qemu/target-arm/helper-a64.c
<<
>>
Prefs
   1/*
   2 *  AArch64 specific helpers
   3 *
   4 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/gdbstub.h"
  23#include "exec/helper-proto.h"
  24#include "qemu/host-utils.h"
  25#include "qemu/log.h"
  26#include "sysemu/sysemu.h"
  27#include "qemu/bitops.h"
  28#include "internals.h"
  29#include "qemu/crc32c.h"
  30#include "exec/exec-all.h"
  31#include "exec/cpu_ldst.h"
  32#include "qemu/int128.h"
  33#include "tcg.h"
  34#include <zlib.h> /* For crc32 */
  35
  36/* C2.4.7 Multiply and divide */
  37/* special cases for 0 and LLONG_MIN are mandated by the standard */
  38uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
  39{
  40    if (den == 0) {
  41        return 0;
  42    }
  43    return num / den;
  44}
  45
  46int64_t HELPER(sdiv64)(int64_t num, int64_t den)
  47{
  48    if (den == 0) {
  49        return 0;
  50    }
  51    if (num == LLONG_MIN && den == -1) {
  52        return LLONG_MIN;
  53    }
  54    return num / den;
  55}
  56
  57uint64_t HELPER(clz64)(uint64_t x)
  58{
  59    return clz64(x);
  60}
  61
  62uint64_t HELPER(cls64)(uint64_t x)
  63{
  64    return clrsb64(x);
  65}
  66
  67uint32_t HELPER(cls32)(uint32_t x)
  68{
  69    return clrsb32(x);
  70}
  71
  72uint32_t HELPER(clz32)(uint32_t x)
  73{
  74    return clz32(x);
  75}
  76
  77uint64_t HELPER(rbit64)(uint64_t x)
  78{
  79    return revbit64(x);
  80}
  81
  82/* Convert a softfloat float_relation_ (as returned by
  83 * the float*_compare functions) to the correct ARM
  84 * NZCV flag state.
  85 */
  86static inline uint32_t float_rel_to_flags(int res)
  87{
  88    uint64_t flags;
  89    switch (res) {
  90    case float_relation_equal:
  91        flags = PSTATE_Z | PSTATE_C;
  92        break;
  93    case float_relation_less:
  94        flags = PSTATE_N;
  95        break;
  96    case float_relation_greater:
  97        flags = PSTATE_C;
  98        break;
  99    case float_relation_unordered:
 100    default:
 101        flags = PSTATE_C | PSTATE_V;
 102        break;
 103    }
 104    return flags;
 105}
 106
 107uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
 108{
 109    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
 110}
 111
 112uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
 113{
 114    return float_rel_to_flags(float32_compare(x, y, fp_status));
 115}
 116
 117uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
 118{
 119    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
 120}
 121
 122uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
 123{
 124    return float_rel_to_flags(float64_compare(x, y, fp_status));
 125}
 126
 127float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
 128{
 129    float_status *fpst = fpstp;
 130
 131    a = float32_squash_input_denormal(a, fpst);
 132    b = float32_squash_input_denormal(b, fpst);
 133
 134    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
 135        (float32_is_infinity(a) && float32_is_zero(b))) {
 136        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 137        return make_float32((1U << 30) |
 138                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
 139    }
 140    return float32_mul(a, b, fpst);
 141}
 142
 143float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
 144{
 145    float_status *fpst = fpstp;
 146
 147    a = float64_squash_input_denormal(a, fpst);
 148    b = float64_squash_input_denormal(b, fpst);
 149
 150    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
 151        (float64_is_infinity(a) && float64_is_zero(b))) {
 152        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 153        return make_float64((1ULL << 62) |
 154                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
 155    }
 156    return float64_mul(a, b, fpst);
 157}
 158
 159uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
 160                          uint32_t rn, uint32_t numregs)
 161{
 162    /* Helper function for SIMD TBL and TBX. We have to do the table
 163     * lookup part for the 64 bits worth of indices we're passed in.
 164     * result is the initial results vector (either zeroes for TBL
 165     * or some guest values for TBX), rn the register number where
 166     * the table starts, and numregs the number of registers in the table.
