << fdctrl->fifo[5]) *
1538                       (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1539        switch (direction) {
1540        case FD_DIR_SCANE:
1541        case FD_DIR_SCANL:
1542        case FD_DIR_SCANH:
1543            dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1544            break;
1545        case FD_DIR_WRITE:
1546            dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1547            break;
1548        case FD_DIR_READ:
1549            dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1550            break;
1551        case FD_DIR_VERIFY:
1552            dma_mode_ok = true;
1553            break;
1554        default:
1555            dma_mode_ok = false;
1556            break;
1557        }
1558        if (dma_mode_ok) {
1559            /* No access is allowed until DMA transfer has completed */
1560            fdctrl->msr &= ~FD_MSR_RQM;
1561            if (direction != FD_DIR_VERIFY) {
1562                /* Now, we just have to wait for the DMA controller to
1563                 * recall us...
1564                 */
1565                k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1566                k->schedule(fdctrl->dma);
1567            } else {
1568                /* Start transfer */
1569                fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1570                                        fdctrl->data_len);
1571            }
1572            return;
1573        } else {
1574            FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1575                           direction);
1576        }
1577    }
1578    FLOPPY_DPRINTF("start non-DMA transfer\n");
1579    fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1580    if (direction != FD_DIR_WRITE)
1581        fdctrl->msr |= FD_MSR_DIO;
1582    /* IO based transfer: calculate len */
1583    fdctrl_raise_irq(fdctrl);
1584}
1585
1586/* Prepare a transfer of deleted data */
1587static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1588{
1589    qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1590
1591    /* We don't handle deleted data,
1592     * so we don't return *ANYTHING*
1593     */
1594    fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1595}
1596
1597/* handlers for DMA transfers */
1598static int fdctrl_transfer_handler (void *opaque, int nchan,
1599                                    int dma_pos, int dma_len)
1600{
1601    FDCtrl *fdctrl;
1602    FDrive *cur_drv;
1603    int len, start_pos, rel_pos;
1604    uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1605    IsaDmaClass *k;
1606
1607    fdctrl = opaque;
1608    if (fdctrl->msr & FD_MSR_RQM) {
1609        FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1610        return 0;
1611    }
1612    k = ISADMA_GET_CLASS(fdctrl->dma);
1613    cur_drv = get_cur_drv(fdctrl);
1614    if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1615        fdctrl->data_dir == FD_DIR_SCANH)
1616        status2 = FD_SR2_SNS;
1617    if (dma_len > fdctrl->data_len)
1618        dma_len = fdctrl->data_len;
1619    if (cur_drv->blk == NULL) {
1620        if (fdctrl->data_dir == FD_DIR_WRITE)
1621            fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1622        else
1623            fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1624        len = 0;
1625        goto transfer_error;
1626    }
1627    rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1628    for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1629        len = dma_len - fdctrl->data_pos;
1630        if (len + rel_pos > FD_SECTOR_LEN)
1631            len = FD_SECTOR_LEN - rel_pos;
1632        FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1633                       "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1634                       fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1635                       cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1636                       fd_sector(cur_drv) * FD_SECTOR_LEN);
1637        if (fdctrl->data_dir != FD_DIR_WRITE ||
1638            len < FD_SECTOR_LEN || rel_pos != 0) {
1639            /* READ & SCAN commands and realign to a sector for WRITE */
1640            if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1641                          fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1642                FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1643                               fd_sector(cur_drv));
1644                /* Sure, image size is too small... */
1645                memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1646            }
1647        }
1648        switch (fdctrl->data_dir) {
1649        case FD_DIR_READ:
1650            /* READ commands */
1651            k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1652                            fdctrl->data_pos, len);
1653            break;
1654        case FD_DIR_WRITE:
1655            /* WRITE commands */
1656            if (cur_drv->ro) {
1657                /* Handle readonly medium early, no need to do DMA, touch the
1658                 * LED or attempt any writes. A real floppy doesn't attempt
1659                 * to write to readonly media either. */
1660                fdctrl_stop_transfer(fdctrl,
1661                                     FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1662                                     0x00);
1663                goto transfer_error;
1664            }
1665
