qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include "qemu/timer.h"
  18#include "qemu/bswap.h"
  19#include "trace.h"
  20#include "qed.h"
  21#include "qapi/qmp/qerror.h"
  22#include "migration/migration.h"
  23#include "sysemu/block-backend.h"
  24
  25static const AIOCBInfo qed_aiocb_info = {
  26    .aiocb_size         = sizeof(QEDAIOCB),
  27};
  28
  29static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  30                          const char *filename)
  31{
  32    const QEDHeader *header = (const QEDHeader *)buf;
  33
  34    if (buf_size < sizeof(*header)) {
  35        return 0;
  36    }
  37    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  38        return 0;
  39    }
  40    return 100;
  41}
  42
  43/**
  44 * Check whether an image format is raw
  45 *
  46 * @fmt:    Backing file format, may be NULL
  47 */
  48static bool qed_fmt_is_raw(const char *fmt)
  49{
  50    return fmt && strcmp(fmt, "raw") == 0;
  51}
  52
  53static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  54{
  55    cpu->magic = le32_to_cpu(le->magic);
  56    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  57    cpu->table_size = le32_to_cpu(le->table_size);
  58    cpu->header_size = le32_to_cpu(le->header_size);
  59    cpu->features = le64_to_cpu(le->features);
  60    cpu->compat_features = le64_to_cpu(le->compat_features);
  61    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  62    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  63    cpu->image_size = le64_to_cpu(le->image_size);
  64    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  65    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  66}
  67
  68static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  69{
  70    le->magic = cpu_to_le32(cpu->magic);
  71    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  72    le->table_size = cpu_to_le32(cpu->table_size);
  73    le->header_size = cpu_to_le32(cpu->header_size);
  74    le->features = cpu_to_le64(cpu->features);
  75    le->compat_features = cpu_to_le64(cpu->compat_features);
  76    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  77    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  78    le->image_size = cpu_to_le64(cpu->image_size);
  79    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  80    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  81}
  82
  83int qed_write_header_sync(BDRVQEDState *s)
  84{
  85    QEDHeader le;
  86    int ret;
  87
  88    qed_header_cpu_to_le(&s->header, &le);
  89    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
  90    if (ret != sizeof(le)) {
  91        return ret;
  92    }
  93    return 0;
  94}
  95
  96typedef struct {
  97    GenericCB gencb;
  98    BDRVQEDState *s;
  99    struct iovec iov;
 100    QEMUIOVector qiov;
 101    int nsectors;
 102    uint8_t *buf;
 103} QEDWriteHeaderCB;
 104
 105static void qed_write_header_cb(void *opaque, int ret)
 106{
 107    QEDWriteHeaderCB *write_header_cb = opaque;
 108
 109    qemu_vfree(write_header_cb->buf);
 110    gencb_complete(write_header_cb, ret);
 111}
 112
 113static void qed_write_header_read_cb(void *opaque, int ret)
 114{
 115    QEDWriteHeaderCB *write_header_cb = opaque;
 116    BDRVQEDState *s = write_header_cb->s;
 117
 118    if (ret) {
 119        qed_write_header_cb(write_header_cb, ret);
 120        return;
 121    }
 122
 123    /* Update header */
 124    qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
 125
 126    bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
 127                    write_header_cb->nsectors, qed_write_header_cb,
 128                    write_header_cb);
 129}
 130
 131/**
 132 * Update header in-place (does not rewrite backing filename or other strings)
 133 *
 134 * This function only updates known header fields in-place and does not affect
 135 * extra data after the QED header.
 136 */
 137static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
 138                             void *opaque)
 139{
 140    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 141     * the data following the header if an unrecognized compat feature is
 142     * active.  Therefore, first read the sectors containing the header, update
 143     * them, and write back.
 144     */
 145
 146    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 147    size_t len = nsectors * BDRV_SECTOR_SIZE;
 148    QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
 149                                                    cb, opaque);
 150
 151    write_header_cb->s = s;
 152    write_header_cb->nsectors = nsectors;
 153    write_header_cb->buf = qemu_blockalign(s->bs, len);
 154    write_header_cb->iov.iov_base = write_header_cb->buf;
 155    write_header_cb->iov.iov_len = len;
 156    qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
 157
 158    bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
 159                   qed_write_header_read_cb, write_header_cb);
 160}
 161
 162static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 163{
 164    uint64_t table_entries;
 165    uint64_t l2_size;
 166
 167    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 168    l2_size = table_entries * cluster_size;
 169
 170    return l2_size * table_entries;
 171}
 172
 173static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 174{
 175    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 176        cluster_size > QED_MAX_CLUSTER_SIZE) {
 177        return false;
 178    }
 179    if (cluster_size & (cluster_size - 1)) {
 180        return false; /* not power of 2 */
 181    }
 182    return true;
 183}
 184
 185static bool qed_is_table_size_valid(uint32_t table_size)
 186{
 187    if (table_size < QED_MIN_TABLE_SIZE ||
 188        table_size > QED_MAX_TABLE_SIZE) {
 189        return false;
 190    }
 191    if (table_size & (table_size - 1)) {
 192        return false; /* not power of 2 */
 193    }
 194    return true;
 195}
 196
 197static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 198                                    uint32_t table_size)
 199{
 200    if (image_size % BDRV_SECTOR_SIZE != 0) {
 201        return false; /* not multiple of sector size */
 202    }
 203    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 204        return false; /* image is too large */
 205    }
 206    return true;
 207}
 208
 209/**
 210 * Read a string of known length from the image file
 211 *
 212 * @file:       Image file
 213 * @offset:     File offset to start of string, in bytes
 214 * @n:          String length in bytes
 215 * @buf:        Destination buffer
 216 * @buflen:     Destination buffer length in bytes
 217 * @ret:        0 on success, -errno on failure
 218 *
 219 * The string is NUL-terminated.
 220 */
 221static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
 222                           char *buf, size_t buflen)
 223{
 224    int ret;
 225    if (n >= buflen) {
 226        return -EINVAL;
 227    }
 228    ret = bdrv_pread(file, offset, buf, n);
 229    if (ret < 0) {
 230        return ret;
 231    }
 232    buf[n] = '\0';
 233    return 0;
 234}
 235
 236/**
 237 * Allocate new clusters
 238 *
 239 * @s:          QED state
 240 * @n:          Number of contiguous clusters to allocate
 241 * @ret:        Offset of first allocated cluster
 242 *
 243 * This function only produces the offset where the new clusters should be
 244 * written.  It updates BDRVQEDState but does not make any changes to the image
 245 * file.
