qemu/memory.c
<<
>>
Prefs
   1/*
   2 * Physical memory management
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 * Contributions after 2012-01-13 are licensed under the terms of the
  13 * GNU GPL, version 2 or (at your option) any later version.
  14 */
  15
  16#include "qemu/osdep.h"
  17#include "qapi/error.h"
  18#include "qemu-common.h"
  19#include "cpu.h"
  20#include "exec/memory.h"
  21#include "exec/address-spaces.h"
  22#include "exec/ioport.h"
  23#include "qapi/visitor.h"
  24#include "qemu/bitops.h"
  25#include "qemu/error-report.h"
  26#include "qom/object.h"
  27#include "trace.h"
  28
  29#include "exec/memory-internal.h"
  30#include "exec/ram_addr.h"
  31#include "sysemu/kvm.h"
  32#include "sysemu/sysemu.h"
  33
  34//#define DEBUG_UNASSIGNED
  35
  36static unsigned memory_region_transaction_depth;
  37static bool memory_region_update_pending;
  38static bool ioeventfd_update_pending;
  39static bool global_dirty_log = false;
  40
  41static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
  42    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
  43
  44static QTAILQ_HEAD(, AddressSpace) address_spaces
  45    = QTAILQ_HEAD_INITIALIZER(address_spaces);
  46
  47typedef struct AddrRange AddrRange;
  48
  49/*
  50 * Note that signed integers are needed for negative offsetting in aliases
  51 * (large MemoryRegion::alias_offset).
  52 */
  53struct AddrRange {
  54    Int128 start;
  55    Int128 size;
  56};
  57
  58static AddrRange addrrange_make(Int128 start, Int128 size)
  59{
  60    return (AddrRange) { start, size };
  61}
  62
  63static bool addrrange_equal(AddrRange r1, AddrRange r2)
  64{
  65    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
  66}
  67
  68static Int128 addrrange_end(AddrRange r)
  69{
  70    return int128_add(r.start, r.size);
  71}
  72
  73static AddrRange addrrange_shift(AddrRange range, Int128 delta)
  74{
  75    int128_addto(&range.start, delta);
  76    return range;
  77}
  78
  79static bool addrrange_contains(AddrRange range, Int128 addr)
  80{
  81    return int128_ge(addr, range.start)
  82        && int128_lt(addr, addrrange_end(range));
  83}
  84
  85static bool addrrange_intersects(AddrRange r1, AddrRange r2)
  86{
  87    return addrrange_contains(r1, r2.start)
  88        || addrrange_contains(r2, r1.start);
  89}
  90
  91static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
  92{
  93    Int128 start = int128_max(r1.start, r2.start);
  94    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
  95    return addrrange_make(start, int128_sub(end, start));
  96}
  97
  98enum ListenerDirection { Forward, Reverse };
  99
 100static bool memory_listener_match(MemoryListener *listener,
 101                                  MemoryRegionSection *section)
 102{
 103    return !listener->address_space_filter
 104        || listener->address_space_filter == section->address_space;
 105}
 106
 107#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
 108    do {                                                                \
 109        MemoryListener *_listener;                                      \
 110                                                                        \
 111        switch (_direction) {                                           \
 112        case Forward:                                                   \
 113            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
 114                if (_listener->_callback) {                             \
 115                    _listener->_callback(_listener, ##_args);           \
 116                }                                                       \
 117            }                                                           \
 118            break;                                                      \
 119        case Reverse:                                                   \
 120            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
 121                                   memory_listeners, link) {            \
 122                if (_listener->_callback) {                             \
 123                    _listener->_callback(_listener, ##_args);           \
 124                }                                                       \
 125            }                                                           \
 126            break;                                                      \
 127        default:                                                        \
 128            abort();                                                    \
 129        }                                                               \
 130    } while (0)
 131
 132#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
 133    do {                                                                \
 134        MemoryListener *_listener;                                      \
 135                                                                        \
 136        switch (_direction) {                                           \
 137        case Forward:                                                   \
 138            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
 139                if (_listener->_callback                                \
 140                    && memory_listener_match(_listener, _section)) {    \
 141                    _listener->_callback(_listener, _section, ##_args); \
 142                }                                                       \
 143            }                                                           \
 144            break;                                                      \
 145        case Reverse:                                                   \
 146            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
 147                                   memory_listeners, link) {            \
 148                if (_listener->_callback                                \
 149                    && memory_listener_match(_listener, _section)) {    \
 150                    _listener->_callback(_listener, _section, ##_args); \
 151                }                                                       \
 152            }                                                           \
 153            break;                                                      \
 154        default:                                                        \
 155            abort();                                                    \
 156        }                                                               \
 157    } while (0)
 158
 159/* No need to ref/unref .mr, the FlatRange keeps it alive.  */
 160#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
 161    MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
 162        .mr = (fr)->mr,                                                 \
 163        .address_space = (as),                                          \
 164        .offset_within_region = (fr)->offset_in_region,                 \
 165        .size = (fr)->addr.size,                                        \
 166        .offset_within_address_space = int128_get64((fr)->addr.start),  \
 167        .readonly = (fr)->readonly,                                     \
 168              }), ##_args)
 169
 170struct CoalescedMemoryRange {
 171    AddrRange addr;
 172    QTAILQ_ENTRY(CoalescedMemoryRange) link;
 173};
 174
 175struct MemoryRegionIoeventfd {
 176    AddrRange addr;
 177    bool match_data;
 178    uint64_t data;
 179    EventNotifier *e;
 180};
 181
 182static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
 183                                           MemoryRegionIoeventfd b)
 184{
 185    if (int128_lt(a.addr.start, b.addr.start)) {
 186        return true;
 187    } else if (int128_gt(a.addr.start, b.addr.start)) {
 188        return false;
 189    } else if (int128_lt(a.addr.size, b.addr.size)) {
 190        return true;
 191    } else if (int128_gt(a.addr.size, b.addr.size)) {
 192        return false;
 193    } else if (a.match_data < b.match_data) {
 194        return true;
 195    } else  if (a.match_data > b.match_data) {
 196        return false;
 197    } else if (a.match_data) {
 198        if (a.data < b.data) {
 199            return true;
 200        } else if (a.data > b.data) {
 201            return false;
 202        }
 203    }
 204    if (a.e < b.e) {
 205        return true;
 206    } else if (a.e > b.e) {
 207        return false;
 208    }
 209    return false;
 210}
 211
 212static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
 213                                          MemoryRegionIoeventfd b)
 214{
 215    return !memory_region_ioeventfd_before(a, b)
 216        && !memory_region_ioeventfd_before(b, a);
 217}
 218
 219typedef struct FlatRange FlatRange;
 220typedef struct FlatView FlatView;
 221
 222/* Range of memory in the global map.  Addresses are absolute. */
 223struct FlatRange {
 224    MemoryRegion *mr;
 225    hwaddr offset_in_region;
 226    AddrRange addr;
 227    uint8_t dirty_log_mask;
 228    bool romd_mode;
 229    bool readonly;
 230};
 231
 232/* Flattened global view of current active memory hierarchy.  Kept in sorted
 233 * order.
 234 */
 235struct FlatView {
 236    struct rcu_head rcu;
 237    unsigned ref;
 238    FlatRange *ranges;
 239    unsigned nr;
 240    unsigned nr_allocated;
 241};
 242
 243typedef struct AddressSpaceOps AddressSpaceOps;
 244
 245#define FOR_EACH_FLAT_RANGE(var, view)          \
 246    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
 247
 248static bool flatrange_equal(FlatRange *a, FlatRange *b)
 249{
 250    return a->mr == b->mr
 251        && addrrange_equal(a->addr, b->addr)
 252        && a->offset_in_region == b->offset_in_region
 253        && a->romd_mode == b->romd_mode
 254        && a->readonly == b->readonly;
 255}
 256
 257static void flatview_init(FlatView *view)
 258{
 259    view->ref = 1;
 260    view->ranges = NULL;
 261    view->nr = 0;
 262    view->nr_allocated = 0;
 263}
 264
 265/* Insert a range into a given position.  Caller is responsible for maintaining
 266 * sorting order.
