qemu/include/fpu/softfloat.h
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C header file is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82#ifndef SOFTFLOAT_H
  83#define SOFTFLOAT_H
  84
  85#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
  86#include <sunmath.h>
  87#endif
  88
  89
  90/* This 'flag' type must be able to hold at least 0 and 1. It should
  91 * probably be replaced with 'bool' but the uses would need to be audited
  92 * to check that they weren't accidentally relying on it being a larger type.
  93 */
  94typedef uint8_t flag;
  95
  96#define LIT64( a ) a##LL
  97
  98/*----------------------------------------------------------------------------
  99| Software IEC/IEEE floating-point ordering relations
 100*----------------------------------------------------------------------------*/
 101enum {
 102    float_relation_less      = -1,
 103    float_relation_equal     =  0,
 104    float_relation_greater   =  1,
 105    float_relation_unordered =  2
 106};
 107
 108/*----------------------------------------------------------------------------
 109| Software IEC/IEEE floating-point types.
 110*----------------------------------------------------------------------------*/
 111/* Use structures for soft-float types.  This prevents accidentally mixing
 112   them with native int/float types.  A sufficiently clever compiler and
 113   sane ABI should be able to see though these structs.  However
 114   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
 115//#define USE_SOFTFLOAT_STRUCT_TYPES
 116#ifdef USE_SOFTFLOAT_STRUCT_TYPES
 117typedef struct {
 118    uint16_t v;
 119} float16;
 120#define float16_val(x) (((float16)(x)).v)
 121#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
 122#define const_float16(x) { x }
 123typedef struct {
 124    uint32_t v;
 125} float32;
 126/* The cast ensures an error if the wrong type is passed.  */
 127#define float32_val(x) (((float32)(x)).v)
 128#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
 129#define const_float32(x) { x }
 130typedef struct {
 131    uint64_t v;
 132} float64;
 133#define float64_val(x) (((float64)(x)).v)
 134#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
 135#define const_float64(x) { x }
 136#else
 137typedef uint16_t float16;
 138typedef uint32_t float32;
 139typedef uint64_t float64;
 140#define float16_val(x) (x)
 141#define float32_val(x) (x)
 142#define float64_val(x) (x)
 143#define make_float16(x) (x)
 144#define make_float32(x) (x)
 145#define make_float64(x) (x)
 146#define const_float16(x) (x)
 147#define const_float32(x) (x)
 148#define const_float64(x) (x)
 149#endif
 150typedef struct {
 151    uint64_t low;
 152    uint16_t high;
 153} floatx80;
 154#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
 155#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
 156typedef struct {
 157#ifdef HOST_WORDS_BIGENDIAN
 158    uint64_t high, low;
 159#else
 160    uint64_t low, high;
 161#endif
 162} float128;
 163#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
 164#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
 165
 166/*----------------------------------------------------------------------------
 167| Software IEC/IEEE floating-point underflow tininess-detection mode.
 168*----------------------------------------------------------------------------*/
 169enum {
 170    float_tininess_after_rounding  = 0,
 171    float_tininess_before_rounding = 1
 172};
 173
 174/*----------------------------------------------------------------------------
 175| Software IEC/IEEE floating-point rounding mode.
 176*----------------------------------------------------------------------------*/
 177enum {
 178    float_round_nearest_even = 0,
 179    float_round_down         = 1,
 180    float_round_up           = 2,
 181    float_round_to_zero      = 3,
 182    float_round_ties_away    = 4,
 183};
 184
 185/*----------------------------------------------------------------------------
 186| Software IEC/IEEE floating-point exception flags.