1666            k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1667                           fdctrl->data_pos, len);
1668            if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1669                           fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1670                FLOPPY_DPRINTF("error writing sector %d\n",
1671                               fd_sector(cur_drv));
1672                fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1673                goto transfer_error;
1674            }
1675            break;
1676        case FD_DIR_VERIFY:
1677            /* VERIFY commands */
1678            break;
1679        default:
1680            /* SCAN commands */
1681            {
1682                uint8_t tmpbuf[FD_SECTOR_LEN];
1683                int ret;
1684                k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1685                               len);
1686                ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1687                if (ret == 0) {
1688                    status2 = FD_SR2_SEH;
1689                    goto end_transfer;
1690                }
1691                if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1692                    (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1693                    status2 = 0x00;
1694                    goto end_transfer;
1695                }
1696            }
1697            break;
1698        }
1699        fdctrl->data_pos += len;
1700        rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1701        if (rel_pos == 0) {
1702            /* Seek to next sector */
1703            if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1704                break;
1705        }
1706    }
1707 end_transfer:
1708    len = fdctrl->data_pos - start_pos;
1709    FLOPPY_DPRINTF("end transfer %d %d %d\n",
1710                   fdctrl->data_pos, len, fdctrl->data_len);
1711    if (fdctrl->data_dir == FD_DIR_SCANE ||
1712        fdctrl->data_dir == FD_DIR_SCANL ||
1713        fdctrl->data_dir == FD_DIR_SCANH)
1714        status2 = FD_SR2_SEH;
1715    fdctrl->data_len -= len;
1716    fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1717 transfer_error:
1718
1719    return len;
1720}
1721
1722/* Data register : 0x05 */
1723static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1724{
1725    FDrive *cur_drv;
1726    uint32_t retval = 0;
1727    uint32_t pos;
1728
1729    cur_drv = get_cur_drv(fdctrl);
1730    fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1731    if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1732        FLOPPY_DPRINTF("error: controller not ready for reading\n");
1733        return 0;
1734    }
1735
1736    /* If data_len spans multiple sectors, the current position in the FIFO
1737     * wraps around while fdctrl->data_pos is the real position in the whole
1738     * request. */
1739    pos = fdctrl->data_pos;
1740    pos %= FD_SECTOR_LEN;
1741
1742    switch (fdctrl->phase) {
1743    case FD_PHASE_EXECUTION:
1744        assert(fdctrl->msr & FD_MSR_NONDMA);
1745        if (pos == 0) {
1746            if (fdctrl->data_pos != 0)
1747                if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1748                    FLOPPY_DPRINTF("error seeking to next sector %d\n",
1749                                   fd_sector(cur_drv));
1750                    return 0;
1751                }
1752            if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1753                          BDRV_SECTOR_SIZE)
1754                < 0) {
1755                FLOPPY_DPRINTF("error getting sector %d\n",
1756                               fd_sector(cur_drv));
1757                /* Sure, image size is too small... */
1758                memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1759            }
1760        }
1761
1762        if (++fdctrl->data_pos == fdctrl->data_len) {
1763            fdctrl->msr &= ~FD_MSR_RQM;
1764            fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1765        }
1766        break;
1767
1768    case FD_PHASE_RESULT:
1769        assert(!(fdctrl->msr & FD_MSR_NONDMA));
1770        if (++fdctrl->data_pos == fdctrl->data_len) {
1771            fdctrl->msr &= ~FD_MSR_RQM;
1772            fdctrl_to_command_phase(fdctrl);
1773            fdctrl_reset_irq(fdctrl);
1774        }
1775        break;
1776
1777    case FD_PHASE_COMMAND:
1778    default:
1779        abort();
1780    }
1781
1782    retval = fdctrl->fifo[pos];
1783    FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1784
1785    return retval;
1786}
1787
1788static void fdctrl_format_sector(FDCtrl *fdctrl)
1789{
1790    FDrive *cur_drv;
1791    uint8_t kh, kt, ks;
1792
1793    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1794    cur_drv = get_cur_drv(fdctrl);
1795    kt = fdctrl->fifo[6];
1796    kh = fdctrl->fifo[7];
1797    ks = fdctrl->fifo[8];
1798    FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1799                   GET_CUR_DRV(fdctrl), kh, kt, ks,
1800                   fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1801                                  NUM_SIDES(cur_drv)));
1802    switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1803    case 2:
1804        /* sect too big */
1805        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1806        fdctrl->fifo[3] = kt;
1807        fdctrl->fifo[4] = kh;
1808        fdctrl->fifo[5] = ks;
1809        return;
1810    case 3:
1811        /* track too big */