 246 */
 247static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 248{
 249    uint64_t offset = s->file_size;
 250    s->file_size += n * s->header.cluster_size;
 251    return offset;
 252}
 253
 254QEDTable *qed_alloc_table(BDRVQEDState *s)
 255{
 256    /* Honor O_DIRECT memory alignment requirements */
 257    return qemu_blockalign(s->bs,
 258                           s->header.cluster_size * s->header.table_size);
 259}
 260
 261/**
 262 * Allocate a new zeroed L2 table
 263 */
 264static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 265{
 266    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 267
 268    l2_table->table = qed_alloc_table(s);
 269    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 270
 271    memset(l2_table->table->offsets, 0,
 272           s->header.cluster_size * s->header.table_size);
 273    return l2_table;
 274}
 275
 276static void qed_aio_next_io(void *opaque, int ret);
 277
 278static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
 279{
 280    assert(!s->allocating_write_reqs_plugged);
 281
 282    s->allocating_write_reqs_plugged = true;
 283}
 284
 285static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 286{
 287    QEDAIOCB *acb;
 288
 289    assert(s->allocating_write_reqs_plugged);
 290
 291    s->allocating_write_reqs_plugged = false;
 292
 293    acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
 294    if (acb) {
 295        qed_aio_next_io(acb, 0);
 296    }
 297}
 298
 299static void qed_finish_clear_need_check(void *opaque, int ret)
 300{
 301    /* Do nothing */
 302}
 303
 304static void qed_flush_after_clear_need_check(void *opaque, int ret)
 305{
 306    BDRVQEDState *s = opaque;
 307
 308    bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
 309
 310    /* No need to wait until flush completes */
 311    qed_unplug_allocating_write_reqs(s);
 312}
 313
 314static void qed_clear_need_check(void *opaque, int ret)
 315{
 316    BDRVQEDState *s = opaque;
 317
 318    if (ret) {
 319        qed_unplug_allocating_write_reqs(s);
 320        return;
 321    }
 322
 323    s->header.features &= ~QED_F_NEED_CHECK;
 324    qed_write_header(s, qed_flush_after_clear_need_check, s);
 325}
 326
 327static void qed_need_check_timer_cb(void *opaque)
 328{
 329    BDRVQEDState *s = opaque;
 330
 331    /* The timer should only fire when allocating writes have drained */
 332    assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
 333
 334    trace_qed_need_check_timer_cb(s);
 335
 336    qed_plug_allocating_write_reqs(s);
 337
 338    /* Ensure writes are on disk before clearing flag */
 339    bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
 340}
 341
 342static void qed_start_need_check_timer(BDRVQEDState *s)
 343{
 344    trace_qed_start_need_check_timer(s);
 345
 346    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 347     * migration.
 348     */
 349    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 350                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 351}
 352
 353/* It's okay to call this multiple times or when no timer is started */
 354static void qed_cancel_need_check_timer(BDRVQEDState *s)
 355{
 356    trace_qed_cancel_need_check_timer(s);
 357    timer_del(s->need_check_timer);
 358}
 359
 360static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 361{
 362    BDRVQEDState *s = bs->opaque;
 363
 364    qed_cancel_need_check_timer(s);
 365    timer_free(s->need_check_timer);
 366}
 367
 368static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 369                                        AioContext *new_context)
 370{
 371    BDRVQEDState *s = bs->opaque;
 372
 373    s->need_check_timer = aio_timer_new(new_context,
 374                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 375                                        qed_need_check_timer_cb, s);
 376    if (s->header.features & QED_F_NEED_CHECK) {
 377        qed_start_need_check_timer(s);
 378    }
 379}
 380
 381static void bdrv_qed_drain(BlockDriverState *bs)
 382{
 383    BDRVQEDState *s = bs->opaque;
 384
 385    /* Fire the timer immediately in order to start doing I/O as soon as the
 386     * header is flushed.
 387     */
 388    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 389        qed_cancel_need_check_timer(s);
 390        qed_need_check_timer_cb(s);
 391    }
 392}
 393
 394static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 395                         Error **errp)
 396{
 397    BDRVQEDState *s = bs->opaque;
 398    QEDHeader le_header;
 399    int64_t file_size;
 400    int ret;
 401
 402    s->bs = bs;
 403    QSIMPLEQ_INIT(&s->allocating_write_reqs);
 404
 405    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
 406    if (ret < 0) {
 407        return ret;
 408    }
 409    qed_header_le_to_cpu(&le_header, &s->header);
 410
 411    if (s->header.magic != QED_MAGIC) {
 412        error_setg(errp, "Image not in QED format");
 413        return -EINVAL;
 414    }
 415    if (s->header.features & ~QED_FEATURE_MASK) {
 416        /* image uses unsupported feature bits */
 417        error_setg(errp, "Unsupported QED features: %" PRIx64,
 418                   s->header.features & ~QED_FEATURE_MASK);
 419        return -ENOTSUP;
 420    }
 421    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 422        return -EINVAL;
 423    }
 424
 425    /* Round down file size to the last cluster */
 426    file_size = bdrv_getlength(bs->file->bs);
 427    if (file_size < 0) {
 428        return file_size;
 429    }
 430    s->file_size = qed_start_of_cluster(s, file_size);
 431
 432    if (!qed_is_table_size_valid(s->header.table_size)) {
 433        return -EINVAL;
 434    }
 435    if (!qed_is_image_size_valid(s->header.image_size,
 436                                 s->header.cluster_size,
 437                                 s->header.table_size)) {
 438        return -EINVAL;
 439    }
 440    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 441        return -EINVAL;
 442    }
 443
 444    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 445                      sizeof(uint64_t);
 446    s->l2_shift = ctz32(s->header.cluster_size);
 447    s->l2_mask = s->table_nelems - 1;
 448    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 449
 450    /* Header size calculation must not overflow uint32_t */
 451    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 452        return -EINVAL;
 453    }
 454
 455    if ((s->header.features & QED_F_BACKING_FILE)) {
 456        if ((uint64_t)s->header.backing_filename_offset +
 457            s->header.backing_filename_size >
 458            s->header.cluster_size * s->header.header_size) {
 459            return -EINVAL;
 460        }
 461
 462        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 463                              s->header.backing_filename_size, bs->backing_file,
 464                              sizeof(bs->backing_file));
 465        if (ret < 0) {
 466            return ret;
 467        }
 468
 469        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 470            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 471        }
 472    }
 473
 474    /* Reset unknown autoclear feature bits.  This is a backwards
 475     * compatibility mechanism that allows images to be opened by older
 476     * programs, which "knock out" unknown feature bits.  When an image is
 477     * opened by a newer program again it can detect that the autoclear
 478     * feature is no longer valid.
