qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qapi/error.h"
  33#include "hw/sysbus.h"
  34#include "hw/arm/arm.h"
  35#include "hw/arm/primecell.h"
  36#include "hw/arm/virt.h"
  37#include "hw/devices.h"
  38#include "net/net.h"
  39#include "sysemu/block-backend.h"
  40#include "sysemu/device_tree.h"
  41#include "sysemu/numa.h"
  42#include "sysemu/sysemu.h"
  43#include "sysemu/kvm.h"
  44#include "hw/boards.h"
  45#include "hw/compat.h"
  46#include "hw/loader.h"
  47#include "exec/address-spaces.h"
  48#include "qemu/bitops.h"
  49#include "qemu/error-report.h"
  50#include "hw/pci-host/gpex.h"
  51#include "hw/arm/virt-acpi-build.h"
  52#include "hw/arm/sysbus-fdt.h"
  53#include "hw/platform-bus.h"
  54#include "hw/arm/fdt.h"
  55#include "hw/intc/arm_gic.h"
  56#include "hw/intc/arm_gicv3_common.h"
  57#include "kvm_arm.h"
  58#include "hw/smbios/smbios.h"
  59#include "qapi/visitor.h"
  60#include "standard-headers/linux/input.h"
  61
  62/* Number of external interrupt lines to configure the GIC with */
  63#define NUM_IRQS 256
  64
  65#define PLATFORM_BUS_NUM_IRQS 64
  66
  67static ARMPlatformBusSystemParams platform_bus_params;
  68
  69typedef struct VirtBoardInfo {
  70    struct arm_boot_info bootinfo;
  71    const char *cpu_model;
  72    const MemMapEntry *memmap;
  73    const int *irqmap;
  74    int smp_cpus;
  75    void *fdt;
  76    int fdt_size;
  77    uint32_t clock_phandle;
  78    uint32_t gic_phandle;
  79    uint32_t msi_phandle;
  80    bool using_psci;
  81} VirtBoardInfo;
  82
  83typedef struct {
  84    MachineClass parent;
  85    VirtBoardInfo *daughterboard;
  86    bool disallow_affinity_adjustment;
  87    bool no_its;
  88    bool no_pmu;
  89} VirtMachineClass;
  90
  91typedef struct {
  92    MachineState parent;
  93    bool secure;
  94    bool highmem;
  95    int32_t gic_version;
  96} VirtMachineState;
  97
  98#define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
  99#define VIRT_MACHINE(obj) \
 100    OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
 101#define VIRT_MACHINE_GET_CLASS(obj) \
 102    OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
 103#define VIRT_MACHINE_CLASS(klass) \
 104    OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
 105
 106
 107#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
 108    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
 109                                                    void *data) \
 110    { \
 111        MachineClass *mc = MACHINE_CLASS(oc); \
 112        virt_machine_##major##_##minor##_options(mc); \
 113        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
 114        if (latest) { \
 115            mc->alias = "virt"; \
 116        } \
 117    } \
 118    static const TypeInfo machvirt_##major##_##minor##_info = { \
 119        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
 120        .parent = TYPE_VIRT_MACHINE, \
 121        .instance_init = virt_##major##_##minor##_instance_init, \
 122        .class_init = virt_##major##_##minor##_class_init, \
 123    }; \
 124    static void machvirt_machine_##major##_##minor##_init(void) \
 125    { \
 126        type_register_static(&machvirt_##major##_##minor##_info); \
 127    } \
 128    type_init(machvirt_machine_##major##_##minor##_init);
 129
 130#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 131    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 132#define DEFINE_VIRT_MACHINE(major, minor) \
 133    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 134
 135
 136/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
 137 * RAM can go up to the 256GB mark, leaving 256GB of the physical
 138 * address space unallocated and free for future use between 256G and 512G.
 139 * If we need to provide more RAM to VMs in the future then we need to:
 140 *  * allocate a second bank of RAM starting at 2TB and working up
 141 *  * fix the DT and ACPI table generation code in QEMU to correctly
 142 *    report two split lumps of RAM to the guest
 143 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 144 * (We don't want to fill all the way up to 512GB with RAM because
 145 * we might want it for non-RAM purposes later. Conversely it seems
 146 * reasonable to assume that anybody configuring a VM with a quarter
 147 * of a terabyte of RAM will be doing it on a host with more than a
 148 * terabyte of physical address space.)
 149 */
 150#define RAMLIMIT_GB 255
 151#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 152
 153/* Addresses and sizes of our components.
 154 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 155 * 128MB..256MB is used for miscellaneous device I/O.
 156 * 256MB..1GB is reserved for possible future PCI support (ie where the
 157 * PCI memory window will go if we add a PCI host controller).