1812        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1813        fdctrl->fifo[3] = kt;
1814        fdctrl->fifo[4] = kh;
1815        fdctrl->fifo[5] = ks;
1816        return;
1817    case 4:
1818        /* No seek enabled */
1819        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1820        fdctrl->fifo[3] = kt;
1821        fdctrl->fifo[4] = kh;
1822        fdctrl->fifo[5] = ks;
1823        return;
1824    case 1:
1825        fdctrl->status0 |= FD_SR0_SEEK;
1826        break;
1827    default:
1828        break;
1829    }
1830    memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1831    if (cur_drv->blk == NULL ||
1832        blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1833                   BDRV_SECTOR_SIZE, 0) < 0) {
1834        FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1835        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1836    } else {
1837        if (cur_drv->sect == cur_drv->last_sect) {
1838            fdctrl->data_state &= ~FD_STATE_FORMAT;
1839            /* Last sector done */
1840            fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1841        } else {
1842            /* More to do */
1843            fdctrl->data_pos = 0;
1844            fdctrl->data_len = 4;
1845        }
1846    }
1847}
1848
1849static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1850{
1851    fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1852    fdctrl->fifo[0] = fdctrl->lock << 4;
1853    fdctrl_to_result_phase(fdctrl, 1);
1854}
1855
1856static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1857{
1858    FDrive *cur_drv = get_cur_drv(fdctrl);
1859
1860    /* Drives position */
1861    fdctrl->fifo[0] = drv0(fdctrl)->track;
1862    fdctrl->fifo[1] = drv1(fdctrl)->track;
1863#if MAX_FD == 4
1864    fdctrl->fifo[2] = drv2(fdctrl)->track;
1865    fdctrl->fifo[3] = drv3(fdctrl)->track;
1866#else
1867    fdctrl->fifo[2] = 0;
1868    fdctrl->fifo[3] = 0;
1869#endif
1870    /* timers */
1871    fdctrl->fifo[4] = fdctrl->timer0;
1872    fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1873    fdctrl->fifo[6] = cur_drv->last_sect;
1874    fdctrl->fifo[7] = (fdctrl->lock << 7) |
1875        (cur_drv->perpendicular << 2);
1876    fdctrl->fifo[8] = fdctrl->config;
1877    fdctrl->fifo[9] = fdctrl->precomp_trk;
1878    fdctrl_to_result_phase(fdctrl, 10);
1879}
1880
1881static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1882{
1883    /* Controller's version */
1884    fdctrl->fifo[0] = fdctrl->version;
1885    fdctrl_to_result_phase(fdctrl, 1);
1886}
1887
1888static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1889{
1890    fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1891    fdctrl_to_result_phase(fdctrl, 1);
1892}
1893
1894static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1895{
1896    FDrive *cur_drv = get_cur_drv(fdctrl);
1897
1898    /* Drives position */
1899    drv0(fdctrl)->track = fdctrl->fifo[3];
1900    drv1(fdctrl)->track = fdctrl->fifo[4];
1901#if MAX_FD == 4
1902    drv2(fdctrl)->track = fdctrl->fifo[5];
1903    drv3(fdctrl)->track = fdctrl->fifo[6];
1904#endif
1905    /* timers */
1906    fdctrl->timer0 = fdctrl->fifo[7];
1907    fdctrl->timer1 = fdctrl->fifo[8];
1908    cur_drv->last_sect = fdctrl->fifo[9];
1909    fdctrl->lock = fdctrl->fifo[10] >> 7;
1910    cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1911    fdctrl->config = fdctrl->fifo[11];
1912    fdctrl->precomp_trk = fdctrl->fifo[12];
1913    fdctrl->pwrd = fdctrl->fifo[13];
1914    fdctrl_to_command_phase(fdctrl);
1915}
1916
1917static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1918{
1919    FDrive *cur_drv = get_cur_drv(fdctrl);
1920
1921    fdctrl->fifo[0] = 0;
1922    fdctrl->fifo[1] = 0;
1923    /* Drives position */
1924    fdctrl->fifo[2] = drv0(fdctrl)->track;
1925    fdctrl->fifo[3] = drv1(fdctrl)->track;
1926#if MAX_FD == 4
1927    fdctrl->fifo[4] = drv2(fdctrl)->track;
1928    fdctrl->fifo[5] = drv3(fdctrl)->track;
1929#else
1930    fdctrl->fifo[4] = 0;
1931    fdctrl->fifo[5] = 0;
1932#endif
1933    /* timers */
1934    fdctrl->fifo[6] = fdctrl->timer0;
1935    fdctrl->fifo[7] = fdctrl->timer1;
1936    fdctrl->fifo[8] = cur_drv->last_sect;
1937    fdctrl->fifo[9] = (fdctrl->lock << 7) |
1938        (cur_drv->perpendicular << 2);
1939    fdctrl->fifo[10] = fdctrl->config;
1940    fdctrl->fifo[11] = fdctrl->precomp_trk;
1941    fdctrl->fifo[12] = fdctrl->pwrd;
1942    fdctrl->fifo[13] = 0;
1943    fdctrl->fifo[14] = 0;
1944    fdctrl_to_result_phase(fdctrl, 15);
1945}
1946
1947static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1948{
1949    FDrive *cur_drv = get_cur_drv(fdctrl);
1950
1951    cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1952    timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1953             (NANOSECONDS_PER_SECOND / 50));
1954}
1955
1956static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1957{
1958    FDrive *cur_drv;
1959
1960    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1961    cur_drv = get_cur_drv(fdctrl);
1962    fdctrl->data_state |= FD_STATE_FORMAT;
1963    if (fdctrl->fifo[0] & 0x80)
1964        fdctrl->data_state |= FD_STATE_MULTI;
1965    else
1966        fdctrl->data_state &= ~FD_STATE_MULTI;
1967    cur_drv->bps =
1968        fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1969#if 0
1970    cur_drv->last_sect =
1971        cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1972        fdctrl->fifo[3] / 2;
1973#else