 167     * We return the results of the lookups.
 168     */
 169    int shift;
 170
 171    for (shift = 0; shift < 64; shift += 8) {
 172        int index = extract64(indices, shift, 8);
 173        if (index < 16 * numregs) {
 174            /* Convert index (a byte offset into the virtual table
 175             * which is a series of 128-bit vectors concatenated)
 176             * into the correct vfp.regs[] element plus a bit offset
 177             * into that element, bearing in mind that the table
 178             * can wrap around from V31 to V0.
 179             */
 180            int elt = (rn * 2 + (index >> 3)) % 64;
 181            int bitidx = (index & 7) * 8;
 182            uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
 183
 184            result = deposit64(result, shift, 8, val);
 185        }
 186    }
 187    return result;
 188}
 189
 190/* 64bit/double versions of the neon float compare functions */
 191uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
 192{
 193    float_status *fpst = fpstp;
 194    return -float64_eq_quiet(a, b, fpst);
 195}
 196
 197uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
 198{
 199    float_status *fpst = fpstp;
 200    return -float64_le(b, a, fpst);
 201}
 202
 203uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
 204{
 205    float_status *fpst = fpstp;
 206    return -float64_lt(b, a, fpst);
 207}
 208
 209/* Reciprocal step and sqrt step. Note that unlike the A32/T32
 210 * versions, these do a fully fused multiply-add or
 211 * multiply-add-and-halve.
 212 */
 213#define float32_two make_float32(0x40000000)
 214#define float32_three make_float32(0x40400000)
 215#define float32_one_point_five make_float32(0x3fc00000)
 216
 217#define float64_two make_float64(0x4000000000000000ULL)
 218#define float64_three make_float64(0x4008000000000000ULL)
 219#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 220
 221float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
 222{
 223    float_status *fpst = fpstp;
 224
 225    a = float32_squash_input_denormal(a, fpst);
 226    b = float32_squash_input_denormal(b, fpst);
 227
 228    a = float32_chs(a);
 229    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 230        (float32_is_infinity(b) && float32_is_zero(a))) {
 231        return float32_two;
 232    }
 233    return float32_muladd(a, b, float32_two, 0, fpst);
 234}
 235
 236float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
 237{
 238    float_status *fpst = fpstp;
 239
 240    a = float64_squash_input_denormal(a, fpst);
 241    b = float64_squash_input_denormal(b, fpst);
 242
 243    a = float64_chs(a);
 244    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 245        (float64_is_infinity(b) && float64_is_zero(a))) {
 246        return float64_two;
 247    }
 248    return float64_muladd(a, b, float64_two, 0, fpst);
 249}
 250
 251float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
 252{
 253    float_status *fpst = fpstp;
 254
 255    a = float32_squash_input_denormal(a, fpst);
 256    b = float32_squash_input_denormal(b, fpst);
 257
 258    a = float32_chs(a);
 259    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 260        (float32_is_infinity(b) && float32_is_zero(a))) {
 261        return float32_one_point_five;
 262    }
 263    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
 264}
 265
 266float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
 267{
 268    float_status *fpst = fpstp;
 269
 270    a = float64_squash_input_denormal(a, fpst);
 271    b = float64_squash_input_denormal(b, fpst);
 272
 273    a = float64_chs(a);
 274    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 275        (float64_is_infinity(b) && float64_is_zero(a))) {
 276        return float64_one_point_five;
 277    }
 278    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
 279}
 280
 281/* Pairwise long add: add pairs of adjacent elements into
 282 * double-width elements in the result (eg _s8 is an 8x8->16 op)
 283 */
 284uint64_t HELPER(neon_addlp_s8)(uint64_t a)
 285{
 286    uint64_t nsignmask = 0x0080008000800080ULL;
 287    uint64_t wsignmask = 0x8000800080008000ULL;
 288    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
 289    uint64_t tmp1, tmp2;
 290    uint64_t res, signres;
 291
 292    /* Extract odd elements, sign extend each to a 16 bit field */
 293    tmp1 = a & elementmask;
 294    tmp1 ^= nsignmask;
 295    tmp1 |= wsignmask;
 296    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
 297    /* Ditto for the even elements */
 298    tmp2 = (a >> 8) & elementmask;
 299    tmp2 ^= nsignmask;
 300    tmp2 |= wsignmask;
 301    tmp2 = (tmp2 - nsignmask) ^ wsignmask;
 302
 303    /* calculate the result by summing bits 0..14, 16..22, etc,
 304     * and then adjusting the sign bits 15, 23, etc manually.