 158 * 1GB and up is RAM (which may happily spill over into the
 159 * high memory region beyond 4GB).
 160 * This represents a compromise between how much RAM can be given to
 161 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 162 * Note that devices should generally be placed at multiples of 0x10000,
 163 * to accommodate guests using 64K pages.
 164 */
 165static const MemMapEntry a15memmap[] = {
 166    /* Space up to 0x8000000 is reserved for a boot ROM */
 167    [VIRT_FLASH] =              {          0, 0x08000000 },
 168    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 169    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 170    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 171    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 172    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 173    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 174    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 175    /* This redistributor space allows up to 2*64kB*123 CPUs */
 176    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 177    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 178    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 179    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 180    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 181    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 182    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 183    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 184    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 185    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 186    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 187    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 188    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 189    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 190    /* Second PCIe window, 512GB wide at the 512GB boundary */
 191    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 192};
 193
 194static const int a15irqmap[] = {
 195    [VIRT_UART] = 1,
 196    [VIRT_RTC] = 2,
 197    [VIRT_PCIE] = 3, /* ... to 6 */
 198    [VIRT_GPIO] = 7,
 199    [VIRT_SECURE_UART] = 8,
 200    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 201    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 202    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 203};
 204
 205static VirtBoardInfo machines[] = {
 206    {
 207        .cpu_model = "cortex-a15",
 208        .memmap = a15memmap,
 209        .irqmap = a15irqmap,
 210    },
 211    {
 212        .cpu_model = "cortex-a53",
 213        .memmap = a15memmap,
 214        .irqmap = a15irqmap,
 215    },
 216    {
 217        .cpu_model = "cortex-a57",
 218        .memmap = a15memmap,
 219        .irqmap = a15irqmap,
 220    },
 221    {
 222        .cpu_model = "host",
 223        .memmap = a15memmap,
 224        .irqmap = a15irqmap,
 225    },
 226};
 227
 228static VirtBoardInfo *find_machine_info(const char *cpu)
 229{
 230    int i;
 231
 232    for (i = 0; i < ARRAY_SIZE(machines); i++) {
 233        if (strcmp(cpu, machines[i].cpu_model) == 0) {
 234            return &machines[i];
 235        }
 236    }
 237    return NULL;
 238}
 239
 240static void create_fdt(VirtBoardInfo *vbi)
 241{
 242    void *fdt = create_device_tree(&vbi->fdt_size);
 243
 244    if (!fdt) {
 245        error_report("create_device_tree() failed");
 246        exit(1);
 247    }
 248
 249    vbi->fdt = fdt;
 250
 251    /* Header */
 252    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 253    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 254    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 255
 256    /*
 257     * /chosen and /memory nodes must exist for load_dtb
 258     * to fill in necessary properties later
 259     */
 260    qemu_fdt_add_subnode(fdt, "/chosen");
 261    qemu_fdt_add_subnode(fdt, "/memory");
 262    qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 263
 264    /* Clock node, for the benefit of the UART. The kernel device tree
 265     * binding documentation claims the PL011 node clock properties are
 266     * optional but in practice if you omit them the kernel refuses to
 267     * probe for the device.
 268     */
 269    vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 270    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 271    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 272    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 273    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 274    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 275                                "clk24mhz");
 276    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
 277
 278}
 279
 280static void fdt_add_psci_node(const VirtBoardInfo *vbi)
 281{
 282    uint32_t cpu_suspend_fn;
 283    uint32_t cpu_off_fn;
 284    uint32_t cpu_on_fn;
 285    uint32_t migrate_fn;
 286    void *fdt = vbi->fdt;
 287    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 288
 289    if (!vbi->using_psci) {
 290        return;
 291    }
 292
 293    qemu_fdt_add_subnode(fdt, "/psci");
 294    if (armcpu->psci_version == 2) {
 295        const char comp[] = "arm,psci-0.2\0arm,psci";
 296        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 297
 298        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 299        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 300            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 301            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 302            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 303        } else {
 304            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 305            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 306            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 307        }
 308    } else {
 309        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 310
 311        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 312        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 313        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 314        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 315    }
 316
 317    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 318     * to the instruction that should be used to invoke PSCI functions.
 319     * However, the device tree binding uses 'method' instead, so that is
 320     * what we should use here.
 321     */
 322    qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
 323
 324    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 325    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 326    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 327    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 328}
 329
 330static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
 331{
 332    /* Note that on A15 h/w these interrupts are level-triggered,
 333     * but for the GIC implementation provided by both QEMU and KVM
 334     * they are edge-triggered.