 187*----------------------------------------------------------------------------*/
 188enum {
 189    float_flag_invalid   =  1,
 190    float_flag_divbyzero =  4,
 191    float_flag_overflow  =  8,
 192    float_flag_underflow = 16,
 193    float_flag_inexact   = 32,
 194    float_flag_input_denormal = 64,
 195    float_flag_output_denormal = 128
 196};
 197
 198typedef struct float_status {
 199    signed char float_detect_tininess;
 200    signed char float_rounding_mode;
 201    uint8_t     float_exception_flags;
 202    signed char floatx80_rounding_precision;
 203    /* should denormalised results go to zero and set the inexact flag? */
 204    flag flush_to_zero;
 205    /* should denormalised inputs go to zero and set the input_denormal flag? */
 206    flag flush_inputs_to_zero;
 207    flag default_nan_mode;
 208    flag snan_bit_is_one;
 209} float_status;
 210
 211static inline void set_float_detect_tininess(int val, float_status *status)
 212{
 213    status->float_detect_tininess = val;
 214}
 215static inline void set_float_rounding_mode(int val, float_status *status)
 216{
 217    status->float_rounding_mode = val;
 218}
 219static inline void set_float_exception_flags(int val, float_status *status)
 220{
 221    status->float_exception_flags = val;
 222}
 223static inline void set_floatx80_rounding_precision(int val,
 224                                                   float_status *status)
 225{
 226    status->floatx80_rounding_precision = val;
 227}
 228static inline void set_flush_to_zero(flag val, float_status *status)
 229{
 230    status->flush_to_zero = val;
 231}
 232static inline void set_flush_inputs_to_zero(flag val, float_status *status)
 233{
 234    status->flush_inputs_to_zero = val;
 235}
 236static inline void set_default_nan_mode(flag val, float_status *status)
 237{
 238    status->default_nan_mode = val;
 239}
 240static inline void set_snan_bit_is_one(flag val, float_status *status)
 241{
 242    status->snan_bit_is_one = val;
 243}
 244static inline int get_float_detect_tininess(float_status *status)
 245{
 246    return status->float_detect_tininess;
 247}
 248static inline int get_float_rounding_mode(float_status *status)
 249{
 250    return status->float_rounding_mode;
 251}
 252static inline int get_float_exception_flags(float_status *status)
 253{
 254    return status->float_exception_flags;
 255}
 256static inline int get_floatx80_rounding_precision(float_status *status)
 257{
 258    return status->floatx80_rounding_precision;
 259}
 260static inline flag get_flush_to_zero(float_status *status)
 261{
 262    return status->flush_to_zero;
 263}
 264static inline flag get_flush_inputs_to_zero(float_status *status)
 265{
 266    return status->flush_inputs_to_zero;
 267}
 268static inline flag get_default_nan_mode(float_status *status)
 269{
 270    return status->default_nan_mode;
 271}
 272
 273/*----------------------------------------------------------------------------
 274| Routine to raise any or all of the software IEC/IEEE floating-point
 275| exception flags.
 276*----------------------------------------------------------------------------*/
 277void float_raise(uint8_t flags, float_status *status);
 278
 279/*----------------------------------------------------------------------------
 280| If `a' is denormal and we are in flush-to-zero mode then set the
 281| input-denormal exception and return zero. Otherwise just return the value.
 282*----------------------------------------------------------------------------*/
 283float32 float32_squash_input_denormal(float32 a, float_status *status);
 284float64 float64_squash_input_denormal(float64 a, float_status *status);
 285
 286/*----------------------------------------------------------------------------
 287| Options to indicate which negations to perform in float*_muladd()
 288| Using these differs from negating an input or output before calling
 289| the muladd function in that this means that a NaN doesn't have its
 290| sign bit inverted before it is propagated.
 291| We also support halving the result before rounding, as a special
 292| case to support the ARM fused-sqrt-step instruction FRSQRTS.
 293*----------------------------------------------------------------------------*/
 294enum {
 295    float_muladd_negate_c = 1,
 296    float_muladd_negate_product = 2,
 297    float_muladd_negate_result = 4,
 298    float_muladd_halve_result = 8,
 299};
 300
 301/*----------------------------------------------------------------------------
 302| Software IEC/IEEE integer-to-floating-point conversion routines.
 303*----------------------------------------------------------------------------*/
 304float32 int32_to_float32(int32_t, float_status *status);
 305float64 int32_to_float64(int32_t, float_status *status);
 306float32 uint32_to_float32(uint32_t, float_status *status);
 307float64 uint32_to_float64(uint32_t, float_status *status);
 308floatx80 int32_to_floatx80(int32_t, float_status *status);
 309float128 int32_to_float128(int32_t, float_status *status);
 310float32 int64_to_float32(int64_t, float_status *status);
 311float64 int64_to_float64(int64_t, float_status *status);
 312floatx80 int64_to_floatx80(int64_t, float_status *status);
 313float128 int64_to_float128(int64_t, float_status *status);
 314float32 uint64_to_float32(uint64_t, float_status *status);
 315float64 uint64_to_float64(uint64_t, float_status *status);
 316float128 uint64_to_float128(uint64_t, float_status *status);
 317
 318/* We provide the int16 versions for symmetry of API with float-to-int */
 319static inline float32 int16_to_float32(int16_t v, float_status *status)
 320{
 321    return int32_to_float32(v, status);
 322}
 323
 324static inline float32 uint16_to_float32(uint16_t v, float_status *status)
 325{
 326    return uint32_to_float32(v, status);
 327}
 328
 329static inline float64 int16_to_float64(int16_t v, float_status *status)
 330{
 331    return int32_to_float64(v, status);
 332}
 333
 334static inline float64 uint16_to_float64(uint16_t v, float_status *status)
 335{
 336    return uint32_to_float64(v, status);
 337}
 338
 339/*----------------------------------------------------------------------------
 340| Software half-precision conversion routines.