 479     */
 480    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 481        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 482        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 483
 484        ret = qed_write_header_sync(s);
 485        if (ret) {
 486            return ret;
 487        }
 488
 489        /* From here on only known autoclear feature bits are valid */
 490        bdrv_flush(bs->file->bs);
 491    }
 492
 493    s->l1_table = qed_alloc_table(s);
 494    qed_init_l2_cache(&s->l2_cache);
 495
 496    ret = qed_read_l1_table_sync(s);
 497    if (ret) {
 498        goto out;
 499    }
 500
 501    /* If image was not closed cleanly, check consistency */
 502    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 503        /* Read-only images cannot be fixed.  There is no risk of corruption
 504         * since write operations are not possible.  Therefore, allow
 505         * potentially inconsistent images to be opened read-only.  This can
 506         * aid data recovery from an otherwise inconsistent image.
 507         */
 508        if (!bdrv_is_read_only(bs->file->bs) &&
 509            !(flags & BDRV_O_INACTIVE)) {
 510            BdrvCheckResult result = {0};
 511
 512            ret = qed_check(s, &result, true);
 513            if (ret) {
 514                goto out;
 515            }
 516        }
 517    }
 518
 519    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 520
 521out:
 522    if (ret) {
 523        qed_free_l2_cache(&s->l2_cache);
 524        qemu_vfree(s->l1_table);
 525    }
 526    return ret;
 527}
 528
 529static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 530{
 531    BDRVQEDState *s = bs->opaque;
 532
 533    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 534}
 535
 536/* We have nothing to do for QED reopen, stubs just return
 537 * success */
 538static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 539                                   BlockReopenQueue *queue, Error **errp)
 540{
 541    return 0;
 542}
 543
 544static void bdrv_qed_close(BlockDriverState *bs)
 545{
 546    BDRVQEDState *s = bs->opaque;
 547
 548    bdrv_qed_detach_aio_context(bs);
 549
 550    /* Ensure writes reach stable storage */
 551    bdrv_flush(bs->file->bs);
 552
 553    /* Clean shutdown, no check required on next open */
 554    if (s->header.features & QED_F_NEED_CHECK) {
 555        s->header.features &= ~QED_F_NEED_CHECK;
 556        qed_write_header_sync(s);
 557    }
 558
 559    qed_free_l2_cache(&s->l2_cache);
 560    qemu_vfree(s->l1_table);
 561}
 562
 563static int qed_create(const char *filename, uint32_t cluster_size,
 564                      uint64_t image_size, uint32_t table_size,
 565                      const char *backing_file, const char *backing_fmt,
 566                      QemuOpts *opts, Error **errp)
 567{
 568    QEDHeader header = {
 569        .magic = QED_MAGIC,
 570        .cluster_size = cluster_size,
 571        .table_size = table_size,
 572        .header_size = 1,
 573        .features = 0,
 574        .compat_features = 0,
 575        .l1_table_offset = cluster_size,
 576        .image_size = image_size,
 577    };
 578    QEDHeader le_header;
 579    uint8_t *l1_table = NULL;
 580    size_t l1_size = header.cluster_size * header.table_size;
 581    Error *local_err = NULL;
 582    int ret = 0;
 583    BlockBackend *blk;
 584
 585    ret = bdrv_create_file(filename, opts, &local_err);
 586    if (ret < 0) {
 587        error_propagate(errp, local_err);
 588        return ret;
 589    }
 590
 591    blk = blk_new_open(filename, NULL, NULL,
 592                       BDRV_O_RDWR | BDRV_O_PROTOCOL, &local_err);
 593    if (blk == NULL) {
 594        error_propagate(errp, local_err);
 595        return -EIO;
 596    }
 597
 598    blk_set_allow_write_beyond_eof(blk, true);
 599
 600    /* File must start empty and grow, check truncate is supported */
 601    ret = blk_truncate(blk, 0);
 602    if (ret < 0) {
 603        goto out;
 604    }
 605
 606    if (backing_file) {
 607        header.features |= QED_F_BACKING_FILE;
 608        header.backing_filename_offset = sizeof(le_header);
 609        header.backing_filename_size = strlen(backing_file);
 610
 611        if (qed_fmt_is_raw(backing_fmt)) {
 612            header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 613        }
 614    }
 615
 616    qed_header_cpu_to_le(&header, &le_header);
 617    ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
 618    if (ret < 0) {
 619        goto out;
 620    }
 621    ret = blk_pwrite(blk, sizeof(le_header), backing_file,
 622                     header.backing_filename_size, 0);
 623    if (ret < 0) {
 624        goto out;
 625    }
 626
 627    l1_table = g_malloc0(l1_size);
 628    ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
 629    if (ret < 0) {
 630        goto out;
 631    }
 632
 633    ret = 0; /* success */
 634out:
 635    g_free(l1_table);
 636    blk_unref(blk);
 637    return ret;
 638}
 639
 640static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
 641{
 642    uint64_t image_size = 0;
 643    uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 644    uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
 645    char *backing_file = NULL;
 646    char *backing_fmt = NULL;
 647    int ret;
 648
 649    image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
 650                          BDRV_SECTOR_SIZE);
 651    backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
 652    backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
 653    cluster_size = qemu_opt_get_size_del(opts,
 654                                         BLOCK_OPT_CLUSTER_SIZE,
 655                                         QED_DEFAULT_CLUSTER_SIZE);
 656    table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
 657                                       QED_DEFAULT_TABLE_SIZE);
 658
 659    if (!qed_is_cluster_size_valid(cluster_size)) {
 660        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 661                         "and power of 2",
 662                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 663        ret = -EINVAL;
 664        goto finish;
 665    }
 666    if (!qed_is_table_size_valid(table_size)) {
 667        error_setg(errp, "QED table size must be within range [%u, %u] "
 668                         "and power of 2",
 669                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 670        ret = -EINVAL;
 671        goto finish;
 672    }
 673    if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
 674        error_setg(errp, "QED image size must be a non-zero multiple of "
 675                         "cluster size and less than %" PRIu64 " bytes",
 676                   qed_max_image_size(cluster_size, table_size));
 677        ret = -EINVAL;
 678        goto finish;
 679    }
 680
 681    ret = qed_create(filename, cluster_size, image_size, table_size,
 682                     backing_file, backing_fmt, opts, errp);
 683
 684finish:
 685    g_free(backing_file);
 686    g_free(backing_fmt);
 687    return ret;
 688}
 689
 690typedef struct {
 691    BlockDriverState *bs;
 692    Coroutine *co;
 693    uint64_t pos;