 335     */
 336    ARMCPU *armcpu;
 337    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 338
 339    if (gictype == 2) {
 340        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 341                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 342                             (1 << vbi->smp_cpus) - 1);
 343    }
 344
 345    qemu_fdt_add_subnode(vbi->fdt, "/timer");
 346
 347    armcpu = ARM_CPU(qemu_get_cpu(0));
 348    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 349        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 350        qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
 351                         compat, sizeof(compat));
 352    } else {
 353        qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
 354                                "arm,armv7-timer");
 355    }
 356    qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
 357    qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
 358                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 359                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 360                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 361                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 362}
 363
 364static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
 365{
 366    int cpu;
 367    int addr_cells = 1;
 368    unsigned int i;
 369
 370    /*
 371     * From Documentation/devicetree/bindings/arm/cpus.txt
 372     *  On ARM v8 64-bit systems value should be set to 2,
 373     *  that corresponds to the MPIDR_EL1 register size.
 374     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 375     *  in the system, #address-cells can be set to 1, since
 376     *  MPIDR_EL1[63:32] bits are not used for CPUs
 377     *  identification.
 378     *
 379     *  Here we actually don't know whether our system is 32- or 64-bit one.
 380     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 381     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 382     */
 383    for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
 384        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 385
 386        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 387            addr_cells = 2;
 388            break;
 389        }
 390    }
 391
 392    qemu_fdt_add_subnode(vbi->fdt, "/cpus");
 393    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
 394    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
 395
 396    for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
 397        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 398        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 399
 400        qemu_fdt_add_subnode(vbi->fdt, nodename);
 401        qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
 402        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
 403                                    armcpu->dtb_compatible);
 404
 405        if (vbi->using_psci && vbi->smp_cpus > 1) {
 406            qemu_fdt_setprop_string(vbi->fdt, nodename,
 407                                        "enable-method", "psci");
 408        }
 409
 410        if (addr_cells == 2) {
 411            qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
 412                                 armcpu->mp_affinity);
 413        } else {
 414            qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
 415                                  armcpu->mp_affinity);
 416        }
 417
 418        i = numa_get_node_for_cpu(cpu);
 419        if (i < nb_numa_nodes) {
 420            qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
 421        }
 422
 423        g_free(nodename);
 424    }
 425}
 426
 427static void fdt_add_its_gic_node(VirtBoardInfo *vbi)
 428{
 429    vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 430    qemu_fdt_add_subnode(vbi->fdt, "/intc/its");
 431    qemu_fdt_setprop_string(vbi->fdt, "/intc/its", "compatible",
 432                            "arm,gic-v3-its");
 433    qemu_fdt_setprop(vbi->fdt, "/intc/its", "msi-controller", NULL, 0);
 434    qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/its", "reg",
 435                                 2, vbi->memmap[VIRT_GIC_ITS].base,
 436                                 2, vbi->memmap[VIRT_GIC_ITS].size);
 437    qemu_fdt_setprop_cell(vbi->fdt, "/intc/its", "phandle", vbi->msi_phandle);
 438}
 439
 440static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
 441{
 442    vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 443    qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
 444    qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
 445                            "arm,gic-v2m-frame");
 446    qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
 447    qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
 448                                 2, vbi->memmap[VIRT_GIC_V2M].base,
 449                                 2, vbi->memmap[VIRT_GIC_V2M].size);
 450    qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->msi_phandle);
 451}
 452
 453static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
 454{
 455    vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 456    qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
 457
 458    qemu_fdt_add_subnode(vbi->fdt, "/intc");
 459    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
 460    qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
 461    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
 462    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
 463    qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
 464    if (type == 3) {
 465        qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
 466                                "arm,gic-v3");
 467        qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
 468                                     2, vbi->memmap[VIRT_GIC_DIST].base,
 469                                     2, vbi->memmap[VIRT_GIC_DIST].size,
 470                                     2, vbi->memmap[VIRT_GIC_REDIST].base,
 471                                     2, vbi->memmap[VIRT_GIC_REDIST].size);
 472    } else {
 473        /* 'cortex-a15-gic' means 'GIC v2' */
 474        qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
 475                                "arm,cortex-a15-gic");
 476        qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
 477                                      2, vbi->memmap[VIRT_GIC_DIST].base,
 478                                      2, vbi->memmap[VIRT_GIC_DIST].size,
 479                                      2, vbi->memmap[VIRT_GIC_CPU].base,