1974    cur_drv->last_sect = fdctrl->fifo[3];
1975#endif
1976    /* TODO: implement format using DMA expected by the Bochs BIOS
1977     * and Linux fdformat (read 3 bytes per sector via DMA and fill
1978     * the sector with the specified fill byte
1979     */
1980    fdctrl->data_state &= ~FD_STATE_FORMAT;
1981    fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1982}
1983
1984static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1985{
1986    fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1987    fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1988    if (fdctrl->fifo[2] & 1)
1989        fdctrl->dor &= ~FD_DOR_DMAEN;
1990    else
1991        fdctrl->dor |= FD_DOR_DMAEN;
1992    /* No result back */
1993    fdctrl_to_command_phase(fdctrl);
1994}
1995
1996static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1997{
1998    FDrive *cur_drv;
1999
2000    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2001    cur_drv = get_cur_drv(fdctrl);
2002    cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2003    /* 1 Byte status back */
2004    fdctrl->fifo[0] = (cur_drv->ro << 6) |
2005        (cur_drv->track == 0 ? 0x10 : 0x00) |
2006        (cur_drv->head << 2) |
2007        GET_CUR_DRV(fdctrl) |
2008        0x28;
2009    fdctrl_to_result_phase(fdctrl, 1);
2010}
2011
2012static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2013{
2014    FDrive *cur_drv;
2015
2016    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2017    cur_drv = get_cur_drv(fdctrl);
2018    fd_recalibrate(cur_drv);
2019    fdctrl_to_command_phase(fdctrl);
2020    /* Raise Interrupt */
2021    fdctrl->status0 |= FD_SR0_SEEK;
2022    fdctrl_raise_irq(fdctrl);
2023}
2024
2025static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2026{
2027    FDrive *cur_drv = get_cur_drv(fdctrl);
2028
2029    if (fdctrl->reset_sensei > 0) {
2030        fdctrl->fifo[0] =
2031            FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2032        fdctrl->reset_sensei--;
2033    } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2034        fdctrl->fifo[0] = FD_SR0_INVCMD;
2035        fdctrl_to_result_phase(fdctrl, 1);
2036        return;
2037    } else {
2038        fdctrl->fifo[0] =
2039                (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2040                | GET_CUR_DRV(fdctrl);
2041    }
2042
2043    fdctrl->fifo[1] = cur_drv->track;
2044    fdctrl_to_result_phase(fdctrl, 2);
2045    fdctrl_reset_irq(fdctrl);
2046    fdctrl->status0 = FD_SR0_RDYCHG;
2047}
2048
2049static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2050{
2051    FDrive *cur_drv;
2052
2053    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2054    cur_drv = get_cur_drv(fdctrl);
2055    fdctrl_to_command_phase(fdctrl);
2056    /* The seek command just sends step pulses to the drive and doesn't care if
2057     * there is a medium inserted of if it's banging the head against the drive.
2058     */
2059    fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2060    /* Raise Interrupt */
2061    fdctrl->status0 |= FD_SR0_SEEK;
2062    fdctrl_raise_irq(fdctrl);
2063}
2064
2065static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2066{
2067    FDrive *cur_drv = get_cur_drv(fdctrl);
2068
2069    if (fdctrl->fifo[1] & 0x80)
2070        cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2071    /* No result back */
2072    fdctrl_to_command_phase(fdctrl);
2073}
2074
2075static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2076{
2077    fdctrl->config = fdctrl->fifo[2];
2078    fdctrl->precomp_trk =  fdctrl->fifo[3];
2079    /* No result back */
2080    fdctrl_to_command_phase(fdctrl);
2081}
2082
2083static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2084{
2085    fdctrl->pwrd = fdctrl->fifo[1];
2086    fdctrl->fifo[0] = fdctrl->fifo[1];
2087    fdctrl_to_result_phase(fdctrl, 1);
2088}
2089
2090static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2091{
2092    /* No result back */
2093    fdctrl_to_command_phase(fdctrl);
2094}
2095
2096static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2097{
2098    FDrive *cur_drv = get_cur_drv(fdctrl);
2099    uint32_t pos;
2100
2101    pos = fdctrl->data_pos - 1;
2102    pos %= FD_SECTOR_LEN;
2103    if (fdctrl->fifo[pos] & 0x80) {
2104        /* Command parameters done */
2105        if (fdctrl->fifo[pos] & 0x40) {
2106            fdctrl->fifo[0] = fdctrl->fifo[1];
2107            fdctrl->fifo[2] = 0;
2108            fdctrl->fifo[3] = 0;
2109            fdctrl_to_result_phase(fdctrl, 4);
2110        } else {
2111            fdctrl_to_command_phase(fdctrl);
2112        }
2113    } else if (fdctrl->data_len > 7) {
2114        /* ERROR */
2115        fdctrl->fifo[0] = 0x80 |
2116            (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2117        fdctrl_to_result_phase(fdctrl, 1);
2118    }
2119}
2120
2121static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2122{
2123    FDrive *cur_drv;
2124
2125    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2126    cur_drv = get_cur_drv(fdctrl);
2127    if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2128        fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2129                cur_drv->sect, 1);
2130    } else {
2131        fd_seek(cur_drv, cur_drv->head,
2132                cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2133    }
2134    fdctrl_to_command_phase(fdctrl);
2135    /* Raise Interrupt */
2136    fdctrl->status0 |= FD_SR0_SEEK;
2137    fdctrl_raise_irq(fdctrl);