 694    int64_t status;
 695    int *pnum;
 696    BlockDriverState **file;
 697} QEDIsAllocatedCB;
 698
 699static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
 700{
 701    QEDIsAllocatedCB *cb = opaque;
 702    BDRVQEDState *s = cb->bs->opaque;
 703    *cb->pnum = len / BDRV_SECTOR_SIZE;
 704    switch (ret) {
 705    case QED_CLUSTER_FOUND:
 706        offset |= qed_offset_into_cluster(s, cb->pos);
 707        cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
 708        *cb->file = cb->bs->file->bs;
 709        break;
 710    case QED_CLUSTER_ZERO:
 711        cb->status = BDRV_BLOCK_ZERO;
 712        break;
 713    case QED_CLUSTER_L2:
 714    case QED_CLUSTER_L1:
 715        cb->status = 0;
 716        break;
 717    default:
 718        assert(ret < 0);
 719        cb->status = ret;
 720        break;
 721    }
 722
 723    if (cb->co) {
 724        qemu_coroutine_enter(cb->co);
 725    }
 726}
 727
 728static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
 729                                                 int64_t sector_num,
 730                                                 int nb_sectors, int *pnum,
 731                                                 BlockDriverState **file)
 732{
 733    BDRVQEDState *s = bs->opaque;
 734    size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
 735    QEDIsAllocatedCB cb = {
 736        .bs = bs,
 737        .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
 738        .status = BDRV_BLOCK_OFFSET_MASK,
 739        .pnum = pnum,
 740        .file = file,
 741    };
 742    QEDRequest request = { .l2_table = NULL };
 743
 744    qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
 745
 746    /* Now sleep if the callback wasn't invoked immediately */
 747    while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
 748        cb.co = qemu_coroutine_self();
 749        qemu_coroutine_yield();
 750    }
 751
 752    qed_unref_l2_cache_entry(request.l2_table);
 753
 754    return cb.status;
 755}
 756
 757static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 758{
 759    return acb->common.bs->opaque;
 760}
 761
 762/**
 763 * Read from the backing file or zero-fill if no backing file
 764 *
 765 * @s:              QED state
 766 * @pos:            Byte position in device
 767 * @qiov:           Destination I/O vector
 768 * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
 769 * @cb:             Completion function
 770 * @opaque:         User data for completion function
 771 *
 772 * This function reads qiov->size bytes starting at pos from the backing file.
 773 * If there is no backing file then zeroes are read.
 774 */
 775static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 776                                  QEMUIOVector *qiov,
 777                                  QEMUIOVector **backing_qiov,
 778                                  BlockCompletionFunc *cb, void *opaque)
 779{
 780    uint64_t backing_length = 0;
 781    size_t size;
 782
 783    /* If there is a backing file, get its length.  Treat the absence of a
 784     * backing file like a zero length backing file.
 785     */
 786    if (s->bs->backing) {
 787        int64_t l = bdrv_getlength(s->bs->backing->bs);
 788        if (l < 0) {
 789            cb(opaque, l);
 790            return;
 791        }
 792        backing_length = l;
 793    }
 794
 795    /* Zero all sectors if reading beyond the end of the backing file */
 796    if (pos >= backing_length ||
 797        pos + qiov->size > backing_length) {
 798        qemu_iovec_memset(qiov, 0, 0, qiov->size);
 799    }
 800
 801    /* Complete now if there are no backing file sectors to read */
 802    if (pos >= backing_length) {
 803        cb(opaque, 0);
 804        return;
 805    }
 806
 807    /* If the read straddles the end of the backing file, shorten it */
 808    size = MIN((uint64_t)backing_length - pos, qiov->size);
 809
 810    assert(*backing_qiov == NULL);
 811    *backing_qiov = g_new(QEMUIOVector, 1);
 812    qemu_iovec_init(*backing_qiov, qiov->niov);
 813    qemu_iovec_concat(*backing_qiov, qiov, 0, size);
 814
 815    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 816    bdrv_aio_readv(s->bs->backing, pos / BDRV_SECTOR_SIZE,
 817                   *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
 818}
 819
 820typedef struct {
 821    GenericCB gencb;
 822    BDRVQEDState *s;
 823    QEMUIOVector qiov;
 824    QEMUIOVector *backing_qiov;
 825    struct iovec iov;
 826    uint64_t offset;
 827} CopyFromBackingFileCB;
 828
 829static void qed_copy_from_backing_file_cb(void *opaque, int ret)
 830{
 831    CopyFromBackingFileCB *copy_cb = opaque;
 832    qemu_vfree(copy_cb->iov.iov_base);
 833    gencb_complete(&copy_cb->gencb, ret);
 834}
 835
 836static void qed_copy_from_backing_file_write(void *opaque, int ret)
 837{
 838    CopyFromBackingFileCB *copy_cb = opaque;
 839    BDRVQEDState *s = copy_cb->s;
 840
 841    if (copy_cb->backing_qiov) {
 842        qemu_iovec_destroy(copy_cb->backing_qiov);
 843        g_free(copy_cb->backing_qiov);
 844        copy_cb->backing_qiov = NULL;
 845    }
 846
 847    if (ret) {
 848        qed_copy_from_backing_file_cb(copy_cb, ret);
 849        return;
 850    }
 851
 852    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 853    bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
 854                    &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
 855                    qed_copy_from_backing_file_cb, copy_cb);
 856}
 857
 858/**
 859 * Copy data from backing file into the image
 860 *
 861 * @s:          QED state
 862 * @pos:        Byte position in device
 863 * @len:        Number of bytes
 864 * @offset:     Byte offset in image file
 865 * @cb:         Completion function
 866 * @opaque:     User data for completion function
 867 */
 868static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
 869                                       uint64_t len, uint64_t offset,
 870                                       BlockCompletionFunc *cb,
 871                                       void *opaque)
 872{
 873    CopyFromBackingFileCB *copy_cb;
 874
 875    /* Skip copy entirely if there is no work to do */
 876    if (len == 0) {
 877        cb(opaque, 0);
 878        return;
 879    }
 880
 881    copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
 882    copy_cb->s = s;
 883    copy_cb->offset = offset;
 884    copy_cb->backing_qiov = NULL;
 885    copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
 886    copy_cb->iov.iov_len = len;
 887    qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
 888
 889    qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
 890                          qed_copy_from_backing_file_write, copy_cb);
 891}
 892
 893/**
 894 * Link one or more contiguous clusters into a table
 895 *
 896 * @s:              QED state
 897 * @table:          L2 table
 898 * @index:          First cluster index
 899 * @n:              Number of contiguous clusters
 900 * @cluster:        First cluster offset
 901 *
 902 * The cluster offset may be an allocated byte offset in the image file, the
 903 * zero cluster marker, or the unallocated cluster marker.