 341*----------------------------------------------------------------------------*/
 342float16 float32_to_float16(float32, flag, float_status *status);
 343float32 float16_to_float32(float16, flag, float_status *status);
 344float16 float64_to_float16(float64 a, flag ieee, float_status *status);
 345float64 float16_to_float64(float16 a, flag ieee, float_status *status);
 346
 347/*----------------------------------------------------------------------------
 348| Software half-precision operations.
 349*----------------------------------------------------------------------------*/
 350int float16_is_quiet_nan(float16, float_status *status);
 351int float16_is_signaling_nan(float16, float_status *status);
 352float16 float16_maybe_silence_nan(float16, float_status *status);
 353
 354static inline int float16_is_any_nan(float16 a)
 355{
 356    return ((float16_val(a) & ~0x8000) > 0x7c00);
 357}
 358
 359/*----------------------------------------------------------------------------
 360| The pattern for a default generated half-precision NaN.
 361*----------------------------------------------------------------------------*/
 362float16 float16_default_nan(float_status *status);
 363
 364/*----------------------------------------------------------------------------
 365| Software IEC/IEEE single-precision conversion routines.
 366*----------------------------------------------------------------------------*/
 367int16_t float32_to_int16(float32, float_status *status);
 368uint16_t float32_to_uint16(float32, float_status *status);
 369int16_t float32_to_int16_round_to_zero(float32, float_status *status);
 370uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
 371int32_t float32_to_int32(float32, float_status *status);
 372int32_t float32_to_int32_round_to_zero(float32, float_status *status);
 373uint32_t float32_to_uint32(float32, float_status *status);
 374uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
 375int64_t float32_to_int64(float32, float_status *status);
 376uint64_t float32_to_uint64(float32, float_status *status);
 377uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
 378int64_t float32_to_int64_round_to_zero(float32, float_status *status);
 379float64 float32_to_float64(float32, float_status *status);
 380floatx80 float32_to_floatx80(float32, float_status *status);
 381float128 float32_to_float128(float32, float_status *status);
 382
 383/*----------------------------------------------------------------------------
 384| Software IEC/IEEE single-precision operations.
 385*----------------------------------------------------------------------------*/
 386float32 float32_round_to_int(float32, float_status *status);
 387float32 float32_add(float32, float32, float_status *status);
 388float32 float32_sub(float32, float32, float_status *status);
 389float32 float32_mul(float32, float32, float_status *status);
 390float32 float32_div(float32, float32, float_status *status);
 391float32 float32_rem(float32, float32, float_status *status);
 392float32 float32_muladd(float32, float32, float32, int, float_status *status);
 393float32 float32_sqrt(float32, float_status *status);
 394float32 float32_exp2(float32, float_status *status);
 395float32 float32_log2(float32, float_status *status);
 396int float32_eq(float32, float32, float_status *status);
 397int float32_le(float32, float32, float_status *status);
 398int float32_lt(float32, float32, float_status *status);
 399int float32_unordered(float32, float32, float_status *status);
 400int float32_eq_quiet(float32, float32, float_status *status);
 401int float32_le_quiet(float32, float32, float_status *status);
 402int float32_lt_quiet(float32, float32, float_status *status);
 403int float32_unordered_quiet(float32, float32, float_status *status);
 404int float32_compare(float32, float32, float_status *status);
 405int float32_compare_quiet(float32, float32, float_status *status);
 406float32 float32_min(float32, float32, float_status *status);
 407float32 float32_max(float32, float32, float_status *status);
 408float32 float32_minnum(float32, float32, float_status *status);
 409float32 float32_maxnum(float32, float32, float_status *status);
 410float32 float32_minnummag(float32, float32, float_status *status);
 411float32 float32_maxnummag(float32, float32, float_status *status);
 412int float32_is_quiet_nan(float32, float_status *status);
 413int float32_is_signaling_nan(float32, float_status *status);
 414float32 float32_maybe_silence_nan(float32, float_status *status);
 415float32 float32_scalbn(float32, int, float_status *status);
 416
 417static inline float32 float32_abs(float32 a)
 418{
 419    /* Note that abs does *not* handle NaN specially, nor does
 420     * it flush denormal inputs to zero.