 267 */
 268static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
 269{
 270    if (view->nr == view->nr_allocated) {
 271        view->nr_allocated = MAX(2 * view->nr, 10);
 272        view->ranges = g_realloc(view->ranges,
 273                                    view->nr_allocated * sizeof(*view->ranges));
 274    }
 275    memmove(view->ranges + pos + 1, view->ranges + pos,
 276            (view->nr - pos) * sizeof(FlatRange));
 277    view->ranges[pos] = *range;
 278    memory_region_ref(range->mr);
 279    ++view->nr;
 280}
 281
 282static void flatview_destroy(FlatView *view)
 283{
 284    int i;
 285
 286    for (i = 0; i < view->nr; i++) {
 287        memory_region_unref(view->ranges[i].mr);
 288    }
 289    g_free(view->ranges);
 290    g_free(view);
 291}
 292
 293static void flatview_ref(FlatView *view)
 294{
 295    atomic_inc(&view->ref);
 296}
 297
 298static void flatview_unref(FlatView *view)
 299{
 300    if (atomic_fetch_dec(&view->ref) == 1) {
 301        flatview_destroy(view);
 302    }
 303}
 304
 305static bool can_merge(FlatRange *r1, FlatRange *r2)
 306{
 307    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
 308        && r1->mr == r2->mr
 309        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
 310                                r1->addr.size),
 311                     int128_make64(r2->offset_in_region))
 312        && r1->dirty_log_mask == r2->dirty_log_mask
 313        && r1->romd_mode == r2->romd_mode
 314        && r1->readonly == r2->readonly;
 315}
 316
 317/* Attempt to simplify a view by merging adjacent ranges */
 318static void flatview_simplify(FlatView *view)
 319{
 320    unsigned i, j;
 321
 322    i = 0;
 323    while (i < view->nr) {
 324        j = i + 1;
 325        while (j < view->nr
 326               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
 327            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
 328            ++j;
 329        }
 330        ++i;
 331        memmove(&view->ranges[i], &view->ranges[j],
 332                (view->nr - j) * sizeof(view->ranges[j]));
 333        view->nr -= j - i;
 334    }
 335}
 336
 337static bool memory_region_big_endian(MemoryRegion *mr)
 338{
 339#ifdef TARGET_WORDS_BIGENDIAN
 340    return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
 341#else
 342    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
 343#endif
 344}
 345
 346static bool memory_region_wrong_endianness(MemoryRegion *mr)
 347{
 348#ifdef TARGET_WORDS_BIGENDIAN
 349    return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
 350#else
 351    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
 352#endif
 353}
 354
 355static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
 356{
 357    if (memory_region_wrong_endianness(mr)) {
 358        switch (size) {
 359        case 1:
 360            break;
 361        case 2:
 362            *data = bswap16(*data);
 363            break;
 364        case 4:
 365            *data = bswap32(*data);
 366            break;
 367        case 8:
 368            *data = bswap64(*data);
 369            break;
 370        default:
 371            abort();
 372        }
 373    }
 374}
 375
 376static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
 377{
 378    MemoryRegion *root;
 379    hwaddr abs_addr = offset;
 380
 381    abs_addr += mr->addr;
 382    for (root = mr; root->container; ) {
 383        root = root->container;
 384        abs_addr += root->addr;
 385    }
 386
 387    return abs_addr;
 388}
 389
 390static int get_cpu_index(void)
 391{
 392    if (current_cpu) {
 393        return current_cpu->cpu_index;
 394    }
 395    return -1;
 396}
 397
 398static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
 399                                                       hwaddr addr,
 400                                                       uint64_t *value,
 401                                                       unsigned size,
 402                                                       unsigned shift,
 403                                                       uint64_t mask,
 404                                                       MemTxAttrs attrs)
 405{
 406    uint64_t tmp;
 407
 408    tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
 409    if (mr->subpage) {
 410        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 411    } else if (mr == &io_mem_notdirty) {
 412        /* Accesses to code which has previously been translated into a TB show
 413         * up in the MMIO path, as accesses to the io_mem_notdirty
 414         * MemoryRegion. */
 415        trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
 416    } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
 417        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 418        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
 419    }
 420    *value |= (tmp & mask) << shift;
 421    return MEMTX_OK;
 422}
 423
 424static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
 425                                                hwaddr addr,
 426                                                uint64_t *value,
 427                                                unsigned size,
 428                                                unsigned shift,
 429                                                uint64_t mask,
 430                                                MemTxAttrs attrs)
 431{
 432    uint64_t tmp;
 433
 434    tmp = mr->ops->read(mr->opaque, addr, size);
 435    if (mr->subpage) {
 436        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 437    } else if (mr == &io_mem_notdirty) {
 438        /* Accesses to code which has previously been translated into a TB show
 439         * up in the MMIO path, as accesses to the io_mem_notdirty
 440         * MemoryRegion. */
 441        trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
 442    } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
 443        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 444        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
 445    }
 446    *value |= (tmp & mask) << shift;
 447    return MEMTX_OK;
 448}
 449
 450static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
 451                                                          hwaddr addr,
 452                                                          uint64_t *value,
 453                                                          unsigned size,
 454                                                          unsigned shift,
 455                                                          uint64_t mask,
 456                                                          MemTxAttrs attrs)
 457{
 458    uint64_t tmp = 0;
 459    MemTxResult r;
 460
 461    r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
 462    if (mr->subpage) {
 463        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 464    } else if (mr == &io_mem_notdirty) {
 465        /* Accesses to code which has previously been translated into a TB show
 466         * up in the MMIO path, as accesses to the io_mem_notdirty
 467         * MemoryRegion. */
 468        trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
 469    } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
 470        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 471        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
 472    }
 473    *value |= (tmp & mask) << shift;
 474    return r;
 475}
 476
 477static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
 478                                                        hwaddr addr,
 479                                                        uint64_t *value,
 480                                                        unsigned size,
 481                                                        unsigned shift,
 482                                                        uint64_t mask,
 483                                                        MemTxAttrs attrs)
 484{
 485    uint64_t tmp;
 486
 487    tmp = (*value >> shift) & mask;
 488    if (mr->subpage) {
 489        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 490    } else if (mr == &io_mem_notdirty) {
 491        /* Accesses to code which has previously been translated into a TB show
 492         * up in the MMIO path, as accesses to the io_mem_notdirty
 493         * MemoryRegion. */
 494        trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
 495    } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
 496        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 497        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
 498    }
 499    mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
 500    return MEMTX_OK;
 501}
 502
 503static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
 504                                                hwaddr addr,
 505                                                uint64_t *value,
 506                                                unsigned size,
 507                                                unsigned shift,
 508                                                uint64_t mask,
 509                                                MemTxAttrs attrs)
 510{
 511    uint64_t tmp;
 512
 513    tmp = (*value >> shift) & mask;
 514    if (mr->subpage) {
 515        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 516    } else if (mr == &io_mem_notdirty) {
 517        /* Accesses to code which has previously been translated into a TB show
 518         * up in the MMIO path, as accesses to the io_mem_notdirty
 519         * MemoryRegion. */
 520        trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
 521    } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
 522        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 523        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
 524    }
 525    mr->ops->write(mr->opaque, addr, tmp, size);
 526    return MEMTX_OK;
 527}
 528
 529static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
 530                                                           hwaddr addr,
 531                                                           uint64_t *value,
 532                                                           unsigned size,
 533                                                           unsigned shift,
 534                                                           uint64_t mask,
 535                                                           MemTxAttrs attrs)
 536{
 537    uint64_t tmp;
 538
 539    tmp = (*value >> shift) & mask;
 540    if (mr->subpage) {
 541        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 542    } else if (mr == &io_mem_notdirty) {
 543        /* Accesses to code which has previously been translated into a TB show
 544         * up in the MMIO path, as accesses to the io_mem_notdirty
 545         * MemoryRegion. */
 546        trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
 547    } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
 548        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 549        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
 550    }
 551    return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
 552}
 553
 554static MemTxResult access_with_adjusted_size(hwaddr addr,
 555                                      uint64_t *value,
 556                                      unsigned size,
 557                                      unsigned access_size_min,
 558                                      unsigned access_size_max,
 559                                      MemTxResult (*access)(MemoryRegion *mr,
 560                                                            hwaddr addr,
 561                                                            uint64_t *value,
 562                                                            unsigned size,
 563                                                            unsigned shift,
 564                                                            uint64_t mask,
 565                                                            MemTxAttrs attrs),
 566                                      MemoryRegion *mr,
 567                                      MemTxAttrs attrs)
 568{
 569    uint64_t access_mask;
 570    unsigned access_size;
 571    unsigned i;
 572    MemTxResult r = MEMTX_OK;
 573
 574    if (!access_size_min) {
 575        access_size_min = 1;
 576    }
 577    if (!access_size_max) {
 578        access_size_max = 4;
 579    }
 580
 581    /* FIXME: support unaligned access? */
 582    access_size = MAX(MIN(size, access_size_max), access_size_min);
 583    access_mask = -1ULL >> (64 - access_size * 8);
 584    if (memory_region_big_endian(mr)) {
 585        for (i = 0; i < size; i += access_size) {
 586            r |= access(mr, addr + i, value, access_size,
 587                        (size - access_size - i) * 8, access_mask, attrs);
 588        }
 589    } else {
 590        for (i = 0; i < size; i += access_size) {
 591            r |= access(mr, addr + i, value, access_size, i * 8,
 592                        access_mask, attrs);
 593        }
 594    }
 595    return r;
 596}
 597
 598static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
 599{
 600    AddressSpace *as;
 601
 602    while (mr->container) {
 603        mr = mr->container;
 604    }
 605    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 606        if (mr == as->root) {
 607            return as;
 608        }
 609    }
 610    return NULL;
 611}
 612
 613/* Render a memory region into the global view.  Ranges in @view obscure
 614 * ranges in @mr.