 904 */
 905static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
 906                                unsigned int n, uint64_t cluster)
 907{
 908    int i;
 909    for (i = index; i < index + n; i++) {
 910        table->offsets[i] = cluster;
 911        if (!qed_offset_is_unalloc_cluster(cluster) &&
 912            !qed_offset_is_zero_cluster(cluster)) {
 913            cluster += s->header.cluster_size;
 914        }
 915    }
 916}
 917
 918static void qed_aio_complete_bh(void *opaque)
 919{
 920    QEDAIOCB *acb = opaque;
 921    BlockCompletionFunc *cb = acb->common.cb;
 922    void *user_opaque = acb->common.opaque;
 923    int ret = acb->bh_ret;
 924
 925    qemu_aio_unref(acb);
 926
 927    /* Invoke callback */
 928    cb(user_opaque, ret);
 929}
 930
 931static void qed_aio_complete(QEDAIOCB *acb, int ret)
 932{
 933    BDRVQEDState *s = acb_to_s(acb);
 934
 935    trace_qed_aio_complete(s, acb, ret);
 936
 937    /* Free resources */
 938    qemu_iovec_destroy(&acb->cur_qiov);
 939    qed_unref_l2_cache_entry(acb->request.l2_table);
 940
 941    /* Free the buffer we may have allocated for zero writes */
 942    if (acb->flags & QED_AIOCB_ZERO) {
 943        qemu_vfree(acb->qiov->iov[0].iov_base);
 944        acb->qiov->iov[0].iov_base = NULL;
 945    }
 946
 947    /* Arrange for a bh to invoke the completion function */
 948    acb->bh_ret = ret;
 949    aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
 950                            qed_aio_complete_bh, acb);
 951
 952    /* Start next allocating write request waiting behind this one.  Note that
 953     * requests enqueue themselves when they first hit an unallocated cluster
 954     * but they wait until the entire request is finished before waking up the
 955     * next request in the queue.  This ensures that we don't cycle through
 956     * requests multiple times but rather finish one at a time completely.
 957     */
 958    if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
 959        QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
 960        acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
 961        if (acb) {
 962            qed_aio_next_io(acb, 0);
 963        } else if (s->header.features & QED_F_NEED_CHECK) {
 964            qed_start_need_check_timer(s);
 965        }
 966    }
 967}
 968
 969/**
 970 * Commit the current L2 table to the cache
 971 */
 972static void qed_commit_l2_update(void *opaque, int ret)
 973{
 974    QEDAIOCB *acb = opaque;
 975    BDRVQEDState *s = acb_to_s(acb);
 976    CachedL2Table *l2_table = acb->request.l2_table;
 977    uint64_t l2_offset = l2_table->offset;
 978
 979    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
 980
 981    /* This is guaranteed to succeed because we just committed the entry to the
 982     * cache.
 983     */
 984    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
 985    assert(acb->request.l2_table != NULL);
 986
 987    qed_aio_next_io(opaque, ret);
 988}
 989
 990/**
 991 * Update L1 table with new L2 table offset and write it out
 992 */
 993static void qed_aio_write_l1_update(void *opaque, int ret)
 994{
 995    QEDAIOCB *acb = opaque;
 996    BDRVQEDState *s = acb_to_s(acb);
 997    int index;
 998
 999    if (ret) {
1000        qed_aio_complete(acb, ret);
1001        return;
1002    }
1003
1004    index = qed_l1_index(s, acb->cur_pos);
1005    s->l1_table->offsets[index] = acb->request.l2_table->offset;
1006
1007    qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1008}
1009
1010/**
1011 * Update L2 table with new cluster offsets and write them out
1012 */
1013static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1014{
1015    BDRVQEDState *s = acb_to_s(acb);
1016    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1017    int index;
1018
1019    if (ret) {
1020        goto err;
1021    }
1022
1023    if (need_alloc) {
1024        qed_unref_l2_cache_entry(acb->request.l2_table);
1025        acb->request.l2_table = qed_new_l2_table(s);
1026    }
1027
1028    index = qed_l2_index(s, acb->cur_pos);
1029    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1030                         offset);
1031
1032    if (need_alloc) {
1033        /* Write out the whole new L2 table */
1034        qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1035                            qed_aio_write_l1_update, acb);
1036    } else {
1037        /* Write out only the updated part of the L2 table */
1038        qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1039                            qed_aio_next_io, acb);
1040    }
1041    return;
1042
1043err:
1044    qed_aio_complete(acb, ret);
1045}
1046
1047static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1048{
1049    QEDAIOCB *acb = opaque;
1050    qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1051}
1052
1053/**
1054 * Flush new data clusters before updating the L2 table
1055 *
1056 * This flush is necessary when a backing file is in use.  A crash during an
1057 * allocating write could result in empty clusters in the image.  If the write
1058 * only touched a subregion of the cluster, then backing image sectors have
1059 * been lost in the untouched region.  The solution is to flush after writing a
1060 * new data cluster and before updating the L2 table.