2138}
2139
2140static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2141{
2142    FDrive *cur_drv;
2143
2144    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2145    cur_drv = get_cur_drv(fdctrl);
2146    if (fdctrl->fifo[2] > cur_drv->track) {
2147        fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2148    } else {
2149        fd_seek(cur_drv, cur_drv->head,
2150                cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2151    }
2152    fdctrl_to_command_phase(fdctrl);
2153    /* Raise Interrupt */
2154    fdctrl->status0 |= FD_SR0_SEEK;
2155    fdctrl_raise_irq(fdctrl);
2156}
2157
2158/*
2159 * Handlers for the execution phase of each command
2160 */
2161typedef struct FDCtrlCommand {
2162    uint8_t value;
2163    uint8_t mask;
2164    const char* name;
2165    int parameters;
2166    void (*handler)(FDCtrl *fdctrl, int direction);
2167    int direction;
2168} FDCtrlCommand;
2169
2170static const FDCtrlCommand handlers[] = {
2171    { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2172    { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2173    { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2174    { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2175    { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2176    { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2177    { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2178    { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2179    { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2180    { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2181    { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2182    { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2183    { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2184    { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2185    { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2186    { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2187    { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2188    { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2189    { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2190    { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2191    { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2192    { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2193    { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2194    { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2195    { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2196    { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2197    { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2198    { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2199    { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2200    { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2201    { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2202    { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2203};
2204/* Associate command to an index in the 'handlers' array */
2205static uint8_t command_to_handler[256];
2206
2207static const FDCtrlCommand *get_command(uint8_t cmd)
2208{
2209    int idx;
2210
2211    idx = command_to_handler[cmd];
2212    FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2213    return &handlers[idx];
2214}
2215
2216static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2217{
2218    FDrive *cur_drv;
2219    const FDCtrlCommand *cmd;
2220    uint32_t pos;
2221
2222    /* Reset mode */
2223    if (!(fdctrl->dor & FD_DOR_nRESET)) {
2224        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2225        return;
2226    }
2227    if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2228        FLOPPY_DPRINTF("error: controller not ready for writing\n");
2229        return;
2230    }
2231    fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2232
2233    FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2234
2235    /* If data_len spans multiple sectors, the current position in the FIFO
2236     * wraps around while fdctrl->data_pos is the real position in the whole
2237     * request. */
2238    pos = fdctrl->data_pos++;
2239    pos %= FD_SECTOR_LEN;
2240    fdctrl->fifo[pos] = value;
2241
2242    if (fdctrl->data_pos == fdctrl->data_len) {
2243        fdctrl->msr &= ~FD_MSR_RQM;
2244    }
2245
2246    switch (fdctrl->phase) {
2247    case FD_PHASE_EXECUTION:
2248        /* For DMA requests, RQM should be cleared during execution phase, so
2249         * we would have errored out above. */
2250        assert(fdctrl->msr & FD_MSR_NONDMA);
2251
2252        /* FIFO data write */
2253        if (pos == FD_SECTOR_LEN - 1 ||
2254            fdctrl->data_pos == fdctrl->data_len) {
2255            cur_drv = get_cur_drv(fdctrl);
2256            if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2257                           BDRV_SECTOR_SIZE, 0) < 0) {
2258                FLOPPY_DPRINTF("error writing sector %d\n",
2259                               fd_sector(cur_drv));
2260                break;
2261            }
2262            if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2263                FLOPPY_DPRINTF("error seeking to next sector %d\n",
2264                               fd_sector(cur_drv));
2265                break;
2266            }
2267        }
2268
2269        /* Switch to result phase when done with the transfer */
2270        if (fdctrl->data_pos == fdctrl->data_len) {
2271            fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2272        }