 305     * This ensures the addition can't overflow the 16 bit field.
 306     */
 307    signres = (tmp1 ^ tmp2) & wsignmask;
 308    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
 309    res ^= signres;
 310
 311    return res;
 312}
 313
 314uint64_t HELPER(neon_addlp_u8)(uint64_t a)
 315{
 316    uint64_t tmp;
 317
 318    tmp = a & 0x00ff00ff00ff00ffULL;
 319    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
 320    return tmp;
 321}
 322
 323uint64_t HELPER(neon_addlp_s16)(uint64_t a)
 324{
 325    int32_t reslo, reshi;
 326
 327    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
 328    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
 329
 330    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
 331}
 332
 333uint64_t HELPER(neon_addlp_u16)(uint64_t a)
 334{
 335    uint64_t tmp;
 336
 337    tmp = a & 0x0000ffff0000ffffULL;
 338    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
 339    return tmp;
 340}
 341
 342/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
 343float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 344{
 345    float_status *fpst = fpstp;
 346    uint32_t val32, sbit;
 347    int32_t exp;
 348
 349    if (float32_is_any_nan(a)) {
 350        float32 nan = a;
 351        if (float32_is_signaling_nan(a, fpst)) {
 352            float_raise(float_flag_invalid, fpst);
 353            nan = float32_maybe_silence_nan(a, fpst);
 354        }
 355        if (fpst->default_nan_mode) {
 356            nan = float32_default_nan(fpst);
 357        }
 358        return nan;
 359    }
 360
 361    val32 = float32_val(a);
 362    sbit = 0x80000000ULL & val32;
 363    exp = extract32(val32, 23, 8);
 364
 365    if (exp == 0) {
 366        return make_float32(sbit | (0xfe << 23));
 367    } else {
 368        return make_float32(sbit | (~exp & 0xff) << 23);
 369    }
 370}
 371
 372float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 373{
 374    float_status *fpst = fpstp;
 375    uint64_t val64, sbit;
 376    int64_t exp;
 377
 378    if (float64_is_any_nan(a)) {
 379        float64 nan = a;
 380        if (float64_is_signaling_nan(a, fpst)) {
 381            float_raise(float_flag_invalid, fpst);
 382            nan = float64_maybe_silence_nan(a, fpst);
 383        }
 384        if (fpst->default_nan_mode) {
 385            nan = float64_default_nan(fpst);
 386        }
 387        return nan;
 388    }
 389
 390    val64 = float64_val(a);
 391    sbit = 0x8000000000000000ULL & val64;
 392    exp = extract64(float64_val(a), 52, 11);
 393
 394    if (exp == 0) {
 395        return make_float64(sbit | (0x7feULL << 52));
 396    } else {
 397        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
 398    }
 399}
 400
 401float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
 402{
 403    /* Von Neumann rounding is implemented by using round-to-zero
 404     * and then setting the LSB of the result if Inexact was raised.
 405     */
 406    float32 r;
 407    float_status *fpst = &env->vfp.fp_status;
 408    float_status tstat = *fpst;
 409    int exflags;
 410
 411    set_float_rounding_mode(float_round_to_zero, &tstat);
 412    set_float_exception_flags(0, &tstat);
 413    r = float64_to_float32(a, &tstat);
 414    r = float32_maybe_silence_nan(r, &tstat);
 415    exflags = get_float_exception_flags(&tstat);
 416    if (exflags & float_flag_inexact) {
 417        r = make_float32(float32_val(r) | 1);
 418    }
 419    exflags |= get_float_exception_flags(fpst);
 420    set_float_exception_flags(exflags, fpst);
 421    return r;
 422}
 423
 424/* 64-bit versions of the CRC helpers. Note that although the operation
 425 * (and the prototypes of crc32c() and crc32() mean that only the bottom
 426 * 32 bits of the accumulator and result are used, we pass and return
 427 * uint64_t for convenience of the generated code. Unlike the 32-bit
 428 * instruction set versions, val may genuinely have 64 bits of data in it.