 421     */
 422    return make_float32(float32_val(a) & 0x7fffffff);
 423}
 424
 425static inline float32 float32_chs(float32 a)
 426{
 427    /* Note that chs does *not* handle NaN specially, nor does
 428     * it flush denormal inputs to zero.
 429     */
 430    return make_float32(float32_val(a) ^ 0x80000000);
 431}
 432
 433static inline int float32_is_infinity(float32 a)
 434{
 435    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
 436}
 437
 438static inline int float32_is_neg(float32 a)
 439{
 440    return float32_val(a) >> 31;
 441}
 442
 443static inline int float32_is_zero(float32 a)
 444{
 445    return (float32_val(a) & 0x7fffffff) == 0;
 446}
 447
 448static inline int float32_is_any_nan(float32 a)
 449{
 450    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
 451}
 452
 453static inline int float32_is_zero_or_denormal(float32 a)
 454{
 455    return (float32_val(a) & 0x7f800000) == 0;
 456}
 457
 458static inline float32 float32_set_sign(float32 a, int sign)
 459{
 460    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
 461}
 462
 463#define float32_zero make_float32(0)
 464#define float32_one make_float32(0x3f800000)
 465#define float32_ln2 make_float32(0x3f317218)
 466#define float32_pi make_float32(0x40490fdb)
 467#define float32_half make_float32(0x3f000000)
 468#define float32_infinity make_float32(0x7f800000)
 469
 470
 471/*----------------------------------------------------------------------------
 472| The pattern for a default generated single-precision NaN.
 473*----------------------------------------------------------------------------*/
 474float32 float32_default_nan(float_status *status);
 475
 476/*----------------------------------------------------------------------------
 477| Software IEC/IEEE double-precision conversion routines.
 478*----------------------------------------------------------------------------*/
 479int16_t float64_to_int16(float64, float_status *status);
 480uint16_t float64_to_uint16(float64, float_status *status);
 481int16_t float64_to_int16_round_to_zero(float64, float_status *status);
 482uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
 483int32_t float64_to_int32(float64, float_status *status);
 484int32_t float64_to_int32_round_to_zero(float64, float_status *status);
 485uint32_t float64_to_uint32(float64, float_status *status);
 486uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
 487int64_t float64_to_int64(float64, float_status *status);
 488int64_t float64_to_int64_round_to_zero(float64, float_status *status);
 489uint64_t float64_to_uint64(float64 a, float_status *status);
 490uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
 491float32 float64_to_float32(float64, float_status *status);
 492floatx80 float64_to_floatx80(float64, float_status *status);
 493float128 float64_to_float128(float64, float_status *status);
 494
 495/*----------------------------------------------------------------------------
 496| Software IEC/IEEE double-precision operations.
 497*----------------------------------------------------------------------------*/
 498float64 float64_round_to_int(float64, float_status *status);
 499float64 float64_trunc_to_int(float64, float_status *status);
 500float64 float64_add(float64, float64, float_status *status);
 501float64 float64_sub(float64, float64, float_status *status);
 502float64 float64_mul(float64, float64, float_status *status);
 503float64 float64_div(float64, float64, float_status *status);
 504float64 float64_rem(float64, float64, float_status *status);
 505float64 float64_muladd(float64, float64, float64, int, float_status *status);
 506float64 float64_sqrt(float64, float_status *status);
 507float64 float64_log2(float64, float_status *status);
 508int float64_eq(float64, float64, float_status *status);
 509int float64_le(float64, float64, float_status *status);
 510int float64_lt(float64, float64, float_status *status);
 511int float64_unordered(float64, float64, float_status *status);
 512int float64_eq_quiet(float64, float64, float_status *status);
 513int float64_le_quiet(float64, float64, float_status *status);
 514int float64_lt_quiet(float64, float64, float_status *status);
 515int float64_unordered_quiet(float64, float64, float_status *status);
 516int float64_compare(float64, float64, float_status *status);
 517int float64_compare_quiet(float64, float64, float_status *status);
 518float64 float64_min(float64, float64, float_status *status);
 519float64 float64_max(float64, float64, float_status *status);
 520float64 float64_minnum(float64, float64, float_status *status);
 521float64 float64_maxnum(float64, float64, float_status *status);
 522float64 float64_minnummag(float64, float64, float_status *status);
 523float64 float64_maxnummag(float64, float64, float_status *status);
 524int float64_is_quiet_nan(float64 a, float_status *status);
 525int float64_is_signaling_nan(float64, float_status *status);
 526float64 float64_maybe_silence_nan(float64, float_status *status);
 527float64 float64_scalbn(float64, int, float_status *status);
 528
 529static inline float64 float64_abs(float64 a)
 530{
 531    /* Note that abs does *not* handle NaN specially, nor does
 532     * it flush denormal inputs to zero.