 615 */
 616static void render_memory_region(FlatView *view,
 617                                 MemoryRegion *mr,
 618                                 Int128 base,
 619                                 AddrRange clip,
 620                                 bool readonly)
 621{
 622    MemoryRegion *subregion;
 623    unsigned i;
 624    hwaddr offset_in_region;
 625    Int128 remain;
 626    Int128 now;
 627    FlatRange fr;
 628    AddrRange tmp;
 629
 630    if (!mr->enabled) {
 631        return;
 632    }
 633
 634    int128_addto(&base, int128_make64(mr->addr));
 635    readonly |= mr->readonly;
 636
 637    tmp = addrrange_make(base, mr->size);
 638
 639    if (!addrrange_intersects(tmp, clip)) {
 640        return;
 641    }
 642
 643    clip = addrrange_intersection(tmp, clip);
 644
 645    if (mr->alias) {
 646        int128_subfrom(&base, int128_make64(mr->alias->addr));
 647        int128_subfrom(&base, int128_make64(mr->alias_offset));
 648        render_memory_region(view, mr->alias, base, clip, readonly);
 649        return;
 650    }
 651
 652    /* Render subregions in priority order. */
 653    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
 654        render_memory_region(view, subregion, base, clip, readonly);
 655    }
 656
 657    if (!mr->terminates) {
 658        return;
 659    }
 660
 661    offset_in_region = int128_get64(int128_sub(clip.start, base));
 662    base = clip.start;
 663    remain = clip.size;
 664
 665    fr.mr = mr;
 666    fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
 667    fr.romd_mode = mr->romd_mode;
 668    fr.readonly = readonly;
 669
 670    /* Render the region itself into any gaps left by the current view. */
 671    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
 672        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
 673            continue;
 674        }
 675        if (int128_lt(base, view->ranges[i].addr.start)) {
 676            now = int128_min(remain,
 677                             int128_sub(view->ranges[i].addr.start, base));
 678            fr.offset_in_region = offset_in_region;
 679            fr.addr = addrrange_make(base, now);
 680            flatview_insert(view, i, &fr);
 681            ++i;
 682            int128_addto(&base, now);
 683            offset_in_region += int128_get64(now);
 684            int128_subfrom(&remain, now);
 685        }
 686        now = int128_sub(int128_min(int128_add(base, remain),
 687                                    addrrange_end(view->ranges[i].addr)),
 688                         base);
 689        int128_addto(&base, now);
 690        offset_in_region += int128_get64(now);
 691        int128_subfrom(&remain, now);
 692    }
 693    if (int128_nz(remain)) {
 694        fr.offset_in_region = offset_in_region;
 695        fr.addr = addrrange_make(base, remain);
 696        flatview_insert(view, i, &fr);
 697    }
 698}
 699
 700/* Render a memory topology into a list of disjoint absolute ranges. */
 701static FlatView *generate_memory_topology(MemoryRegion *mr)
 702{
 703    FlatView *view;
 704
 705    view = g_new(FlatView, 1);
 706    flatview_init(view);
 707
 708    if (mr) {
 709        render_memory_region(view, mr, int128_zero(),
 710                             addrrange_make(int128_zero(), int128_2_64()), false);
 711    }
 712    flatview_simplify(view);
 713
 714    return view;
 715}
 716
 717static void address_space_add_del_ioeventfds(AddressSpace *as,
 718                                             MemoryRegionIoeventfd *fds_new,
 719                                             unsigned fds_new_nb,
 720                                             MemoryRegionIoeventfd *fds_old,
 721                                             unsigned fds_old_nb)
 722{
 723    unsigned iold, inew;
 724    MemoryRegionIoeventfd *fd;
 725    MemoryRegionSection section;
 726
 727    /* Generate a symmetric difference of the old and new fd sets, adding
 728     * and deleting as necessary.
 729     */
 730
 731    iold = inew = 0;
 732    while (iold < fds_old_nb || inew < fds_new_nb) {
 733        if (iold < fds_old_nb
 734            && (inew == fds_new_nb
 735                || memory_region_ioeventfd_before(fds_old[iold],
 736                                                  fds_new[inew]))) {
 737            fd = &fds_old[iold];
 738            section = (MemoryRegionSection) {
 739                .address_space = as,
 740                .offset_within_address_space = int128_get64(fd->addr.start),
 741                .size = fd->addr.size,
 742            };
 743            MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
 744                                 fd->match_data, fd->data, fd->e);
 745            ++iold;
 746        } else if (inew < fds_new_nb
 747                   && (iold == fds_old_nb
 748                       || memory_region_ioeventfd_before(fds_new[inew],
 749                                                         fds_old[iold]))) {
 750            fd = &fds_new[inew];
 751            section = (MemoryRegionSection) {
 752                .address_space = as,
 753                .offset_within_address_space = int128_get64(fd->addr.start),
 754                .size = fd->addr.size,
 755            };
 756            MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
 757                                 fd->match_data, fd->data, fd->e);
 758            ++inew;
 759        } else {
 760            ++iold;
 761            ++inew;
 762        }
 763    }
 764}
 765
 766static FlatView *address_space_get_flatview(AddressSpace *as)
 767{
 768    FlatView *view;
 769
 770    rcu_read_lock();
 771    view = atomic_rcu_read(&as->current_map);
 772    flatview_ref(view);
 773    rcu_read_unlock();
 774    return view;
 775}
 776
 777static void address_space_update_ioeventfds(AddressSpace *as)
 778{
 779    FlatView *view;
 780    FlatRange *fr;
 781    unsigned ioeventfd_nb = 0;
 782    MemoryRegionIoeventfd *ioeventfds = NULL;
 783    AddrRange tmp;
 784    unsigned i;
 785
 786    view = address_space_get_flatview(as);
 787    FOR_EACH_FLAT_RANGE(fr, view) {
 788        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
 789            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
 790                                  int128_sub(fr->addr.start,
 791                                             int128_make64(fr->offset_in_region)));
 792            if (addrrange_intersects(fr->addr, tmp)) {
 793                ++ioeventfd_nb;
 794                ioeventfds = g_realloc(ioeventfds,
 795                                          ioeventfd_nb * sizeof(*ioeventfds));
 796                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
 797                ioeventfds[ioeventfd_nb-1].addr = tmp;
 798            }
 799        }
 800    }
 801
 802    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
 803                                     as->ioeventfds, as->ioeventfd_nb);
 804
 805    g_free(as->ioeventfds);
 806    as->ioeventfds = ioeventfds;
 807    as->ioeventfd_nb = ioeventfd_nb;
 808    flatview_unref(view);
 809}
 810
 811static void address_space_update_topology_pass(AddressSpace *as,
 812                                               const FlatView *old_view,
 813                                               const FlatView *new_view,
 814                                               bool adding)
 815{
 816    unsigned iold, inew;
 817    FlatRange *frold, *frnew;
 818
 819    /* Generate a symmetric difference of the old and new memory maps.
 820     * Kill ranges in the old map, and instantiate ranges in the new map.
 821     */
 822    iold = inew = 0;
 823    while (iold < old_view->nr || inew < new_view->nr) {
 824        if (iold < old_view->nr) {
 825            frold = &old_view->ranges[iold];
 826        } else {
 827            frold = NULL;
 828        }
 829        if (inew < new_view->nr) {
 830            frnew = &new_view->ranges[inew];
 831        } else {
 832            frnew = NULL;
 833        }
 834
 835        if (frold
 836            && (!frnew
 837                || int128_lt(frold->addr.start, frnew->addr.start)
 838                || (int128_eq(frold->addr.start, frnew->addr.start)
 839                    && !flatrange_equal(frold, frnew)))) {
 840            /* In old but not in new, or in both but attributes changed. */
 841
 842            if (!adding) {
 843                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
 844            }
 845
 846            ++iold;
 847        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
 848            /* In both and unchanged (except logging may have changed) */
 849
 850            if (adding) {
 851                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
 852                if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
 853                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
 854                                                  frold->dirty_log_mask,
 855                                                  frnew->dirty_log_mask);
 856                }
 857                if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
 858                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
 859                                                  frold->dirty_log_mask,
 860                                                  frnew->dirty_log_mask);
 861                }
 862            }
 863
 864            ++iold;
 865            ++inew;
 866        } else {
 867            /* In new */
 868
 869            if (adding) {
 870                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
 871            }
 872
 873            ++inew;
 874        }
 875    }
 876}
 877
 878
 879static void address_space_update_topology(AddressSpace *as)
 880{
 881    FlatView *old_view = address_space_get_flatview(as);
 882    FlatView *new_view = generate_memory_topology(as->root);
 883
 884    address_space_update_topology_pass(as, old_view, new_view, false);
 885    address_space_update_topology_pass(as, old_view, new_view, true);
 886
 887    /* Writes are protected by the BQL.  */
 888    atomic_rcu_set(&as->current_map, new_view);
 889    call_rcu(old_view, flatview_unref, rcu);
 890
 891    /* Note that all the old MemoryRegions are still alive up to this
 892     * point.  This relieves most MemoryListeners from the need to
 893     * ref/unref the MemoryRegions they get---unless they use them
 894     * outside the iothread mutex, in which case precise reference
 895     * counting is necessary.