2273        break;
2274
2275    case FD_PHASE_COMMAND:
2276        assert(!(fdctrl->msr & FD_MSR_NONDMA));
2277        assert(fdctrl->data_pos < FD_SECTOR_LEN);
2278
2279        if (pos == 0) {
2280            /* The first byte specifies the command. Now we start reading
2281             * as many parameters as this command requires. */
2282            cmd = get_command(value);
2283            fdctrl->data_len = cmd->parameters + 1;
2284            if (cmd->parameters) {
2285                fdctrl->msr |= FD_MSR_RQM;
2286            }
2287            fdctrl->msr |= FD_MSR_CMDBUSY;
2288        }
2289
2290        if (fdctrl->data_pos == fdctrl->data_len) {
2291            /* We have all parameters now, execute the command */
2292            fdctrl->phase = FD_PHASE_EXECUTION;
2293
2294            if (fdctrl->data_state & FD_STATE_FORMAT) {
2295                fdctrl_format_sector(fdctrl);
2296                break;
2297            }
2298
2299            cmd = get_command(fdctrl->fifo[0]);
2300            FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2301            cmd->handler(fdctrl, cmd->direction);
2302        }
2303        break;
2304
2305    case FD_PHASE_RESULT:
2306    default:
2307        abort();
2308    }
2309}
2310
2311static void fdctrl_result_timer(void *opaque)
2312{
2313    FDCtrl *fdctrl = opaque;
2314    FDrive *cur_drv = get_cur_drv(fdctrl);
2315
2316    /* Pretend we are spinning.
2317     * This is needed for Coherent, which uses READ ID to check for
2318     * sector interleaving.
2319     */
2320    if (cur_drv->last_sect != 0) {
2321        cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2322    }
2323    /* READ_ID can't automatically succeed! */
2324    if (fdctrl->check_media_rate &&
2325        (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2326        FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2327                       fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2328        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2329    } else {
2330        fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2331    }
2332}
2333
2334static void fdctrl_change_cb(void *opaque, bool load)
2335{
2336    FDrive *drive = opaque;
2337
2338    drive->media_changed = 1;
2339    drive->media_validated = false;
2340    fd_revalidate(drive);
2341}
2342
2343static const BlockDevOps fdctrl_block_ops = {
2344    .change_media_cb = fdctrl_change_cb,
2345};
2346
2347/* Init functions */
2348static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2349{
2350    unsigned int i;
2351    FDrive *drive;
2352
2353    for (i = 0; i < MAX_FD; i++) {
2354        drive = &fdctrl->drives[i];
2355        drive->fdctrl = fdctrl;
2356
2357        if (drive->blk) {
2358            if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2359                error_setg(errp, "fdc doesn't support drive option werror");
2360                return;
2361            }
2362            if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2363                error_setg(errp, "fdc doesn't support drive option rerror");
2364                return;
2365            }
2366        }
2367
2368        fd_init(drive);
2369        if (drive->blk) {
2370            blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2371            pick_drive_type(drive);
2372        }
2373        fd_revalidate(drive);
2374    }
2375}
2376
2377ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2378{
2379    DeviceState *dev;
2380    ISADevice *isadev;
2381
2382    isadev = isa_try_create(bus, TYPE_ISA_FDC);
2383    if (!isadev) {
2384        return NULL;
2385    }
2386    dev = DEVICE(isadev);
2387
2388    if (fds[0]) {
2389        qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2390                            &error_fatal);
2391    }
2392    if (fds[1]) {
2393        qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2394                            &error_fatal);
2395    }
2396    qdev_init_nofail(dev);
2397
2398    return isadev;
2399}
2400
2401void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2402                        hwaddr mmio_base, DriveInfo **fds)
2403{
2404    FDCtrl *fdctrl;
2405    DeviceState *dev;
2406    SysBusDevice *sbd;
2407    FDCtrlSysBus *sys;
2408
2409    dev = qdev_create(NULL, "sysbus-fdc");
2410    sys = SYSBUS_FDC(dev);
2411    fdctrl = &sys->state;
2412    fdctrl->dma_chann = dma_chann; /* FIXME */
2413    if (fds[0]) {
2414        qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2415                            &error_fatal);
2416    }
2417    if (fds[1]) {
2418        qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2419                            &error_fatal);
2420    }
2421    qdev_init_nofail(dev);
2422    sbd = SYS_BUS_DEVICE(dev);
2423    sysbus_connect_irq(sbd, 0, irq);
2424    sysbus_mmio_map(sbd, 0, mmio_base);
2425}
2426
2427void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2428                       DriveInfo **fds, qemu_irq *fdc_tc)
2429{
2430    DeviceState *dev;
2431    FDCtrlSysBus *sys;
2432
2433    dev = qdev_create(NULL, "SUNW,fdtwo");
2434    if (fds[0]) {
2435        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2436                            &error_fatal);
2437    }
2438    qdev_init_nofail(dev);
2439    sys = SYSBUS_FDC(dev);
2440    sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2441    sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2442    *fdc_tc = qdev_get_gpio_in(dev, 0);