 429 * The upper bytes of val (above the number specified by 'bytes') must have
 430 * been zeroed out by the caller.
 431 */
 432uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 433{
 434    uint8_t buf[8];
 435
 436    stq_le_p(buf, val);
 437
 438    /* zlib crc32 converts the accumulator and output to one's complement.  */
 439    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 440}
 441
 442uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 443{
 444    uint8_t buf[8];
 445
 446    stq_le_p(buf, val);
 447
 448    /* Linux crc32c converts the output to one's complement.  */
 449    return crc32c(acc, buf, bytes) ^ 0xffffffff;
 450}
 451
 452/* Returns 0 on success; 1 otherwise.  */
 453uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
 454                                     uint64_t new_lo, uint64_t new_hi)
 455{
 456    uintptr_t ra = GETPC();
 457    Int128 oldv, cmpv, newv;
 458    bool success;
 459
 460    cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
 461    newv = int128_make128(new_lo, new_hi);
 462
 463    if (parallel_cpus) {
 464#ifndef CONFIG_ATOMIC128
 465        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
 466#else
 467        int mem_idx = cpu_mmu_index(env, false);
 468        TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 469        oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
 470        success = int128_eq(oldv, cmpv);
 471#endif
 472    } else {
 473        uint64_t o0, o1;
 474
 475#ifdef CONFIG_USER_ONLY
 476        /* ??? Enforce alignment.  */
 477        uint64_t *haddr = g2h(addr);
 478        o0 = ldq_le_p(haddr + 0);
 479        o1 = ldq_le_p(haddr + 1);
 480        oldv = int128_make128(o0, o1);
 481
 482        success = int128_eq(oldv, cmpv);
 483        if (success) {
 484            stq_le_p(haddr + 0, int128_getlo(newv));
 485            stq_le_p(haddr + 1, int128_gethi(newv));
 486        }
 487#else
 488        int mem_idx = cpu_mmu_index(env, false);
 489        TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 490        TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
 491
 492        o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
 493        o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
 494        oldv = int128_make128(o0, o1);
 495
 496        success = int128_eq(oldv, cmpv);
 497        if (success) {
 498            helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
 499            helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
 500        }
 501#endif
 502    }
 503
 504    return !success;
 505}
 506
 507uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
 508                                     uint64_t new_lo, uint64_t new_hi)
 509{
 510    uintptr_t ra = GETPC();
 511    Int128 oldv, cmpv, newv;
 512    bool success;
 513
 514    cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
 515    newv = int128_make128(new_lo, new_hi);
 516
 517    if (parallel_cpus) {
 518#ifndef CONFIG_ATOMIC128
 519        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
 520#else
 521        int mem_idx = cpu_mmu_index(env, false);
 522        TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
 523        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
 524        success = int128_eq(oldv, cmpv);
 525#endif
 526    } else {
 527        uint64_t o0, o1;
 528
 529#ifdef CONFIG_USER_ONLY
 530        /* ??? Enforce alignment.  */
 531        uint64_t *haddr = g2h(addr);
 532        o1 = ldq_be_p(haddr + 0);
 533        o0 = ldq_be_p(haddr + 1);
 534        oldv = int128_make128(o0, o1);
 535
 536        success = int128_eq(oldv, cmpv);
 537        if (success) {
 538            stq_be_p(haddr + 0, int128_gethi(newv));
 539            stq_be_p(haddr + 1, int128_getlo(newv));
 540        }
 541#else
 542        int mem_idx = cpu_mmu_index(env, false);
 543        TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
 544        TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
 545
 546        o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
 547        o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
 548        oldv = int128_make128(o0, o1);
 549
 550        success = int128_eq(oldv, cmpv);
 551        if (success) {
 552            helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
 553            helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
 554        }
 555#endif
 556    }
 557
 558    return !success;
 559}
 560