 896     */
 897    flatview_unref(old_view);
 898
 899    address_space_update_ioeventfds(as);
 900}
 901
 902void memory_region_transaction_begin(void)
 903{
 904    qemu_flush_coalesced_mmio_buffer();
 905    ++memory_region_transaction_depth;
 906}
 907
 908static void memory_region_clear_pending(void)
 909{
 910    memory_region_update_pending = false;
 911    ioeventfd_update_pending = false;
 912}
 913
 914void memory_region_transaction_commit(void)
 915{
 916    AddressSpace *as;
 917
 918    assert(memory_region_transaction_depth);
 919    --memory_region_transaction_depth;
 920    if (!memory_region_transaction_depth) {
 921        if (memory_region_update_pending) {
 922            MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
 923
 924            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 925                address_space_update_topology(as);
 926            }
 927
 928            MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
 929        } else if (ioeventfd_update_pending) {
 930            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 931                address_space_update_ioeventfds(as);
 932            }
 933        }
 934        memory_region_clear_pending();
 935   }
 936}
 937
 938static void memory_region_destructor_none(MemoryRegion *mr)
 939{
 940}
 941
 942static void memory_region_destructor_ram(MemoryRegion *mr)
 943{
 944    qemu_ram_free(mr->ram_block);
 945}
 946
 947static void memory_region_destructor_rom_device(MemoryRegion *mr)
 948{
 949    qemu_ram_free(mr->ram_block);
 950}
 951
 952static bool memory_region_need_escape(char c)
 953{
 954    return c == '/' || c == '[' || c == '\\' || c == ']';
 955}
 956
 957static char *memory_region_escape_name(const char *name)
 958{
 959    const char *p;
 960    char *escaped, *q;
 961    uint8_t c;
 962    size_t bytes = 0;
 963
 964    for (p = name; *p; p++) {
 965        bytes += memory_region_need_escape(*p) ? 4 : 1;
 966    }
 967    if (bytes == p - name) {
 968       return g_memdup(name, bytes + 1);
 969    }
 970
 971    escaped = g_malloc(bytes + 1);
 972    for (p = name, q = escaped; *p; p++) {
 973        c = *p;
 974        if (unlikely(memory_region_need_escape(c))) {
 975            *q++ = '\\';
 976            *q++ = 'x';
 977            *q++ = "0123456789abcdef"[c >> 4];
 978            c = "0123456789abcdef"[c & 15];
 979        }
 980        *q++ = c;
 981    }
 982    *q = 0;
 983    return escaped;
 984}
 985
 986void memory_region_init(MemoryRegion *mr,
 987                        Object *owner,
 988                        const char *name,
 989                        uint64_t size)
 990{
 991    object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
 992    mr->size = int128_make64(size);
 993    if (size == UINT64_MAX) {
 994        mr->size = int128_2_64();
 995    }
 996    mr->name = g_strdup(name);
 997    mr->owner = owner;
 998    mr->ram_block = NULL;
 999
1000    if (name) {
1001        char *escaped_name = memory_region_escape_name(name);
1002        char *name_array = g_strdup_printf("%s[*]", escaped_name);
1003
1004        if (!owner) {
1005            owner = container_get(qdev_get_machine(), "/unattached");
1006        }
1007
1008        object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1009        object_unref(OBJECT(mr));
1010        g_free(name_array);
1011        g_free(escaped_name);
1012    }
1013}
1014
1015static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1016                                   void *opaque, Error **errp)
1017{
1018    MemoryRegion *mr = MEMORY_REGION(obj);
1019    uint64_t value = mr->addr;
1020
1021    visit_type_uint64(v, name, &value, errp);
1022}
1023
1024static void memory_region_get_container(Object *obj, Visitor *v,
1025                                        const char *name, void *opaque,
1026                                        Error **errp)
1027{
1028    MemoryRegion *mr = MEMORY_REGION(obj);
1029    gchar *path = (gchar *)"";
1030
1031    if (mr->container) {
1032        path = object_get_canonical_path(OBJECT(mr->container));
1033    }
1034    visit_type_str(v, name, &path, errp);
1035    if (mr->container) {
1036        g_free(path);
1037    }
1038}
1039
1040static Object *memory_region_resolve_container(Object *obj, void *opaque,
1041                                               const char *part)
1042{
1043    MemoryRegion *mr = MEMORY_REGION(obj);
1044
1045    return OBJECT(mr->container);
1046}
1047
1048static void memory_region_get_priority(Object *obj, Visitor *v,
1049                                       const char *name, void *opaque,
1050                                       Error **errp)
1051{
1052    MemoryRegion *mr = MEMORY_REGION(obj);
1053    int32_t value = mr->priority;
1054
1055    visit_type_int32(v, name, &value, errp);
1056}
1057
1058static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1059                                   void *opaque, Error **errp)
1060{
1061    MemoryRegion *mr = MEMORY_REGION(obj);
1062    uint64_t value = memory_region_size(mr);
1063
1064    visit_type_uint64(v, name, &value, errp);
1065}
1066
1067static void memory_region_initfn(Object *obj)
1068{
1069    MemoryRegion *mr = MEMORY_REGION(obj);
1070    ObjectProperty *op;
1071
1072    mr->ops = &unassigned_mem_ops;
1073    mr->enabled = true;
1074    mr->romd_mode = true;
1075    mr->global_locking = true;
1076    mr->destructor = memory_region_destructor_none;
1077    QTAILQ_INIT(&mr->subregions);
1078    QTAILQ_INIT(&mr->coalesced);
1079
1080    op = object_property_add(OBJECT(mr), "container",
1081                             "link<" TYPE_MEMORY_REGION ">",
1082                             memory_region_get_container,
1083                             NULL, /* memory_region_set_container */
1084                             NULL, NULL, &error_abort);
1085    op->resolve = memory_region_resolve_container;
1086
1087    object_property_add(OBJECT(mr), "addr", "uint64",
1088                        memory_region_get_addr,
1089                        NULL, /* memory_region_set_addr */
1090                        NULL, NULL, &error_abort);
1091    object_property_add(OBJECT(mr), "priority", "uint32",
1092                        memory_region_get_priority,
1093                        NULL, /* memory_region_set_priority */
1094                        NULL, NULL, &error_abort);
1095    object_property_add(OBJECT(mr), "size", "uint64",
1096                        memory_region_get_size,
1097                        NULL, /* memory_region_set_size, */
1098                        NULL, NULL, &error_abort);
1099}
1100
1101static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1102                                    unsigned size)
1103{
1104#ifdef DEBUG_UNASSIGNED
1105    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1106#endif
1107    if (current_cpu != NULL) {
1108        cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1109    }
1110    return 0;
1111}
1112
1113static void unassigned_mem_write(void *opaque, hwaddr addr,
1114                                 uint64_t val, unsigned size)
1115{
1116#ifdef DEBUG_UNASSIGNED
1117    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1118#endif
1119    if (current_cpu != NULL) {
1120        cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1121    }
1122}
1123
1124static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1125                                   unsigned size, bool is_write)
1126{
1127    return false;
1128}
1129
1130const MemoryRegionOps unassigned_mem_ops = {
1131    .valid.accepts = unassigned_mem_accepts,
1132    .endianness = DEVICE_NATIVE_ENDIAN,
1133};
1134
1135static uint64_t memory_region_ram_device_read(void *opaque,
1136                                              hwaddr addr, unsigned size)
1137{
1138    MemoryRegion *mr = opaque;
1139    uint64_t data = (uint64_t)~0;
1140
1141    switch (size) {
1142    case 1:
1143        data = *(uint8_t *)(mr->ram_block->host + addr);
1144        break;
1145    case 2:
1146        data = *(uint16_t *)(mr->ram_block->host + addr);
1147        break;
1148    case 4:
1149        data = *(uint32_t *)(mr->ram_block->host + addr);
1150        break;
1151    case 8:
1152        data = *(uint64_t *)(mr->ram_block->host + addr);
1153        break;
1154    }
1155
1156    trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1157
1158    return data;
1159}
1160
1161static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1162                                           uint64_t data, unsigned size)
1163{
1164    MemoryRegion *mr = opaque;
1165
1166    trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1167
1168    switch (size) {
1169    case 1:
1170        *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1171        break;
1172    case 2:
1173        *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1174        break;
1175    case 4:
1176        *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1177        break;
1178    case 8:
1179        *(uint64_t *)(mr->ram_block->host + addr) = data;
1180        break;
1181    }
1182}
1183
1184static const MemoryRegionOps ram_device_mem_ops = {
1185    .read = memory_region_ram_device_read,
1186    .write = memory_region_ram_device_write,
1187    .endianness = DEVICE_NATIVE_ENDIAN,
1188    .valid = {
1189        .min_access_size = 1,
1190        .max_access_size = 8,
1191        .unaligned = true,
1192    },
1193    .impl = {
1194        .min_access_size = 1,
1195        .max_access_size = 8,
1196        .unaligned = true,
1197    },
1198};
1199
1200bool memory_region_access_valid(MemoryRegion *mr,
1201                                hwaddr addr,
1202                                unsigned size,
1203                                bool is_write)
1204{
1205    int access_size_min, access_size_max;
1206    int access_size, i;
1207
1208    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1209        return false;
1210    }
1211
1212    if (!mr->ops->valid.accepts) {
1213        return true;
1214    }
1215
1216    access_size_min = mr->ops->valid.min_access_size;
1217    if (!mr->ops->valid.min_access_size) {
1218        access_size_min = 1;
1219    }
1220
1221    access_size_max = mr->ops->valid.max_access_size;
1222    if (!mr->ops->valid.max_access_size) {
1223        access_size_max = 4;
1224    }
1225
1226    access_size = MAX(MIN(size, access_size_max), access_size_min);
1227    for (i = 0; i < size; i += access_size) {
1228        if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1229                                    is_write)) {
1230            return false;
1231        }
1232    }
1233
1234    return true;
1235}
1236
1237static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1238                                                hwaddr addr,
1239                                                uint64_t *pval,
1240                                                unsigned size,
1241                                                MemTxAttrs attrs)
1242{
1243    *pval = 0;
1244
1245    if (mr->ops->read) {
1246        return access_with_adjusted_size(addr, pval, size,
1247                                         mr->ops->impl.min_access_size,
1248                                         mr->ops->impl.max_access_size,
1249                                         memory_region_read_accessor,
1250                                         mr, attrs);
1251    } else if (mr->ops->read_with_attrs) {
1252        return access_with_adjusted_size(addr, pval, size,