2443}
2444
2445static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2446{
2447    int i, j;
2448    static int command_tables_inited = 0;
2449
2450    if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2451        error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2452    }
2453
2454    /* Fill 'command_to_handler' lookup table */
2455    if (!command_tables_inited) {
2456        command_tables_inited = 1;
2457        for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2458            for (j = 0; j < sizeof(command_to_handler); j++) {
2459                if ((j & handlers[i].mask) == handlers[i].value) {
2460                    command_to_handler[j] = i;
2461                }
2462            }
2463        }
2464    }
2465
2466    FLOPPY_DPRINTF("init controller\n");
2467    fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2468    fdctrl->fifo_size = 512;
2469    fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2470                                             fdctrl_result_timer, fdctrl);
2471
2472    fdctrl->version = 0x90; /* Intel 82078 controller */
2473    fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2474    fdctrl->num_floppies = MAX_FD;
2475
2476    if (fdctrl->dma_chann != -1) {
2477        IsaDmaClass *k;
2478        assert(fdctrl->dma);
2479        k = ISADMA_GET_CLASS(fdctrl->dma);
2480        k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2481                            &fdctrl_transfer_handler, fdctrl);
2482    }
2483    fdctrl_connect_drives(fdctrl, errp);
2484}
2485
2486static const MemoryRegionPortio fdc_portio_list[] = {
2487    { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2488    { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2489    PORTIO_END_OF_LIST(),
2490};
2491
2492static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2493{
2494    ISADevice *isadev = ISA_DEVICE(dev);
2495    FDCtrlISABus *isa = ISA_FDC(dev);
2496    FDCtrl *fdctrl = &isa->state;
2497    Error *err = NULL;
2498
2499    isa_register_portio_list(isadev, &fdctrl->portio_list,
2500                             isa->iobase, fdc_portio_list, fdctrl,
2501                             "fdc");
2502
2503    isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2504    fdctrl->dma_chann = isa->dma;
2505    if (fdctrl->dma_chann != -1) {
2506        fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2507        assert(fdctrl->dma);
2508    }
2509
2510    qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2511    fdctrl_realize_common(fdctrl, &err);
2512    if (err != NULL) {
2513        error_propagate(errp, err);
2514        return;
2515    }
2516}
2517
2518static void sysbus_fdc_initfn(Object *obj)
2519{
2520    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2521    FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2522    FDCtrl *fdctrl = &sys->state;
2523
2524    fdctrl->dma_chann = -1;
2525
2526    memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2527                          "fdc", 0x08);
2528    sysbus_init_mmio(sbd, &fdctrl->iomem);
2529}
2530
2531static void sun4m_fdc_initfn(Object *obj)
2532{
2533    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2534    FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2535    FDCtrl *fdctrl = &sys->state;
2536
2537    fdctrl->dma_chann = -1;
2538
2539    memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2540                          fdctrl, "fdctrl", 0x08);
2541    sysbus_init_mmio(sbd, &fdctrl->iomem);
2542}
2543
2544static void sysbus_fdc_common_initfn(Object *obj)
2545{
2546    DeviceState *dev = DEVICE(obj);
2547    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2548    FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2549    FDCtrl *fdctrl = &sys->state;
2550
2551    qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2552
2553    sysbus_init_irq(sbd, &fdctrl->irq);
2554    qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2555}
2556
2557static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2558{
2559    FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2560    FDCtrl *fdctrl = &sys->state;
2561
2562    fdctrl_realize_common(fdctrl, errp);
2563}
2564
2565FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2566{
2567    FDCtrlISABus *isa = ISA_FDC(fdc);
2568
2569    return isa->state.drives[i].drive;
2570}
2571
2572void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2573                               uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2574{
2575    const FDFormat *fdf;
2576
2577    *maxc = *maxh = *maxs = 0;
2578    for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2579        if (fdf->drive != type) {
2580            continue;
2581        }
2582        if (*maxc < fdf->max_track) {
2583            *maxc = fdf->max_track;
2584        }
2585        if (*maxh < fdf->max_head) {
2586            *maxh = fdf->max_head;
2587        }
2588        if (*maxs < fdf->last_sect) {
2589            *maxs = fdf->last_sect;
2590        }
2591    }
2592    (*maxc)--;
2593}
2594
2595static const VMStateDescription vmstate_isa_fdc ={
2596    .name = "fdc",
2597    .version_id = 2,
2598    .minimum_version_id = 2,
2599    .fields = (VMStateField[]) {
2600        VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2601        VMSTATE_END_OF_LIST()
2602    }
2603};
2604
2605static Property isa_fdc_properties[] = {