1061 */
1062static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1063{
1064    QEDAIOCB *acb = opaque;
1065    BDRVQEDState *s = acb_to_s(acb);
1066
1067    if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1068        qed_aio_complete(acb, -EIO);
1069    }
1070}
1071
1072/**
1073 * Write data to the image file
1074 */
1075static void qed_aio_write_main(void *opaque, int ret)
1076{
1077    QEDAIOCB *acb = opaque;
1078    BDRVQEDState *s = acb_to_s(acb);
1079    uint64_t offset = acb->cur_cluster +
1080                      qed_offset_into_cluster(s, acb->cur_pos);
1081    BlockCompletionFunc *next_fn;
1082
1083    trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1084
1085    if (ret) {
1086        qed_aio_complete(acb, ret);
1087        return;
1088    }
1089
1090    if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1091        next_fn = qed_aio_next_io;
1092    } else {
1093        if (s->bs->backing) {
1094            next_fn = qed_aio_write_flush_before_l2_update;
1095        } else {
1096            next_fn = qed_aio_write_l2_update_cb;
1097        }
1098    }
1099
1100    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1101    bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1102                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1103                    next_fn, acb);
1104}
1105
1106/**
1107 * Populate back untouched region of new data cluster
1108 */
1109static void qed_aio_write_postfill(void *opaque, int ret)
1110{
1111    QEDAIOCB *acb = opaque;
1112    BDRVQEDState *s = acb_to_s(acb);
1113    uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1114    uint64_t len =
1115        qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1116    uint64_t offset = acb->cur_cluster +
1117                      qed_offset_into_cluster(s, acb->cur_pos) +
1118                      acb->cur_qiov.size;
1119
1120    if (ret) {
1121        qed_aio_complete(acb, ret);
1122        return;
1123    }
1124
1125    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1126    qed_copy_from_backing_file(s, start, len, offset,
1127                                qed_aio_write_main, acb);
1128}
1129
1130/**
1131 * Populate front untouched region of new data cluster
1132 */
1133static void qed_aio_write_prefill(void *opaque, int ret)
1134{
1135    QEDAIOCB *acb = opaque;
1136    BDRVQEDState *s = acb_to_s(acb);
1137    uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1138    uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1139
1140    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1141    qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1142                                qed_aio_write_postfill, acb);
1143}
1144
1145/**
1146 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1147 */
1148static bool qed_should_set_need_check(BDRVQEDState *s)
1149{
1150    /* The flush before L2 update path ensures consistency */
1151    if (s->bs->backing) {
1152        return false;
1153    }
1154
1155    return !(s->header.features & QED_F_NEED_CHECK);
1156}
1157
1158static void qed_aio_write_zero_cluster(void *opaque, int ret)
1159{
1160    QEDAIOCB *acb = opaque;
1161
1162    if (ret) {
1163        qed_aio_complete(acb, ret);
1164        return;
1165    }
1166
1167    qed_aio_write_l2_update(acb, 0, 1);
1168}
1169
1170/**
1171 * Write new data cluster
1172 *
1173 * @acb:        Write request
1174 * @len:        Length in bytes
1175 *
1176 * This path is taken when writing to previously unallocated clusters.
1177 */
1178static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1179{
1180    BDRVQEDState *s = acb_to_s(acb);
1181    BlockCompletionFunc *cb;
1182
1183    /* Cancel timer when the first allocating request comes in */
1184    if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1185        qed_cancel_need_check_timer(s);
1186    }
1187
1188    /* Freeze this request if another allocating write is in progress */
1189    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1190        QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1191    }
1192    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1193        s->allocating_write_reqs_plugged) {
1194        return; /* wait for existing request to finish */
1195    }
1196
1197    acb->cur_nclusters = qed_bytes_to_clusters(s,
1198            qed_offset_into_cluster(s, acb->cur_pos) + len);
1199    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1200
1201    if (acb->flags & QED_AIOCB_ZERO) {
1202        /* Skip ahead if the clusters are already zero */
1203        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1204            qed_aio_next_io(acb, 0);
1205            return;
1206        }
1207
1208        cb = qed_aio_write_zero_cluster;
1209    } else {
1210        cb = qed_aio_write_prefill;
1211        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1212    }
1213
1214    if (qed_should_set_need_check(s)) {
1215        s->header.features |= QED_F_NEED_CHECK;
1216        qed_write_header(s, cb, acb);
1217    } else {
1218        cb(acb, 0);
1219    }
1220}
1221
1222/**
1223 * Write data cluster in place
1224 *
1225 * @acb:        Write request
1226 * @offset:     Cluster offset in bytes
1227 * @len:        Length in bytes
1228 *
1229 * This path is taken when writing to already allocated clusters.
1230 */
1231static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1232{
1233    /* Allocate buffer for zero writes */
1234    if (acb->flags & QED_AIOCB_ZERO) {
1235        struct iovec *iov = acb->qiov->iov;
1236
1237        if (!iov->iov_base) {
1238            iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1239            if (iov->iov_base == NULL) {
1240                qed_aio_complete(acb, -ENOMEM);
1241                return;
1242            }
1243            memset(iov->iov_base, 0, iov->iov_len);
1244        }
1245    }
1246
1247    /* Calculate the I/O vector */
1248    acb->cur_cluster = offset;
1249    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1250
1251    /* Do the actual write */
1252    qed_aio_write_main(acb, 0);
1253}
1254
1255/**
1256 * Write data cluster
1257 *
1258 * @opaque:     Write request
1259 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1260 *              or -errno
1261 * @offset:     Cluster offset in bytes
1262 * @len:        Length in bytes
1263 *
1264 * Callback from qed_find_cluster().