1253                                         mr->ops->impl.min_access_size,
1254                                         mr->ops->impl.max_access_size,
1255                                         memory_region_read_with_attrs_accessor,
1256                                         mr, attrs);
1257    } else {
1258        return access_with_adjusted_size(addr, pval, size, 1, 4,
1259                                         memory_region_oldmmio_read_accessor,
1260                                         mr, attrs);
1261    }
1262}
1263
1264MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1265                                        hwaddr addr,
1266                                        uint64_t *pval,
1267                                        unsigned size,
1268                                        MemTxAttrs attrs)
1269{
1270    MemTxResult r;
1271
1272    if (!memory_region_access_valid(mr, addr, size, false)) {
1273        *pval = unassigned_mem_read(mr, addr, size);
1274        return MEMTX_DECODE_ERROR;
1275    }
1276
1277    r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1278    adjust_endianness(mr, pval, size);
1279    return r;
1280}
1281
1282/* Return true if an eventfd was signalled */
1283static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1284                                                    hwaddr addr,
1285                                                    uint64_t data,
1286                                                    unsigned size,
1287                                                    MemTxAttrs attrs)
1288{
1289    MemoryRegionIoeventfd ioeventfd = {
1290        .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1291        .data = data,
1292    };
1293    unsigned i;
1294
1295    for (i = 0; i < mr->ioeventfd_nb; i++) {
1296        ioeventfd.match_data = mr->ioeventfds[i].match_data;
1297        ioeventfd.e = mr->ioeventfds[i].e;
1298
1299        if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1300            event_notifier_set(ioeventfd.e);
1301            return true;
1302        }
1303    }
1304
1305    return false;
1306}
1307
1308MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1309                                         hwaddr addr,
1310                                         uint64_t data,
1311                                         unsigned size,
1312                                         MemTxAttrs attrs)
1313{
1314    if (!memory_region_access_valid(mr, addr, size, true)) {
1315        unassigned_mem_write(mr, addr, data, size);
1316        return MEMTX_DECODE_ERROR;
1317    }
1318
1319    adjust_endianness(mr, &data, size);
1320
1321    if ((!kvm_eventfds_enabled()) &&
1322        memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1323        return MEMTX_OK;
1324    }
1325
1326    if (mr->ops->write) {
1327        return access_with_adjusted_size(addr, &data, size,
1328                                         mr->ops->impl.min_access_size,
1329                                         mr->ops->impl.max_access_size,
1330                                         memory_region_write_accessor, mr,
1331                                         attrs);
1332    } else if (mr->ops->write_with_attrs) {
1333        return
1334            access_with_adjusted_size(addr, &data, size,
1335                                      mr->ops->impl.min_access_size,
1336                                      mr->ops->impl.max_access_size,
1337                                      memory_region_write_with_attrs_accessor,
1338                                      mr, attrs);
1339    } else {
1340        return access_with_adjusted_size(addr, &data, size, 1, 4,
1341                                         memory_region_oldmmio_write_accessor,
1342                                         mr, attrs);
1343    }
1344}
1345
1346void memory_region_init_io(MemoryRegion *mr,
1347                           Object *owner,
1348                           const MemoryRegionOps *ops,
1349                           void *opaque,
1350                           const char *name,
1351                           uint64_t size)
1352{
1353    memory_region_init(mr, owner, name, size);
1354    mr->ops = ops ? ops : &unassigned_mem_ops;
1355    mr->opaque = opaque;
1356    mr->terminates = true;
1357}
1358
1359void memory_region_init_ram(MemoryRegion *mr,
1360                            Object *owner,
1361                            const char *name,
1362                            uint64_t size,
1363                            Error **errp)
1364{
1365    memory_region_init(mr, owner, name, size);
1366    mr->ram = true;
1367    mr->terminates = true;
1368    mr->destructor = memory_region_destructor_ram;
1369    mr->ram_block = qemu_ram_alloc(size, mr, errp);
1370    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1371}
1372
1373void memory_region_init_resizeable_ram(MemoryRegion *mr,
1374                                       Object *owner,
1375                                       const char *name,
1376                                       uint64_t size,
1377                                       uint64_t max_size,
1378                                       void (*resized)(const char*,
1379                                                       uint64_t length,
1380                                                       void *host),
1381                                       Error **errp)
1382{
1383    memory_region_init(mr, owner, name, size);
1384    mr->ram = true;
1385    mr->terminates = true;
1386    mr->destructor = memory_region_destructor_ram;
1387    mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1388                                              mr, errp);
1389    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1390}
1391
1392#ifdef __linux__
1393void memory_region_init_ram_from_file(MemoryRegion *mr,
1394                                      struct Object *owner,
1395                                      const char *name,
1396                                      uint64_t size,
1397                                      bool share,
1398                                      const char *path,
1399                                      Error **errp)
1400{
1401    memory_region_init(mr, owner, name, size);
1402    mr->ram = true;
1403    mr->terminates = true;
1404    mr->destructor = memory_region_destructor_ram;
1405    mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1406    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1407}
1408#endif
1409
1410void memory_region_init_ram_ptr(MemoryRegion *mr,
1411                                Object *owner,
1412                                const char *name,
1413                                uint64_t size,
1414                                void *ptr)
1415{
1416    memory_region_init(mr, owner, name, size);
1417    mr->ram = true;
1418    mr->terminates = true;
1419    mr->destructor = memory_region_destructor_ram;
1420    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1421
1422    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1423    assert(ptr != NULL);
1424    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1425}
1426
1427void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1428                                       Object *owner,
1429                                       const char *name,
1430                                       uint64_t size,
1431                                       void *ptr)
1432{
1433    memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1434    mr->ram_device = true;
1435    mr->ops = &ram_device_mem_ops;
1436    mr->opaque = mr;
1437}
1438
1439void memory_region_init_alias(MemoryRegion *mr,
1440                              Object *owner,
1441                              const char *name,
1442                              MemoryRegion *orig,
1443                              hwaddr offset,
1444                              uint64_t size)
1445{
1446    memory_region_init(mr, owner, name, size);
1447    mr->alias = orig;
1448    mr->alias_offset = offset;
1449}
1450
1451void memory_region_init_rom(MemoryRegion *mr,
1452                            struct Object *owner,
1453                            const char *name,
1454                            uint64_t size,
1455                            Error **errp)
1456{
1457    memory_region_init(mr, owner, name, size);
1458    mr->ram = true;
1459    mr->readonly = true;
1460    mr->terminates = true;
1461    mr->destructor = memory_region_destructor_ram;
1462    mr->ram_block = qemu_ram_alloc(size, mr, errp);
1463    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1464}
1465
1466void memory_region_init_rom_device(MemoryRegion *mr,
1467                                   Object *owner,
1468                                   const MemoryRegionOps *ops,
1469                                   void *opaque,
1470                                   const char *name,
1471                                   uint64_t size,
1472                                   Error **errp)
1473{
1474    assert(ops);
1475    memory_region_init(mr, owner, name, size);
1476    mr->ops = ops;
1477    mr->opaque = opaque;
1478    mr->terminates = true;
1479    mr->rom_device = true;
1480    mr->destructor = memory_region_destructor_rom_device;
1481    mr->ram_block = qemu_ram_alloc(size, mr, errp);
1482}
1483
1484void memory_region_init_iommu(MemoryRegion *mr,
1485                              Object *owner,
1486                              const MemoryRegionIOMMUOps *ops,
1487                              const char *name,
1488                              uint64_t size)
1489{
1490    memory_region_init(mr, owner, name, size);
1491    mr->iommu_ops = ops,
1492    mr->terminates = true;  /* then re-forwards */
1493    notifier_list_init(&mr->iommu_notify);
1494}
1495
1496static void memory_region_finalize(Object *obj)
1497{
1498    MemoryRegion *mr = MEMORY_REGION(obj);
1499
1500    assert(!mr->container);
1501
1502    /* We know the region is not visible in any address space (it
1503     * does not have a container and cannot be a root either because
1504     * it has no references, so we can blindly clear mr->enabled.
1505     * memory_region_set_enabled instead could trigger a transaction
1506     * and cause an infinite loop.
1507     */
1508    mr->enabled = false;
1509    memory_region_transaction_begin();
1510    while (!QTAILQ_EMPTY(&mr->subregions)) {
1511        MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1512        memory_region_del_subregion(mr, subregion);
1513    }
1514    memory_region_transaction_commit();
1515
1516    mr->destructor(mr);
1517    memory_region_clear_coalescing(mr);
1518    g_free((char *)mr->name);
1519    g_free(mr->ioeventfds);
1520}
1521
1522Object *memory_region_owner(MemoryRegion *mr)
1523{
1524    Object *obj = OBJECT(mr);
1525    return obj->parent;
1526}
1527
1528void memory_region_ref(MemoryRegion *mr)
1529{
1530    /* MMIO callbacks most likely will access data that belongs
1531     * to the owner, hence the need to ref/unref the owner whenever
1532     * the memory region is in use.
1533     *
1534     * The memory region is a child of its owner.  As long as the
1535     * owner doesn't call unparent itself on the memory region,
1536     * ref-ing the owner will also keep the memory region alive.
1537     * Memory regions without an owner are supposed to never go away;
1538     * we do not ref/unref them because it slows down DMA sensibly.