 480                                      2, vbi->memmap[VIRT_GIC_CPU].size);
 481    }
 482
 483    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
 484}
 485
 486static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
 487{
 488    CPUState *cpu;
 489    ARMCPU *armcpu;
 490    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 491
 492    CPU_FOREACH(cpu) {
 493        armcpu = ARM_CPU(cpu);
 494        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
 495            !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
 496            return;
 497        }
 498    }
 499
 500    if (gictype == 2) {
 501        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 502                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 503                             (1 << vbi->smp_cpus) - 1);
 504    }
 505
 506    armcpu = ARM_CPU(qemu_get_cpu(0));
 507    qemu_fdt_add_subnode(vbi->fdt, "/pmu");
 508    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 509        const char compat[] = "arm,armv8-pmuv3";
 510        qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
 511                         compat, sizeof(compat));
 512        qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
 513                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 514    }
 515}
 516
 517static void create_its(VirtBoardInfo *vbi, DeviceState *gicdev)
 518{
 519    const char *itsclass = its_class_name();
 520    DeviceState *dev;
 521
 522    if (!itsclass) {
 523        /* Do nothing if not supported */
 524        return;
 525    }
 526
 527    dev = qdev_create(NULL, itsclass);
 528
 529    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 530                             &error_abort);
 531    qdev_init_nofail(dev);
 532    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_ITS].base);
 533
 534    fdt_add_its_gic_node(vbi);
 535}
 536
 537static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
 538{
 539    int i;
 540    int irq = vbi->irqmap[VIRT_GIC_V2M];
 541    DeviceState *dev;
 542
 543    dev = qdev_create(NULL, "arm-gicv2m");
 544    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
 545    qdev_prop_set_uint32(dev, "base-spi", irq);
 546    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 547    qdev_init_nofail(dev);
 548
 549    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 550        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 551    }
 552
 553    fdt_add_v2m_gic_node(vbi);
 554}
 555
 556static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type,
 557                       bool secure, bool no_its)
 558{
 559    /* We create a standalone GIC */
 560    DeviceState *gicdev;
 561    SysBusDevice *gicbusdev;
 562    const char *gictype;
 563    int i;
 564
 565    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 566
 567    gicdev = qdev_create(NULL, gictype);
 568    qdev_prop_set_uint32(gicdev, "revision", type);
 569    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 570    /* Note that the num-irq property counts both internal and external
 571     * interrupts; there are always 32 of the former (mandated by GIC spec).
 572     */
 573    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 574    if (!kvm_irqchip_in_kernel()) {
 575        qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
 576    }
 577    qdev_init_nofail(gicdev);
 578    gicbusdev = SYS_BUS_DEVICE(gicdev);
 579    sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
 580    if (type == 3) {
 581        sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
 582    } else {
 583        sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
 584    }
 585
 586    /* Wire the outputs from each CPU's generic timer to the
 587     * appropriate GIC PPI inputs, and the GIC's IRQ output to
 588     * the CPU's IRQ input.
 589     */
 590    for (i = 0; i < smp_cpus; i++) {
 591        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 592        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 593        int irq;
 594        /* Mapping from the output timer irq lines from the CPU to the
 595         * GIC PPI inputs we use for the virt board.
 596         */
 597        const int timer_irq[] = {
 598            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 599            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 600            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 601            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 602        };
 603
 604        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 605            qdev_connect_gpio_out(cpudev, irq,
 606                                  qdev_get_gpio_in(gicdev,
 607                                                   ppibase + timer_irq[irq]));
 608        }
 609
 610        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 611        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 612                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 613    }
 614
 615    for (i = 0; i < NUM_IRQS; i++) {
 616        pic[i] = qdev_get_gpio_in(gicdev, i);
 617    }
 618
 619    fdt_add_gic_node(vbi, type);
 620
 621    if (type == 3 && !no_its) {
 622        create_its(vbi, gicdev);
 623    } else if (type == 2) {
 624        create_v2m(vbi, pic);
 625    }
 626}
 627
 628static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
 629                        MemoryRegion *mem, CharDriverState *chr)
 630{
 631    char *nodename;
 632    hwaddr base = vbi->memmap[uart].base;
 633    hwaddr size = vbi->memmap[uart].size;
 634    int irq = vbi->irqmap[uart];
 635    const char compat[] = "arm,pl011\0arm,primecell";
 636    const char clocknames[] = "uartclk\0apb_pclk";
 637    DeviceState *dev = qdev_create(NULL, "pl011");
 638    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 639
 640    qdev_prop_set_chr(dev, "chardev", chr);
 641    qdev_init_nofail(dev);
 642    memory_region_add_subregion(mem, base,
 643                                sysbus_mmio_get_region(s, 0));
 644    sysbus_connect_irq(s, 0, pic[irq]);
 645
 646    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 647    qemu_fdt_add_subnode(vbi->fdt, nodename);
 648    /* Note that we can't use setprop_string because of the embedded NUL */
 649    qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
 650                         compat, sizeof(compat));
 651    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 652                                     2, base, 2, size);
 653    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 654                               GIC_FDT_IRQ_TYPE_SPI, irq,