1265 */
1266static void qed_aio_write_data(void *opaque, int ret,
1267                               uint64_t offset, size_t len)
1268{
1269    QEDAIOCB *acb = opaque;
1270
1271    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1272
1273    acb->find_cluster_ret = ret;
1274
1275    switch (ret) {
1276    case QED_CLUSTER_FOUND:
1277        qed_aio_write_inplace(acb, offset, len);
1278        break;
1279
1280    case QED_CLUSTER_L2:
1281    case QED_CLUSTER_L1:
1282    case QED_CLUSTER_ZERO:
1283        qed_aio_write_alloc(acb, len);
1284        break;
1285
1286    default:
1287        qed_aio_complete(acb, ret);
1288        break;
1289    }
1290}
1291
1292/**
1293 * Read data cluster
1294 *
1295 * @opaque:     Read request
1296 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1297 *              or -errno
1298 * @offset:     Cluster offset in bytes
1299 * @len:        Length in bytes
1300 *
1301 * Callback from qed_find_cluster().
1302 */
1303static void qed_aio_read_data(void *opaque, int ret,
1304                              uint64_t offset, size_t len)
1305{
1306    QEDAIOCB *acb = opaque;
1307    BDRVQEDState *s = acb_to_s(acb);
1308    BlockDriverState *bs = acb->common.bs;
1309
1310    /* Adjust offset into cluster */
1311    offset += qed_offset_into_cluster(s, acb->cur_pos);
1312
1313    trace_qed_aio_read_data(s, acb, ret, offset, len);
1314
1315    if (ret < 0) {
1316        goto err;
1317    }
1318
1319    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1320
1321    /* Handle zero cluster and backing file reads */
1322    if (ret == QED_CLUSTER_ZERO) {
1323        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1324        qed_aio_next_io(acb, 0);
1325        return;
1326    } else if (ret != QED_CLUSTER_FOUND) {
1327        qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1328                              &acb->backing_qiov, qed_aio_next_io, acb);
1329        return;
1330    }
1331
1332    BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1333    bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1334                   &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1335                   qed_aio_next_io, acb);
1336    return;
1337
1338err:
1339    qed_aio_complete(acb, ret);
1340}
1341
1342/**
1343 * Begin next I/O or complete the request
1344 */
1345static void qed_aio_next_io(void *opaque, int ret)
1346{
1347    QEDAIOCB *acb = opaque;
1348    BDRVQEDState *s = acb_to_s(acb);
1349    QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1350                                qed_aio_write_data : qed_aio_read_data;
1351
1352    trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1353
1354    if (acb->backing_qiov) {
1355        qemu_iovec_destroy(acb->backing_qiov);
1356        g_free(acb->backing_qiov);
1357        acb->backing_qiov = NULL;
1358    }
1359
1360    /* Handle I/O error */
1361    if (ret) {
1362        qed_aio_complete(acb, ret);
1363        return;
1364    }
1365
1366    acb->qiov_offset += acb->cur_qiov.size;
1367    acb->cur_pos += acb->cur_qiov.size;
1368    qemu_iovec_reset(&acb->cur_qiov);
1369
1370    /* Complete request */
1371    if (acb->cur_pos >= acb->end_pos) {
1372        qed_aio_complete(acb, 0);
1373        return;
1374    }
1375
1376    /* Find next cluster and start I/O */
1377    qed_find_cluster(s, &acb->request,
1378                      acb->cur_pos, acb->end_pos - acb->cur_pos,
1379                      io_fn, acb);
1380}
1381
1382static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1383                                 int64_t sector_num,
1384                                 QEMUIOVector *qiov, int nb_sectors,
1385                                 BlockCompletionFunc *cb,
1386                                 void *opaque, int flags)
1387{
1388    QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1389
1390    trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1391                        opaque, flags);
1392
1393    acb->flags = flags;
1394    acb->qiov = qiov;
1395    acb->qiov_offset = 0;
1396    acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1397    acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1398    acb->backing_qiov = NULL;
1399    acb->request.l2_table = NULL;
1400    qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1401
1402    /* Start request */
1403    qed_aio_next_io(acb, 0);
1404    return &acb->common;
1405}
1406
1407static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1408                                      int64_t sector_num,
1409                                      QEMUIOVector *qiov, int nb_sectors,
1410                                      BlockCompletionFunc *cb,
1411                                      void *opaque)
1412{
1413    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1414}
1415
1416static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1417                                       int64_t sector_num,
1418                                       QEMUIOVector *qiov, int nb_sectors,
1419                                       BlockCompletionFunc *cb,
1420                                       void *opaque)
1421{
1422    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1423                         opaque, QED_AIOCB_WRITE);
1424}
1425
1426typedef struct {
1427    Coroutine *co;
1428    int ret;
1429    bool done;
1430} QEDWriteZeroesCB;
1431
1432static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret)
1433{
1434    QEDWriteZeroesCB *cb = opaque;
1435
1436    cb->done = true;
1437    cb->ret = ret;
1438    if (cb->co) {
1439        qemu_coroutine_enter(cb->co);
1440    }
1441}
1442
1443static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1444                                                  int64_t offset,
1445                                                  int count,
1446                                                  BdrvRequestFlags flags)
1447{
1448    BlockAIOCB *blockacb;
1449    BDRVQEDState *s = bs->opaque;
1450    QEDWriteZeroesCB cb = { .done = false };
1451    QEMUIOVector qiov;
1452    struct iovec iov;
1453
1454    /* Fall back if the request is not aligned */
1455    if (qed_offset_into_cluster(s, offset) ||
1456        qed_offset_into_cluster(s, count)) {
1457        return -ENOTSUP;
1458    }
1459
1460    /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1461     * then it will be allocated during request processing.