1539     */
1540    if (mr && mr->owner) {
1541        object_ref(mr->owner);
1542    }
1543}
1544
1545void memory_region_unref(MemoryRegion *mr)
1546{
1547    if (mr && mr->owner) {
1548        object_unref(mr->owner);
1549    }
1550}
1551
1552uint64_t memory_region_size(MemoryRegion *mr)
1553{
1554    if (int128_eq(mr->size, int128_2_64())) {
1555        return UINT64_MAX;
1556    }
1557    return int128_get64(mr->size);
1558}
1559
1560const char *memory_region_name(const MemoryRegion *mr)
1561{
1562    if (!mr->name) {
1563        ((MemoryRegion *)mr)->name =
1564            object_get_canonical_path_component(OBJECT(mr));
1565    }
1566    return mr->name;
1567}
1568
1569bool memory_region_is_ram_device(MemoryRegion *mr)
1570{
1571    return mr->ram_device;
1572}
1573
1574uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1575{
1576    uint8_t mask = mr->dirty_log_mask;
1577    if (global_dirty_log) {
1578        mask |= (1 << DIRTY_MEMORY_MIGRATION);
1579    }
1580    return mask;
1581}
1582
1583bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1584{
1585    return memory_region_get_dirty_log_mask(mr) & (1 << client);
1586}
1587
1588void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1589{
1590    if (mr->iommu_ops->notify_started &&
1591        QLIST_EMPTY(&mr->iommu_notify.notifiers)) {
1592        mr->iommu_ops->notify_started(mr);
1593    }
1594    notifier_list_add(&mr->iommu_notify, n);
1595}
1596
1597uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr)
1598{
1599    assert(memory_region_is_iommu(mr));
1600    if (mr->iommu_ops && mr->iommu_ops->get_min_page_size) {
1601        return mr->iommu_ops->get_min_page_size(mr);
1602    }
1603    return TARGET_PAGE_SIZE;
1604}
1605
1606void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n, bool is_write)
1607{
1608    hwaddr addr, granularity;
1609    IOMMUTLBEntry iotlb;
1610
1611    granularity = memory_region_iommu_get_min_page_size(mr);
1612
1613    for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1614        iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1615        if (iotlb.perm != IOMMU_NONE) {
1616            n->notify(n, &iotlb);
1617        }
1618
1619        /* if (2^64 - MR size) < granularity, it's possible to get an
1620         * infinite loop here.  This should catch such a wraparound */
1621        if ((addr + granularity) < addr) {
1622            break;
1623        }
1624    }
1625}
1626
1627void memory_region_unregister_iommu_notifier(MemoryRegion *mr, Notifier *n)
1628{
1629    notifier_remove(n);
1630    if (mr->iommu_ops->notify_stopped &&
1631        QLIST_EMPTY(&mr->iommu_notify.notifiers)) {
1632        mr->iommu_ops->notify_stopped(mr);
1633    }
1634}
1635
1636void memory_region_notify_iommu(MemoryRegion *mr,
1637                                IOMMUTLBEntry entry)
1638{
1639    assert(memory_region_is_iommu(mr));
1640    notifier_list_notify(&mr->iommu_notify, &entry);
1641}
1642
1643void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1644{
1645    uint8_t mask = 1 << client;
1646    uint8_t old_logging;
1647
1648    assert(client == DIRTY_MEMORY_VGA);
1649    old_logging = mr->vga_logging_count;
1650    mr->vga_logging_count += log ? 1 : -1;
1651    if (!!old_logging == !!mr->vga_logging_count) {
1652        return;
1653    }
1654
1655    memory_region_transaction_begin();
1656    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1657    memory_region_update_pending |= mr->enabled;
1658    memory_region_transaction_commit();
1659}
1660
1661bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1662                             hwaddr size, unsigned client)
1663{
1664    assert(mr->ram_block);
1665    return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1666                                         size, client);
1667}
1668
1669void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1670                             hwaddr size)
1671{
1672    assert(mr->ram_block);
1673    cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1674                                        size,
1675                                        memory_region_get_dirty_log_mask(mr));
1676}
1677
1678bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1679                                        hwaddr size, unsigned client)
1680{
1681    assert(mr->ram_block);
1682    return cpu_physical_memory_test_and_clear_dirty(
1683                memory_region_get_ram_addr(mr) + addr, size, client);
1684}
1685
1686
1687void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1688{
1689    AddressSpace *as;
1690    FlatRange *fr;
1691
1692    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1693        FlatView *view = address_space_get_flatview(as);
1694        FOR_EACH_FLAT_RANGE(fr, view) {
1695            if (fr->mr == mr) {
1696                MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1697            }
1698        }
1699        flatview_unref(view);
1700    }
1701}
1702
1703void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1704{
1705    if (mr->readonly != readonly) {
1706        memory_region_transaction_begin();
1707        mr->readonly = readonly;
1708        memory_region_update_pending |= mr->enabled;
1709        memory_region_transaction_commit();
1710    }
1711}
1712
1713void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1714{
1715    if (mr->romd_mode != romd_mode) {
1716        memory_region_transaction_begin();
1717        mr->romd_mode = romd_mode;
1718        memory_region_update_pending |= mr->enabled;
1719        memory_region_transaction_commit();
1720    }
1721}
1722
1723void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1724                               hwaddr size, unsigned client)
1725{
1726    assert(mr->ram_block);
1727    cpu_physical_memory_test_and_clear_dirty(
1728        memory_region_get_ram_addr(mr) + addr, size, client);
1729}
1730
1731int memory_region_get_fd(MemoryRegion *mr)
1732{
1733    int fd;
1734
1735    rcu_read_lock();
1736    while (mr->alias) {
1737        mr = mr->alias;
1738    }
1739    fd = mr->ram_block->fd;
1740    rcu_read_unlock();
1741
1742    return fd;
1743}
1744
1745void memory_region_set_fd(MemoryRegion *mr, int fd)
1746{
1747    rcu_read_lock();
1748    while (mr->alias) {
1749        mr = mr->alias;
1750    }
1751    mr->ram_block->fd = fd;
1752    rcu_read_unlock();
1753}
1754
1755void *memory_region_get_ram_ptr(MemoryRegion *mr)
1756{
1757    void *ptr;
1758    uint64_t offset = 0;
1759
1760    rcu_read_lock();
1761    while (mr->alias) {
1762        offset += mr->alias_offset;
1763        mr = mr->alias;
1764    }
1765    assert(mr->ram_block);
1766    ptr = qemu_map_ram_ptr(mr->ram_block, offset);
1767    rcu_read_unlock();
1768
1769    return ptr;
1770}
1771
1772MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
1773{
1774    RAMBlock *block;
1775
1776    block = qemu_ram_block_from_host(ptr, false, offset);
1777    if (!block) {
1778        return NULL;
1779    }
1780
1781    return block->mr;
1782}
1783
1784ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1785{
1786    return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1787}
1788
1789void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1790{
1791    assert(mr->ram_block);
1792
1793    qemu_ram_resize(mr->ram_block, newsize, errp);
1794}
1795
1796static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1797{
1798    FlatView *view;
1799    FlatRange *fr;
1800    CoalescedMemoryRange *cmr;
1801    AddrRange tmp;
1802    MemoryRegionSection section;
1803
1804    view = address_space_get_flatview(as);
1805    FOR_EACH_FLAT_RANGE(fr, view) {
1806        if (fr->mr == mr) {
1807            section = (MemoryRegionSection) {
1808                .address_space = as,
1809                .offset_within_address_space = int128_get64(fr->addr.start),
1810                .size = fr->addr.size,
1811            };
1812
1813            MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1814                                 int128_get64(fr->addr.start),
1815                                 int128_get64(fr->addr.size));
1816            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1817                tmp = addrrange_shift(cmr->addr,
1818                                      int128_sub(fr->addr.start,
1819                                                 int128_make64(fr->offset_in_region)));
1820                if (!addrrange_intersects(tmp, fr->addr)) {
1821                    continue;
1822                }
1823                tmp = addrrange_intersection(tmp, fr->addr);
1824                MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1825                                     int128_get64(tmp.start),
1826                                     int128_get64(tmp.size));
1827            }
1828        }
1829    }
1830    flatview_unref(view);
1831}
1832
1833static void memory_region_update_coalesced_range(MemoryRegion *mr)
1834{
1835    AddressSpace *as;
1836
1837    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1838        memory_region_update_coalesced_range_as(mr, as);
1839    }
1840}
1841
1842void memory_region_set_coalescing(MemoryRegion *mr)
1843{
1844    memory_region_clear_coalescing(mr);
1845    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1846}
1847
1848void memory_region_add_coalescing(MemoryRegion *mr,