 655                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 656    qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
 657                               vbi->clock_phandle, vbi->clock_phandle);
 658    qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
 659                         clocknames, sizeof(clocknames));
 660
 661    if (uart == VIRT_UART) {
 662        qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
 663    } else {
 664        /* Mark as not usable by the normal world */
 665        qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
 666        qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
 667    }
 668
 669    g_free(nodename);
 670}
 671
 672static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
 673{
 674    char *nodename;
 675    hwaddr base = vbi->memmap[VIRT_RTC].base;
 676    hwaddr size = vbi->memmap[VIRT_RTC].size;
 677    int irq = vbi->irqmap[VIRT_RTC];
 678    const char compat[] = "arm,pl031\0arm,primecell";
 679
 680    sysbus_create_simple("pl031", base, pic[irq]);
 681
 682    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 683    qemu_fdt_add_subnode(vbi->fdt, nodename);
 684    qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
 685    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 686                                 2, base, 2, size);
 687    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 688                           GIC_FDT_IRQ_TYPE_SPI, irq,
 689                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 690    qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
 691    qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
 692    g_free(nodename);
 693}
 694
 695static DeviceState *gpio_key_dev;
 696static void virt_powerdown_req(Notifier *n, void *opaque)
 697{
 698    /* use gpio Pin 3 for power button event */
 699    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 700}
 701
 702static Notifier virt_system_powerdown_notifier = {
 703    .notify = virt_powerdown_req
 704};
 705
 706static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
 707{
 708    char *nodename;
 709    DeviceState *pl061_dev;
 710    hwaddr base = vbi->memmap[VIRT_GPIO].base;
 711    hwaddr size = vbi->memmap[VIRT_GPIO].size;
 712    int irq = vbi->irqmap[VIRT_GPIO];
 713    const char compat[] = "arm,pl061\0arm,primecell";
 714
 715    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 716
 717    uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 718    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 719    qemu_fdt_add_subnode(vbi->fdt, nodename);
 720    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 721                                 2, base, 2, size);
 722    qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
 723    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
 724    qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
 725    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 726                           GIC_FDT_IRQ_TYPE_SPI, irq,
 727                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 728    qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
 729    qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
 730    qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
 731
 732    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 733                                        qdev_get_gpio_in(pl061_dev, 3));
 734    qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
 735    qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
 736    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
 737    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
 738
 739    qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
 740    qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
 741                            "label", "GPIO Key Poweroff");
 742    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
 743                          KEY_POWER);
 744    qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
 745                           "gpios", phandle, 3, 0);
 746
 747    /* connect powerdown request */
 748    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 749
 750    g_free(nodename);
 751}
 752
 753static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
 754{
 755    int i;
 756    hwaddr size = vbi->memmap[VIRT_MMIO].size;
 757
 758    /* We create the transports in forwards order. Since qbus_realize()
 759     * prepends (not appends) new child buses, the incrementing loop below will
 760     * create a list of virtio-mmio buses with decreasing base addresses.
 761     *
 762     * When a -device option is processed from the command line,
 763     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 764     * order. The upshot is that -device options in increasing command line
 765     * order are mapped to virtio-mmio buses with decreasing base addresses.
 766     *
 767     * When this code was originally written, that arrangement ensured that the
 768     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 769     * the first -device on the command line. (The end-to-end order is a
 770     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 771     * guest kernel's name-to-address assignment strategy.)
 772     *
 773     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 774     * the message, if not necessarily the code, of commit 70161ff336.
 775     * Therefore the loop now establishes the inverse of the original intent.
 776     *
 777     * Unfortunately, we can't counteract the kernel change by reversing the
 778     * loop; it would break existing command lines.
 779     *
 780     * In any case, the kernel makes no guarantee about the stability of
 781     * enumeration order of virtio devices (as demonstrated by it changing
 782     * between kernel versions). For reliable and stable identification
 783     * of disks users must use UUIDs or similar mechanisms.
 784     */
 785    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 786        int irq = vbi->irqmap[VIRT_MMIO] + i;
 787        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
 788
 789        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 790    }
 791
 792    /* We add dtb nodes in reverse order so that they appear in the finished
 793     * device tree lowest address first.
 794     *
 795     * Note that this mapping is independent of the loop above. The previous
 796     * loop influences virtio device to virtio transport assignment, whereas
 797     * this loop controls how virtio transports are laid out in the dtb.