 533     */
 534    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
 535}
 536
 537static inline float64 float64_chs(float64 a)
 538{
 539    /* Note that chs does *not* handle NaN specially, nor does
 540     * it flush denormal inputs to zero.
 541     */
 542    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
 543}
 544
 545static inline int float64_is_infinity(float64 a)
 546{
 547    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
 548}
 549
 550static inline int float64_is_neg(float64 a)
 551{
 552    return float64_val(a) >> 63;
 553}
 554
 555static inline int float64_is_zero(float64 a)
 556{
 557    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
 558}
 559
 560static inline int float64_is_any_nan(float64 a)
 561{
 562    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
 563}
 564
 565static inline int float64_is_zero_or_denormal(float64 a)
 566{
 567    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
 568}
 569
 570static inline float64 float64_set_sign(float64 a, int sign)
 571{
 572    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
 573                        | ((int64_t)sign << 63));
 574}
 575
 576#define float64_zero make_float64(0)
 577#define float64_one make_float64(0x3ff0000000000000LL)
 578#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
 579#define float64_pi make_float64(0x400921fb54442d18LL)
 580#define float64_half make_float64(0x3fe0000000000000LL)
 581#define float64_infinity make_float64(0x7ff0000000000000LL)
 582
 583/*----------------------------------------------------------------------------
 584| The pattern for a default generated double-precision NaN.
 585*----------------------------------------------------------------------------*/
 586float64 float64_default_nan(float_status *status);
 587
 588/*----------------------------------------------------------------------------
 589| Software IEC/IEEE extended double-precision conversion routines.
 590*----------------------------------------------------------------------------*/
 591int32_t floatx80_to_int32(floatx80, float_status *status);
 592int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
 593int64_t floatx80_to_int64(floatx80, float_status *status);
 594int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
 595float32 floatx80_to_float32(floatx80, float_status *status);
 596float64 floatx80_to_float64(floatx80, float_status *status);
 597float128 floatx80_to_float128(floatx80, float_status *status);
 598
 599/*----------------------------------------------------------------------------
 600| Software IEC/IEEE extended double-precision operations.
 601*----------------------------------------------------------------------------*/
 602floatx80 floatx80_round_to_int(floatx80, float_status *status);
 603floatx80 floatx80_add(floatx80, floatx80, float_status *status);
 604floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
 605floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
 606floatx80 floatx80_div(floatx80, floatx80, float_status *status);
 607floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
 608floatx80 floatx80_sqrt(floatx80, float_status *status);
 609int floatx80_eq(floatx80, floatx80, float_status *status);
 610int floatx80_le(floatx80, floatx80, float_status *status);
 611int floatx80_lt(floatx80, floatx80, float_status *status);
 612int floatx80_unordered(floatx80, floatx80, float_status *status);
 613int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
 614int floatx80_le_quiet(floatx80, floatx80, float_status *status);
 615int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
 616int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
 617int floatx80_compare(floatx80, floatx80, float_status *status);
 618int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
 619int floatx80_is_quiet_nan(floatx80, float_status *status);
 620int floatx80_is_signaling_nan(floatx80, float_status *status);
 621floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
 622floatx80 floatx80_scalbn(floatx80, int, float_status *status);
 623
 624static inline floatx80 floatx80_abs(floatx80 a)
 625{
 626    a.high &= 0x7fff;
 627    return a;
 628}
 629
 630static inline floatx80 floatx80_chs(floatx80 a)
 631{
 632    a.high ^= 0x8000;
 633    return a;
 634}
 635
 636static inline int floatx80_is_infinity(floatx80 a)
 637{
 638    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
 639}
 640
 641static inline int floatx80_is_neg(floatx80 a)
 642{
 643    return a.high >> 15;
 644}
 645
 646static inline int floatx80_is_zero(floatx80 a)
 647{
 648    return (a.high & 0x7fff) == 0 && a.low == 0;
 649}
 650
 651static inline int floatx80_is_zero_or_denormal(floatx80 a)
 652{
 653    return (a.high & 0x7fff) == 0;
 654}
 655
 656static inline int floatx80_is_any_nan(floatx80 a)
 657{
 658    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
 659}
 660
 661/*----------------------------------------------------------------------------
 662| Return whether the given value is an invalid floatx80 encoding.