1849                                  hwaddr offset,
1850                                  uint64_t size)
1851{
1852    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1853
1854    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1855    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1856    memory_region_update_coalesced_range(mr);
1857    memory_region_set_flush_coalesced(mr);
1858}
1859
1860void memory_region_clear_coalescing(MemoryRegion *mr)
1861{
1862    CoalescedMemoryRange *cmr;
1863    bool updated = false;
1864
1865    qemu_flush_coalesced_mmio_buffer();
1866    mr->flush_coalesced_mmio = false;
1867
1868    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1869        cmr = QTAILQ_FIRST(&mr->coalesced);
1870        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1871        g_free(cmr);
1872        updated = true;
1873    }
1874
1875    if (updated) {
1876        memory_region_update_coalesced_range(mr);
1877    }
1878}
1879
1880void memory_region_set_flush_coalesced(MemoryRegion *mr)
1881{
1882    mr->flush_coalesced_mmio = true;
1883}
1884
1885void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1886{
1887    qemu_flush_coalesced_mmio_buffer();
1888    if (QTAILQ_EMPTY(&mr->coalesced)) {
1889        mr->flush_coalesced_mmio = false;
1890    }
1891}
1892
1893void memory_region_set_global_locking(MemoryRegion *mr)
1894{
1895    mr->global_locking = true;
1896}
1897
1898void memory_region_clear_global_locking(MemoryRegion *mr)
1899{
1900    mr->global_locking = false;
1901}
1902
1903static bool userspace_eventfd_warning;
1904
1905void memory_region_add_eventfd(MemoryRegion *mr,
1906                               hwaddr addr,
1907                               unsigned size,
1908                               bool match_data,
1909                               uint64_t data,
1910                               EventNotifier *e)
1911{
1912    MemoryRegionIoeventfd mrfd = {
1913        .addr.start = int128_make64(addr),
1914        .addr.size = int128_make64(size),
1915        .match_data = match_data,
1916        .data = data,
1917        .e = e,
1918    };
1919    unsigned i;
1920
1921    if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1922                            userspace_eventfd_warning))) {
1923        userspace_eventfd_warning = true;
1924        error_report("Using eventfd without MMIO binding in KVM. "
1925                     "Suboptimal performance expected");
1926    }
1927
1928    if (size) {
1929        adjust_endianness(mr, &mrfd.data, size);
1930    }
1931    memory_region_transaction_begin();
1932    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1933        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1934            break;
1935        }
1936    }
1937    ++mr->ioeventfd_nb;
1938    mr->ioeventfds = g_realloc(mr->ioeventfds,
1939                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1940    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1941            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1942    mr->ioeventfds[i] = mrfd;
1943    ioeventfd_update_pending |= mr->enabled;
1944    memory_region_transaction_commit();
1945}
1946
1947void memory_region_del_eventfd(MemoryRegion *mr,
1948                               hwaddr addr,
1949                               unsigned size,
1950                               bool match_data,
1951                               uint64_t data,
1952                               EventNotifier *e)
1953{
1954    MemoryRegionIoeventfd mrfd = {
1955        .addr.start = int128_make64(addr),
1956        .addr.size = int128_make64(size),
1957        .match_data = match_data,
1958        .data = data,
1959        .e = e,
1960    };
1961    unsigned i;
1962
1963    if (size) {
1964        adjust_endianness(mr, &mrfd.data, size);
1965    }
1966    memory_region_transaction_begin();
1967    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1968        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1969            break;
1970        }
1971    }
1972    assert(i != mr->ioeventfd_nb);
1973    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1974            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1975    --mr->ioeventfd_nb;
1976    mr->ioeventfds = g_realloc(mr->ioeventfds,
1977                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1978    ioeventfd_update_pending |= mr->enabled;
1979    memory_region_transaction_commit();
1980}
1981
1982static void memory_region_update_container_subregions(MemoryRegion *subregion)
1983{
1984    MemoryRegion *mr = subregion->container;
1985    MemoryRegion *other;
1986
1987    memory_region_transaction_begin();
1988
1989    memory_region_ref(subregion);
1990    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1991        if (subregion->priority >= other->priority) {
1992            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1993            goto done;
1994        }
1995    }
1996    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1997done:
1998    memory_region_update_pending |= mr->enabled && subregion->enabled;
1999    memory_region_transaction_commit();
2000}
2001
2002static void memory_region_add_subregion_common(MemoryRegion *mr,
2003                                               hwaddr offset,
2004                                               MemoryRegion *subregion)
2005{
2006    assert(!subregion->container);
2007    subregion->container = mr;
2008    subregion->addr = offset;
2009    memory_region_update_container_subregions(subregion);
2010}
2011
2012void memory_region_add_subregion(MemoryRegion *mr,
2013                                 hwaddr offset,
2014                                 MemoryRegion *subregion)
2015{
2016    subregion->priority = 0;
2017    memory_region_add_subregion_common(mr, offset, subregion);
2018}
2019
2020void memory_region_add_subregion_overlap(MemoryRegion *mr,
2021                                         hwaddr offset,
2022                                         MemoryRegion *subregion,
2023                                         int priority)
2024{
2025    subregion->priority = priority;
2026    memory_region_add_subregion_common(mr, offset, subregion);
2027}
2028
2029void memory_region_del_subregion(MemoryRegion *mr,
2030                                 MemoryRegion *subregion)
2031{
2032    memory_region_transaction_begin();
2033    assert(subregion->container == mr);
2034    subregion->container = NULL;
2035    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2036    memory_region_unref(subregion);
2037    memory_region_update_pending |= mr->enabled && subregion->enabled;
2038    memory_region_transaction_commit();
2039}
2040
2041void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2042{
2043    if (enabled == mr->enabled) {
2044        return;
2045    }
2046    memory_region_transaction_begin();
2047    mr->enabled = enabled;
2048    memory_region_update_pending = true;
2049    memory_region_transaction_commit();
2050}
2051
2052void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2053{
2054    Int128 s = int128_make64(size);
2055
2056    if (size == UINT64_MAX) {
2057        s = int128_2_64();
2058    }
2059    if (int128_eq(s, mr->size)) {
2060        return;
2061    }
2062    memory_region_transaction_begin();
2063    mr->size = s;
2064    memory_region_update_pending = true;
2065    memory_region_transaction_commit();
2066}
2067
2068static void memory_region_readd_subregion(MemoryRegion *mr)
2069{
2070    MemoryRegion *container = mr->container;
2071
2072    if (container) {
2073        memory_region_transaction_begin();
2074        memory_region_ref(mr);
2075        memory_region_del_subregion(container, mr);
2076        mr->container = container;
2077        memory_region_update_container_subregions(mr);
2078        memory_region_unref(mr);
2079        memory_region_transaction_commit();
2080    }
2081}
2082
2083void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2084{
2085    if (addr != mr->addr) {
2086        mr->addr = addr;
2087        memory_region_readd_subregion(mr);
2088    }
2089}
2090
2091void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2092{
2093    assert(mr->alias);
2094
2095    if (offset == mr->alias_offset) {
2096        return;
2097    }
2098
2099    memory_region_transaction_begin();
2100    mr->alias_offset = offset;
2101    memory_region_update_pending |= mr->enabled;
2102    memory_region_transaction_commit();
2103}
2104
2105uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2106{
2107    return mr->align;
2108}
2109
2110static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2111{
2112    const AddrRange *addr = addr_;
2113    const FlatRange *fr = fr_;
2114
2115    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2116        return -1;
2117    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2118        return 1;
2119    }
2120    return 0;
2121}
2122
2123static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2124{
2125    return bsearch(&addr, view->ranges, view->nr,
2126                   sizeof(FlatRange), cmp_flatrange_addr);
2127}
2128
2129bool memory_region_is_mapped(MemoryRegion *mr)
2130{
2131    return mr->container ? true : false;
2132}
2133
2134/* Same as memory_region_find, but it does not add a reference to the
2135 * returned region.  It must be called from an RCU critical section.