 798     */
 799    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 800        char *nodename;
 801        int irq = vbi->irqmap[VIRT_MMIO] + i;
 802        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
 803
 804        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 805        qemu_fdt_add_subnode(vbi->fdt, nodename);
 806        qemu_fdt_setprop_string(vbi->fdt, nodename,
 807                                "compatible", "virtio,mmio");
 808        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 809                                     2, base, 2, size);
 810        qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 811                               GIC_FDT_IRQ_TYPE_SPI, irq,
 812                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 813        g_free(nodename);
 814    }
 815}
 816
 817static void create_one_flash(const char *name, hwaddr flashbase,
 818                             hwaddr flashsize, const char *file,
 819                             MemoryRegion *sysmem)
 820{
 821    /* Create and map a single flash device. We use the same
 822     * parameters as the flash devices on the Versatile Express board.
 823     */
 824    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 825    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 826    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 827    const uint64_t sectorlength = 256 * 1024;
 828
 829    if (dinfo) {
 830        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 831                            &error_abort);
 832    }
 833
 834    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 835    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 836    qdev_prop_set_uint8(dev, "width", 4);
 837    qdev_prop_set_uint8(dev, "device-width", 2);
 838    qdev_prop_set_bit(dev, "big-endian", false);
 839    qdev_prop_set_uint16(dev, "id0", 0x89);
 840    qdev_prop_set_uint16(dev, "id1", 0x18);
 841    qdev_prop_set_uint16(dev, "id2", 0x00);
 842    qdev_prop_set_uint16(dev, "id3", 0x00);
 843    qdev_prop_set_string(dev, "name", name);
 844    qdev_init_nofail(dev);
 845
 846    memory_region_add_subregion(sysmem, flashbase,
 847                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 848
 849    if (file) {
 850        char *fn;
 851        int image_size;
 852
 853        if (drive_get(IF_PFLASH, 0, 0)) {
 854            error_report("The contents of the first flash device may be "
 855                         "specified with -bios or with -drive if=pflash... "
 856                         "but you cannot use both options at once");
 857            exit(1);
 858        }
 859        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 860        if (!fn) {
 861            error_report("Could not find ROM image '%s'", file);
 862            exit(1);
 863        }
 864        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 865        g_free(fn);
 866        if (image_size < 0) {
 867            error_report("Could not load ROM image '%s'", file);
 868            exit(1);
 869        }
 870    }
 871}
 872
 873static void create_flash(const VirtBoardInfo *vbi,
 874                         MemoryRegion *sysmem,
 875                         MemoryRegion *secure_sysmem)
 876{
 877    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 878     * Any file passed via -bios goes in the first of these.
 879     * sysmem is the system memory space. secure_sysmem is the secure view
 880     * of the system, and the first flash device should be made visible only
 881     * there. The second flash device is visible to both secure and nonsecure.
 882     * If sysmem == secure_sysmem this means there is no separate Secure
 883     * address space and both flash devices are generally visible.
 884     */
 885    hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
 886    hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
 887    char *nodename;
 888
 889    create_one_flash("virt.flash0", flashbase, flashsize,
 890                     bios_name, secure_sysmem);
 891    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 892                     NULL, sysmem);
 893
 894    if (sysmem == secure_sysmem) {
 895        /* Report both flash devices as a single node in the DT */
 896        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 897        qemu_fdt_add_subnode(vbi->fdt, nodename);
 898        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 899        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 900                                     2, flashbase, 2, flashsize,
 901                                     2, flashbase + flashsize, 2, flashsize);
 902        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 903        g_free(nodename);
 904    } else {
 905        /* Report the devices as separate nodes so we can mark one as
 906         * only visible to the secure world.