 663| Invalid floatx80 encodings arise when the integer bit is not set, but
 664| the exponent is not zero. The only times the integer bit is permitted to
 665| be zero is in subnormal numbers and the value zero.
 666| This includes what the Intel software developer's manual calls pseudo-NaNs,
 667| pseudo-infinities and un-normal numbers. It does not include
 668| pseudo-denormals, which must still be correctly handled as inputs even
 669| if they are never generated as outputs.
 670*----------------------------------------------------------------------------*/
 671static inline bool floatx80_invalid_encoding(floatx80 a)
 672{
 673    return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
 674}
 675
 676#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
 677#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
 678#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
 679#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
 680#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
 681#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
 682
 683/*----------------------------------------------------------------------------
 684| The pattern for a default generated extended double-precision NaN.
 685*----------------------------------------------------------------------------*/
 686floatx80 floatx80_default_nan(float_status *status);
 687
 688/*----------------------------------------------------------------------------
 689| Software IEC/IEEE quadruple-precision conversion routines.
 690*----------------------------------------------------------------------------*/
 691int32_t float128_to_int32(float128, float_status *status);
 692int32_t float128_to_int32_round_to_zero(float128, float_status *status);
 693int64_t float128_to_int64(float128, float_status *status);
 694int64_t float128_to_int64_round_to_zero(float128, float_status *status);
 695float32 float128_to_float32(float128, float_status *status);
 696float64 float128_to_float64(float128, float_status *status);
 697floatx80 float128_to_floatx80(float128, float_status *status);
 698
 699/*----------------------------------------------------------------------------
 700| Software IEC/IEEE quadruple-precision operations.
 701*----------------------------------------------------------------------------*/
 702float128 float128_round_to_int(float128, float_status *status);
 703float128 float128_add(float128, float128, float_status *status);
 704float128 float128_sub(float128, float128, float_status *status);
 705float128 float128_mul(float128, float128, float_status *status);
 706float128 float128_div(float128, float128, float_status *status);
 707float128 float128_rem(float128, float128, float_status *status);
 708float128 float128_sqrt(float128, float_status *status);
 709int float128_eq(float128, float128, float_status *status);
 710int float128_le(float128, float128, float_status *status);
 711int float128_lt(float128, float128, float_status *status);
 712int float128_unordered(float128, float128, float_status *status);
 713int float128_eq_quiet(float128, float128, float_status *status);
 714int float128_le_quiet(float128, float128, float_status *status);
 715int float128_lt_quiet(float128, float128, float_status *status);
 716int float128_unordered_quiet(float128, float128, float_status *status);
 717int float128_compare(float128, float128, float_status *status);
 718int float128_compare_quiet(float128, float128, float_status *status);
 719int float128_is_quiet_nan(float128, float_status *status);
 720int float128_is_signaling_nan(float128, float_status *status);
 721float128 float128_maybe_silence_nan(float128, float_status *status);
 722float128 float128_scalbn(float128, int, float_status *status);
 723
 724static inline float128 float128_abs(float128 a)
 725{
 726    a.high &= 0x7fffffffffffffffLL;
 727    return a;
 728}
 729
 730static inline float128 float128_chs(float128 a)
 731{
 732    a.high ^= 0x8000000000000000LL;
 733    return a;
 734}
 735
 736static inline int float128_is_infinity(float128 a)
 737{
 738    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
 739}
 740
 741static inline int float128_is_neg(float128 a)
 742{
 743    return a.high >> 63;
 744}
 745
 746static inline int float128_is_zero(float128 a)
 747{
 748    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
 749}
 750
 751static inline int float128_is_zero_or_denormal(float128 a)
 752{
 753    return (a.high & 0x7fff000000000000LL) == 0;
 754}
 755
 756static inline int float128_is_any_nan(float128 a)
 757{
 758    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
 759        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
 760}
 761
 762#define float128_zero make_float128(0, 0)
 763
 764/*----------------------------------------------------------------------------
 765| The pattern for a default generated quadruple-precision NaN.
 766*----------------------------------------------------------------------------*/
 767float128 float128_default_nan(float_status *status);
 768
 769#endif /* SOFTFLOAT_H */
 770