2606    DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2607    DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2608    DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2609    DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2610    DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2611    DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2612                    0, true),
2613    DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2614                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2615                        FloppyDriveType),
2616    DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2617                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2618                        FloppyDriveType),
2619    DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2620                        FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2621                        FloppyDriveType),
2622    DEFINE_PROP_END_OF_LIST(),
2623};
2624
2625static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2626{
2627    DeviceClass *dc = DEVICE_CLASS(klass);
2628
2629    dc->realize = isabus_fdc_realize;
2630    dc->fw_name = "fdc";
2631    dc->reset = fdctrl_external_reset_isa;
2632    dc->vmsd = &vmstate_isa_fdc;
2633    dc->props = isa_fdc_properties;
2634    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2635}
2636
2637static void isabus_fdc_instance_init(Object *obj)
2638{
2639    FDCtrlISABus *isa = ISA_FDC(obj);
2640
2641    device_add_bootindex_property(obj, &isa->bootindexA,
2642                                  "bootindexA", "/floppy@0",
2643                                  DEVICE(obj), NULL);
2644    device_add_bootindex_property(obj, &isa->bootindexB,
2645                                  "bootindexB", "/floppy@1",
2646                                  DEVICE(obj), NULL);
2647}
2648
2649static const TypeInfo isa_fdc_info = {
2650    .name          = TYPE_ISA_FDC,
2651    .parent        = TYPE_ISA_DEVICE,
2652    .instance_size = sizeof(FDCtrlISABus),
2653    .class_init    = isabus_fdc_class_init,
2654    .instance_init = isabus_fdc_instance_init,
2655};
2656
2657static const VMStateDescription vmstate_sysbus_fdc ={
2658    .name = "fdc",
2659    .version_id = 2,
2660    .minimum_version_id = 2,
2661    .fields = (VMStateField[]) {
2662        VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2663        VMSTATE_END_OF_LIST()
2664    }
2665};
2666
2667static Property sysbus_fdc_properties[] = {
2668    DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2669    DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2670    DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2671                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2672                        FloppyDriveType),
2673    DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2674                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2675                        FloppyDriveType),
2676    DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2677                        FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2678                        FloppyDriveType),
2679    DEFINE_PROP_END_OF_LIST(),
2680};
2681
2682static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2683{
2684    DeviceClass *dc = DEVICE_CLASS(klass);
2685
2686    dc->props = sysbus_fdc_properties;
2687    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2688}
2689
2690static const TypeInfo sysbus_fdc_info = {
2691    .name          = "sysbus-fdc",
2692    .parent        = TYPE_SYSBUS_FDC,
2693    .instance_init = sysbus_fdc_initfn,
2694    .class_init    = sysbus_fdc_class_init,
2695};
2696
2697static Property sun4m_fdc_properties[] = {
2698    DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2699    DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2700                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2701                        FloppyDriveType),
2702    DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2703                        FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2704                        FloppyDriveType),
2705    DEFINE_PROP_END_OF_LIST(),
2706};
2707
2708static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2709{
2710    DeviceClass *dc = DEVICE_CLASS(klass);
2711
2712    dc->props = sun4m_fdc_properties;
2713    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2714}
2715
2716static const TypeInfo sun4m_fdc_info = {
2717    .name          = "SUNW,fdtwo",
2718    .parent        = TYPE_SYSBUS_FDC,
2719    .instance_init = sun4m_fdc_initfn,
2720    .class_init    = sun4m_fdc_class_init,
2721};
2722
2723static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2724{
2725    DeviceClass *dc = DEVICE_CLASS(klass);
2726
2727    dc->realize = sysbus_fdc_common_realize;
2728    dc->reset = fdctrl_external_reset_sysbus;
2729    dc->vmsd = &vmstate_sysbus_fdc;
2730}
2731
2732static const TypeInfo sysbus_fdc_type_info = {
2733    .name          = TYPE_SYSBUS_FDC,
2734    .parent        = TYPE_SYS_BUS_DEVICE,
2735    .instance_size = sizeof(FDCtrlSysBus),
2736    .instance_init = sysbus_fdc_common_initfn,
2737    .abstract      = true,
2738    .class_init    = sysbus_fdc_common_class_init,
2739};
2740
2741static void fdc_register_types(void)
2742{
2743    type_register_static(&isa_fdc_info);
2744    type_register_static(&sysbus_fdc_type_info);
2745    type_register_static(&sysbus_fdc_info);
2746    type_register_static(&sun4m_fdc_info);
2747}
2748
2749type_init(fdc_register_types)
2750