 907         */
 908        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 909        qemu_fdt_add_subnode(vbi->fdt, nodename);
 910        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 911        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 912                                     2, flashbase, 2, flashsize);
 913        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 914        qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
 915        qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
 916        g_free(nodename);
 917
 918        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 919        qemu_fdt_add_subnode(vbi->fdt, nodename);
 920        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 921        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 922                                     2, flashbase + flashsize, 2, flashsize);
 923        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 924        g_free(nodename);
 925    }
 926}
 927
 928static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
 929{
 930    hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
 931    hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
 932    FWCfgState *fw_cfg;
 933    char *nodename;
 934
 935    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 936    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
 937
 938    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 939    qemu_fdt_add_subnode(vbi->fdt, nodename);
 940    qemu_fdt_setprop_string(vbi->fdt, nodename,
 941                            "compatible", "qemu,fw-cfg-mmio");
 942    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 943                                 2, base, 2, size);
 944    g_free(nodename);
 945}
 946
 947static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
 948                                int first_irq, const char *nodename)
 949{
 950    int devfn, pin;
 951    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 952    uint32_t *irq_map = full_irq_map;
 953
 954    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 955        for (pin = 0; pin < 4; pin++) {
 956            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 957            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 958            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 959            int i;
 960
 961            uint32_t map[] = {
 962                devfn << 8, 0, 0,                           /* devfn */
 963                pin + 1,                                    /* PCI pin */
 964                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 965
 966            /* Convert map to big endian */
 967            for (i = 0; i < 10; i++) {
 968                irq_map[i] = cpu_to_be32(map[i]);
 969            }
 970            irq_map += 10;
 971        }
 972    }
 973
 974    qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
 975                     full_irq_map, sizeof(full_irq_map));
 976
 977    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
 978                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
 979                           0x7           /* PCI irq */);
 980}
 981
 982static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
 983                        bool use_highmem)
 984{
 985    hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
 986    hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
 987    hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
 988    hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
 989    hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
 990    hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
 991    hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
 992    hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
 993    hwaddr base = base_mmio;
 994    int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
 995    int irq = vbi->irqmap[VIRT_PCIE];
 996    MemoryRegion *mmio_alias;
 997    MemoryRegion *mmio_reg;
 998    MemoryRegion *ecam_alias;
 999    MemoryRegion *ecam_reg;
1000    DeviceState *dev;
1001    char *nodename;
1002    int i;
1003    PCIHostState *pci;
1004
1005    dev = qdev_create(NULL, TYPE_GPEX_HOST);
1006    qdev_init_nofail(dev);
1007
1008    /* Map only the first size_ecam bytes of ECAM space */
1009    ecam_alias = g_new0(MemoryRegion, 1);
1010    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1011    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1012                             ecam_reg, 0, size_ecam);
1013    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1014
1015    /* Map the MMIO window into system address space so as to expose
1016     * the section of PCI MMIO space which starts at the same base address
1017     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1018     * the window).
1019     */
1020    mmio_alias = g_new0(MemoryRegion, 1);
1021    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1022    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1023                             mmio_reg, base_mmio, size_mmio);
1024    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1025
1026    if (use_highmem) {
1027        /* Map high MMIO space */
1028        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1029
1030        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1031                                 mmio_reg, base_mmio_high, size_mmio_high);
1032        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1033                                    high_mmio_alias);
1034    }
1035
1036    /* Map IO port space */
1037    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1038
1039    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1040        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1041    }
1042
1043    pci = PCI_HOST_BRIDGE(dev);
1044    if (pci->bus) {
1045        for (i = 0; i < nb_nics; i++) {
1046            NICInfo *nd = &nd_table[i];
1047
1048            if (!nd->model) {
1049                nd->model = g_strdup("virtio");
1050            }
1051
1052            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1053        }
1054    }
1055
1056    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1057    qemu_fdt_add_subnode(vbi->fdt, nodename);
1058    qemu_fdt_setprop_string(vbi->fdt, nodename,
1059                            "compatible", "pci-host-ecam-generic");
1060    qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1061    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1062    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1063    qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1064                           nr_pcie_buses - 1);
1065    qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1066
1067    if (vbi->msi_phandle) {
1068        qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1069                               vbi->msi_phandle);
1070    }
1071
1072    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1073                                 2, base_ecam, 2, size_ecam);
1074
1075    if (use_highmem) {
1076        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1077                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1078                                     2, base_pio, 2, size_pio,