1462     */
1463    iov.iov_base = NULL;
1464    iov.iov_len = count;
1465
1466    qemu_iovec_init_external(&qiov, &iov, 1);
1467    blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1468                             count >> BDRV_SECTOR_BITS,
1469                             qed_co_pwrite_zeroes_cb, &cb,
1470                             QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1471    if (!blockacb) {
1472        return -EIO;
1473    }
1474    if (!cb.done) {
1475        cb.co = qemu_coroutine_self();
1476        qemu_coroutine_yield();
1477    }
1478    assert(cb.done);
1479    return cb.ret;
1480}
1481
1482static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1483{
1484    BDRVQEDState *s = bs->opaque;
1485    uint64_t old_image_size;
1486    int ret;
1487
1488    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1489                                 s->header.table_size)) {
1490        return -EINVAL;
1491    }
1492
1493    /* Shrinking is currently not supported */
1494    if ((uint64_t)offset < s->header.image_size) {
1495        return -ENOTSUP;
1496    }
1497
1498    old_image_size = s->header.image_size;
1499    s->header.image_size = offset;
1500    ret = qed_write_header_sync(s);
1501    if (ret < 0) {
1502        s->header.image_size = old_image_size;
1503    }
1504    return ret;
1505}
1506
1507static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1508{
1509    BDRVQEDState *s = bs->opaque;
1510    return s->header.image_size;
1511}
1512
1513static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1514{
1515    BDRVQEDState *s = bs->opaque;
1516
1517    memset(bdi, 0, sizeof(*bdi));
1518    bdi->cluster_size = s->header.cluster_size;
1519    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1520    bdi->unallocated_blocks_are_zero = true;
1521    bdi->can_write_zeroes_with_unmap = true;
1522    return 0;
1523}
1524
1525static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1526                                        const char *backing_file,
1527                                        const char *backing_fmt)
1528{
1529    BDRVQEDState *s = bs->opaque;
1530    QEDHeader new_header, le_header;
1531    void *buffer;
1532    size_t buffer_len, backing_file_len;
1533    int ret;
1534
1535    /* Refuse to set backing filename if unknown compat feature bits are
1536     * active.  If the image uses an unknown compat feature then we may not
1537     * know the layout of data following the header structure and cannot safely
1538     * add a new string.
1539     */
1540    if (backing_file && (s->header.compat_features &
1541                         ~QED_COMPAT_FEATURE_MASK)) {
1542        return -ENOTSUP;
1543    }
1544
1545    memcpy(&new_header, &s->header, sizeof(new_header));
1546
1547    new_header.features &= ~(QED_F_BACKING_FILE |
1548                             QED_F_BACKING_FORMAT_NO_PROBE);
1549
1550    /* Adjust feature flags */
1551    if (backing_file) {
1552        new_header.features |= QED_F_BACKING_FILE;
1553
1554        if (qed_fmt_is_raw(backing_fmt)) {
1555            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1556        }
1557    }
1558
1559    /* Calculate new header size */
1560    backing_file_len = 0;
1561
1562    if (backing_file) {
1563        backing_file_len = strlen(backing_file);
1564    }
1565
1566    buffer_len = sizeof(new_header);
1567    new_header.backing_filename_offset = buffer_len;
1568    new_header.backing_filename_size = backing_file_len;
1569    buffer_len += backing_file_len;
1570
1571    /* Make sure we can rewrite header without failing */
1572    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1573        return -ENOSPC;
1574    }
1575
1576    /* Prepare new header */
1577    buffer = g_malloc(buffer_len);
1578
1579    qed_header_cpu_to_le(&new_header, &le_header);
1580    memcpy(buffer, &le_header, sizeof(le_header));
1581    buffer_len = sizeof(le_header);
1582
1583    if (backing_file) {
1584        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1585        buffer_len += backing_file_len;
1586    }
1587
1588    /* Write new header */
1589    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1590    g_free(buffer);
1591    if (ret == 0) {
1592        memcpy(&s->header, &new_header, sizeof(new_header));
1593    }
1594    return ret;
1595}
1596
1597static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1598{
1599    BDRVQEDState *s = bs->opaque;
1600    Error *local_err = NULL;
1601    int ret;
1602
1603    bdrv_qed_close(bs);
1604
1605    memset(s, 0, sizeof(BDRVQEDState));
1606    ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1607    if (local_err) {
1608        error_propagate(errp, local_err);
1609        error_prepend(errp, "Could not reopen qed layer: ");
1610        return;
1611    } else if (ret < 0) {
1612        error_setg_errno(errp, -ret, "Could not reopen qed layer");
1613        return;
1614    }
1615}
1616
1617static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1618                          BdrvCheckMode fix)
1619{
1620    BDRVQEDState *s = bs->opaque;
1621
1622    return qed_check(s, result, !!fix);
1623}
1624
1625static QemuOptsList qed_create_opts = {
1626    .name = "qed-create-opts",
1627    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1628    .desc = {
1629        {
1630            .name = BLOCK_OPT_SIZE,
1631            .type = QEMU_OPT_SIZE,
1632            .help = "Virtual disk size"
1633        },
1634        {
1635            .name = BLOCK_OPT_BACKING_FILE,
1636            .type = QEMU_OPT_STRING,
1637            .help = "File name of a base image"
1638        },
1639        {
1640            .name = BLOCK_OPT_BACKING_FMT,
1641            .type = QEMU_OPT_STRING,
1642            .help = "Image format of the base image"
1643        },
1644        {
1645            .name = BLOCK_OPT_CLUSTER_SIZE,
1646            .type = QEMU_OPT_SIZE,
1647            .help = "Cluster size (in bytes)",
1648            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1649        },
1650        {
1651            .name = BLOCK_OPT_TABLE_SIZE,
1652            .type = QEMU_OPT_SIZE,
1653            .help = "L1/L2 table size (in clusters)"
1654        },
1655        { /* end of list */ }
1656    }
1657};
1658
1659static BlockDriver bdrv_qed = {
1660    .format_name              = "qed",
1661    .instance_size            = sizeof(BDRVQEDState),
1662    .create_opts              = &qed_create_opts,
1663    .supports_backing         = true,
1664
1665    .bdrv_probe               = bdrv_qed_probe,
1666    .bdrv_open                = bdrv_qed_open,
1667    .bdrv_close               = bdrv_qed_close,
1668    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1669    .bdrv_create              = bdrv_qed_create,
1670    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1671    .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1672    .bdrv_aio_readv           = bdrv_qed_aio_readv,
1673    .bdrv_aio_writev          = bdrv_qed_aio_writev,
1674    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1675    .bdrv_truncate            = bdrv_qed_truncate,
1676    .bdrv_getlength           = bdrv_qed_getlength,
1677    .bdrv_get_info            = bdrv_qed_get_info,
1678    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1679    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1680    .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1681    .bdrv_check               = bdrv_qed_check,
1682    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1683    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1684    .bdrv_drain               = bdrv_qed_drain,
1685};
1686
1687static void bdrv_qed_init(void)
1688{
1689    bdrv_register(&bdrv_qed);
1690}
1691
1692block_init(bdrv_qed_init);
1693