2136 */
2137static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2138                                                  hwaddr addr, uint64_t size)
2139{
2140    MemoryRegionSection ret = { .mr = NULL };
2141    MemoryRegion *root;
2142    AddressSpace *as;
2143    AddrRange range;
2144    FlatView *view;
2145    FlatRange *fr;
2146
2147    addr += mr->addr;
2148    for (root = mr; root->container; ) {
2149        root = root->container;
2150        addr += root->addr;
2151    }
2152
2153    as = memory_region_to_address_space(root);
2154    if (!as) {
2155        return ret;
2156    }
2157    range = addrrange_make(int128_make64(addr), int128_make64(size));
2158
2159    view = atomic_rcu_read(&as->current_map);
2160    fr = flatview_lookup(view, range);
2161    if (!fr) {
2162        return ret;
2163    }
2164
2165    while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2166        --fr;
2167    }
2168
2169    ret.mr = fr->mr;
2170    ret.address_space = as;
2171    range = addrrange_intersection(range, fr->addr);
2172    ret.offset_within_region = fr->offset_in_region;
2173    ret.offset_within_region += int128_get64(int128_sub(range.start,
2174                                                        fr->addr.start));
2175    ret.size = range.size;
2176    ret.offset_within_address_space = int128_get64(range.start);
2177    ret.readonly = fr->readonly;
2178    return ret;
2179}
2180
2181MemoryRegionSection memory_region_find(MemoryRegion *mr,
2182                                       hwaddr addr, uint64_t size)
2183{
2184    MemoryRegionSection ret;
2185    rcu_read_lock();
2186    ret = memory_region_find_rcu(mr, addr, size);
2187    if (ret.mr) {
2188        memory_region_ref(ret.mr);
2189    }
2190    rcu_read_unlock();
2191    return ret;
2192}
2193
2194bool memory_region_present(MemoryRegion *container, hwaddr addr)
2195{
2196    MemoryRegion *mr;
2197
2198    rcu_read_lock();
2199    mr = memory_region_find_rcu(container, addr, 1).mr;
2200    rcu_read_unlock();
2201    return mr && mr != container;
2202}
2203
2204void address_space_sync_dirty_bitmap(AddressSpace *as)
2205{
2206    FlatView *view;
2207    FlatRange *fr;
2208
2209    view = address_space_get_flatview(as);
2210    FOR_EACH_FLAT_RANGE(fr, view) {
2211        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2212    }
2213    flatview_unref(view);
2214}
2215
2216void memory_global_dirty_log_start(void)
2217{
2218    global_dirty_log = true;
2219
2220    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2221
2222    /* Refresh DIRTY_LOG_MIGRATION bit.  */
2223    memory_region_transaction_begin();
2224    memory_region_update_pending = true;
2225    memory_region_transaction_commit();
2226}
2227
2228void memory_global_dirty_log_stop(void)
2229{
2230    global_dirty_log = false;
2231
2232    /* Refresh DIRTY_LOG_MIGRATION bit.  */
2233    memory_region_transaction_begin();
2234    memory_region_update_pending = true;
2235    memory_region_transaction_commit();
2236
2237    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2238}
2239
2240static void listener_add_address_space(MemoryListener *listener,
2241                                       AddressSpace *as)
2242{
2243    FlatView *view;
2244    FlatRange *fr;
2245
2246    if (listener->address_space_filter
2247        && listener->address_space_filter != as) {
2248        return;
2249    }
2250
2251    if (listener->begin) {
2252        listener->begin(listener);
2253    }
2254    if (global_dirty_log) {
2255        if (listener->log_global_start) {
2256            listener->log_global_start(listener);
2257        }
2258    }
2259
2260    view = address_space_get_flatview(as);
2261    FOR_EACH_FLAT_RANGE(fr, view) {
2262        MemoryRegionSection section = {
2263            .mr = fr->mr,
2264            .address_space = as,
2265            .offset_within_region = fr->offset_in_region,
2266            .size = fr->addr.size,
2267            .offset_within_address_space = int128_get64(fr->addr.start),
2268            .readonly = fr->readonly,
2269        };
2270        if (fr->dirty_log_mask && listener->log_start) {
2271            listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2272        }
2273        if (listener->region_add) {
2274            listener->region_add(listener, &section);
2275        }
2276    }
2277    if (listener->commit) {
2278        listener->commit(listener);
2279    }
2280    flatview_unref(view);
2281}
2282
2283void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2284{
2285    MemoryListener *other = NULL;
2286    AddressSpace *as;
2287
2288    listener->address_space_filter = filter;
2289    if (QTAILQ_EMPTY(&memory_listeners)
2290        || listener->priority >= QTAILQ_LAST(&memory_listeners,
2291                                             memory_listeners)->priority) {
2292        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2293    } else {
2294        QTAILQ_FOREACH(other, &memory_listeners, link) {
2295            if (listener->priority < other->priority) {
2296                break;
2297            }
2298        }
2299        QTAILQ_INSERT_BEFORE(other, listener, link);
2300    }
2301
2302    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2303        listener_add_address_space(listener, as);
2304    }
2305}
2306
2307void memory_listener_unregister(MemoryListener *listener)
2308{
2309    QTAILQ_REMOVE(&memory_listeners, listener, link);
2310}
2311
2312void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2313{
2314    memory_region_ref(root);
2315    memory_region_transaction_begin();
2316    as->ref_count = 1;
2317    as->root = root;
2318    as->malloced = false;
2319    as->current_map = g_new(FlatView, 1);
2320    flatview_init(as->current_map);
2321    as->ioeventfd_nb = 0;
2322    as->ioeventfds = NULL;
2323    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2324    as->name = g_strdup(name ? name : "anonymous");
2325    address_space_init_dispatch(as);
2326    memory_region_update_pending |= root->enabled;
2327    memory_region_transaction_commit();
2328}
2329
2330static void do_address_space_destroy(AddressSpace *as)
2331{
2332    MemoryListener *listener;
2333    bool do_free = as->malloced;
2334
2335    address_space_destroy_dispatch(as);
2336
2337    QTAILQ_FOREACH(listener, &memory_listeners, link) {
2338        assert(listener->address_space_filter != as);
2339    }
2340
2341    flatview_unref(as->current_map);
2342    g_free(as->name);
2343    g_free(as->ioeventfds);
2344    memory_region_unref(as->root);
2345    if (do_free) {
2346        g_free(as);
2347    }
2348}
2349
2350AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2351{
2352    AddressSpace *as;
2353
2354    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2355        if (root == as->root && as->malloced) {
2356            as->ref_count++;
2357            return as;
2358        }
2359    }
2360
2361    as = g_malloc0(sizeof *as);
2362    address_space_init(as, root, name);
2363    as->malloced = true;
2364    return as;
2365}
2366
2367void address_space_destroy(AddressSpace *as)
2368{
2369    MemoryRegion *root = as->root;
2370
2371    as->ref_count--;
2372    if (as->ref_count) {
2373        return;
2374    }
2375    /* Flush out anything from MemoryListeners listening in on this */
2376    memory_region_transaction_begin();
2377    as->root = NULL;
2378    memory_region_transaction_commit();
2379    QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2380    address_space_unregister(as);
2381
2382    /* At this point, as->dispatch and as->current_map are dummy
2383     * entries that the guest should never use.  Wait for the old
2384     * values to expire before freeing the data.
2385     */
2386    as->root = root;
2387    call_rcu(as, do_address_space_destroy, rcu);
2388}
2389
2390typedef struct MemoryRegionList MemoryRegionList;
2391
2392struct MemoryRegionList {
2393    const MemoryRegion *mr;
2394    QTAILQ_ENTRY(MemoryRegionList) queue;
2395};
2396
2397typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2398
2399static void mtree_print_mr(fprintf_function mon_printf, void *f,
2400                           const MemoryRegion *mr, unsigned int level,
2401                           hwaddr base,
2402                           MemoryRegionListHead *alias_print_queue)
2403{
2404    MemoryRegionList *new_ml, *ml, *next_ml;
2405    MemoryRegionListHead submr_print_queue;
2406    const MemoryRegion *submr;
2407    unsigned int i;
2408
2409    if (!mr) {
2410        return;
2411    }
2412
2413    for (i = 0; i < level; i++) {
2414        mon_printf(f, "  ");
2415    }
2416
2417    if (mr->alias) {
2418        MemoryRegionList *ml;
2419        bool found = false;
2420
2421        /* check if the alias is already in the queue */
2422        QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2423            if (ml->mr == mr->alias) {
2424                found = true;
2425            }
2426        }
2427
2428        if (!found) {
2429            ml = g_new(MemoryRegionList, 1);
2430            ml->mr = mr->alias;
2431            QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2432        }
2433        mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2434                   " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2435                   "-" TARGET_FMT_plx "%s\n",
2436                   base + mr->addr,
2437                   base + mr->addr
2438                   + (int128_nz(mr->size) ?
2439                      (hwaddr)int128_get64(int128_sub(mr->size,
2440                                                      int128_one())) : 0),
2441                   mr->priority,
2442                   mr->romd_mode ? 'R' : '-',
2443                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2444                                                                       : '-',
2445                   memory_region_name(mr),
2446                   memory_region_name(mr->alias),
2447                   mr->alias_offset,
2448                   mr->alias_offset
2449                   + (int128_nz(mr->size) ?
2450                      (hwaddr)int128_get64(int128_sub(mr->size,
2451                                                      int128_one())) : 0),
2452                   mr->enabled ? "" : " [disabled]");
2453    } else {
2454        mon_printf(f,
2455                   TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2456                   base + mr->addr,
2457                   base + mr->addr
2458                   + (int128_nz(mr->size) ?
2459                      (hwaddr)int128_get64(int128_sub(mr->size,
2460                                                      int128_one())) : 0),
2461                   mr->priority,
2462                   mr->romd_mode ? 'R' : '-',
2463                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2464                                                                       : '-',
2465                   memory_region_name(mr),
2466                   mr->enabled ? "" : " [disabled]");
2467    }
2468
2469    QTAILQ_INIT(&submr_print_queue);
2470
2471    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2472        new_ml = g_new(MemoryRegionList, 1);
2473        new_ml->mr = submr;
2474        QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2475            if (new_ml->mr->addr < ml->mr->addr ||
2476                (new_ml->mr->addr == ml->mr->addr &&
2477                 new_ml->mr->priority > ml->mr->priority)) {
2478                QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2479                new_ml = NULL;
2480                break;
2481            }
2482        }
2483        if (new_ml) {
2484            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2485        }
2486    }
2487
2488    QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2489        mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2490                       alias_print_queue);
2491    }
2492
2493    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2494        g_free(ml);
2495    }
2496}
2497
2498void mtree_info(fprintf_function mon_printf, void *f)
2499{
2500    MemoryRegionListHead ml_head;
2501    MemoryRegionList *ml, *ml2;
2502    AddressSpace *as;
2503
2504    QTAILQ_INIT(&ml_head);
2505
2506    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2507        mon_printf(f, "address-space: %s\n", as->name);
2508        mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2509        mon_printf(f, "\n");
2510    }
2511
2512    /* print aliased regions */
2513    QTAILQ_FOREACH(ml, &ml_head, queue) {
2514        mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2515        mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2516        mon_printf(f, "\n");
2517    }
2518
2519    QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2520        g_free(ml);
2521    }
2522}
2523
2524static const TypeInfo memory_region_info = {
2525    .parent             = TYPE_OBJECT,
2526    .name               = TYPE_MEMORY_REGION,
2527    .instance_size      = sizeof(MemoryRegion),
2528    .instance_init      = memory_region_initfn,
2529    .instance_finalize  = memory_region_finalize,
2530};
2531
2532static void memory_register_types(void)
2533{
2534    type_register_static(&memory_region_info);
2535}
2536
2537type_init(memory_register_types)
2538