1079                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1080                                     2, base_mmio, 2, size_mmio,
1081                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1082                                     2, base_mmio_high,
1083                                     2, base_mmio_high, 2, size_mmio_high);
1084    } else {
1085        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1086                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1087                                     2, base_pio, 2, size_pio,
1088                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1089                                     2, base_mmio, 2, size_mmio);
1090    }
1091
1092    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1093    create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1094
1095    g_free(nodename);
1096}
1097
1098static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1099{
1100    DeviceState *dev;
1101    SysBusDevice *s;
1102    int i;
1103    ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1104    MemoryRegion *sysmem = get_system_memory();
1105
1106    platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1107    platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1108    platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1109    platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1110
1111    fdt_params->system_params = &platform_bus_params;
1112    fdt_params->binfo = &vbi->bootinfo;
1113    fdt_params->intc = "/intc";
1114    /*
1115     * register a machine init done notifier that creates the device tree
1116     * nodes of the platform bus and its children dynamic sysbus devices
1117     */
1118    arm_register_platform_bus_fdt_creator(fdt_params);
1119
1120    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1121    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1122    qdev_prop_set_uint32(dev, "num_irqs",
1123        platform_bus_params.platform_bus_num_irqs);
1124    qdev_prop_set_uint32(dev, "mmio_size",
1125        platform_bus_params.platform_bus_size);
1126    qdev_init_nofail(dev);
1127    s = SYS_BUS_DEVICE(dev);
1128
1129    for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1130        int irqn = platform_bus_params.platform_bus_first_irq + i;
1131        sysbus_connect_irq(s, i, pic[irqn]);
1132    }
1133
1134    memory_region_add_subregion(sysmem,
1135                                platform_bus_params.platform_bus_base,
1136                                sysbus_mmio_get_region(s, 0));
1137}
1138
1139static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1140{
1141    MemoryRegion *secram = g_new(MemoryRegion, 1);
1142    char *nodename;
1143    hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1144    hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1145
1146    memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1147    vmstate_register_ram_global(secram);
1148    memory_region_add_subregion(secure_sysmem, base, secram);
1149
1150    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1151    qemu_fdt_add_subnode(vbi->fdt, nodename);
1152    qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1153    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1154    qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1155    qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1156
1157    g_free(nodename);
1158}
1159
1160static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1161{
1162    const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1163
1164    *fdt_size = board->fdt_size;
1165    return board->fdt;
1166}
1167
1168static void virt_build_smbios(VirtGuestInfo *guest_info)
1169{
1170    FWCfgState *fw_cfg = guest_info->fw_cfg;
1171    uint8_t *smbios_tables, *smbios_anchor;
1172    size_t smbios_tables_len, smbios_anchor_len;
1173    const char *product = "QEMU Virtual Machine";
1174
1175    if (!fw_cfg) {
1176        return;
1177    }
1178
1179    if (kvm_enabled()) {
1180        product = "KVM Virtual Machine";
1181    }
1182
1183    smbios_set_defaults("QEMU", product,
1184                        "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1185
1186    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1187                      &smbios_anchor, &smbios_anchor_len);
1188
1189    if (smbios_anchor) {
1190        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1191                        smbios_tables, smbios_tables_len);
1192        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1193                        smbios_anchor, smbios_anchor_len);
1194    }
1195}
1196
1197static
1198void virt_guest_info_machine_done(Notifier *notifier, void *data)
1199{
1200    VirtGuestInfoState *guest_info_state = container_of(notifier,
1201                                              VirtGuestInfoState, machine_done);
1202    virt_acpi_setup(&guest_info_state->info);
1203    virt_build_smbios(&guest_info_state->info);
1204}
1205
1206static void machvirt_init(MachineState *machine)
1207{
1208    VirtMachineState *vms = VIRT_MACHINE(machine);
1209    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1210    qemu_irq pic[NUM_IRQS];
1211    MemoryRegion *sysmem = get_system_memory();
1212    MemoryRegion *secure_sysmem = NULL;
1213    int gic_version = vms->gic_version;
1214    int n, virt_max_cpus;
1215    MemoryRegion *ram = g_new(MemoryRegion, 1);
1216    const char *cpu_model = machine->cpu_model;
1217    VirtBoardInfo *vbi;
1218    VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1219    VirtGuestInfo *guest_info = &guest_info_state->info;
1220    char **cpustr;
1221    ObjectClass *oc;
1222    const char *typename;
1223    CPUClass *cc;
1224    Error *err = NULL;
1225    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1226    uint8_t clustersz;
1227
1228    if (!cpu_model) {
1229        cpu_model = "cortex-a15";
1230    }
1231
1232    /* We can probe only here because during property set
1233     * KVM is not available yet
1234     */
1235    if (!gic_version) {
1236        if (!kvm_enabled()) {
1237            error_report("gic-version=host requires KVM");
1238            exit(1);
1239        }
1240
1241        gic_version = kvm_arm_vgic_probe();
1242        if (!gic_version) {
1243            error_report("Unable to determine GIC version supported by host");
1244            exit(1);
1245        }
1246    }
1247
1248    /* Separate the actual CPU model name from any appended features */
1249    cpustr = g_strsplit(cpu_model, ",", 2);
1250
1251    vbi = find_machine_info(cpustr[0]);
1252
1253    if (!vbi) {
1254        error_report("mach-virt: CPU %s not supported", cpustr[0]);
1255        exit(1);
1256    }
1257
1258    /* If we have an EL3 boot ROM then the assumption is that it will
1259     * implement PSCI itself, so disable QEMU's internal implementation
1260     * so it doesn't get in the way. Instead of starting secondary
1261     * CPUs in PSCI powerdown state we will start them all running and
1262     * let the boot ROM sort them out.
1263     * The usual case is that we do use QEMU's PSCI implementation.
1264     */
1265    vbi->using_psci = !(vms->secure && firmware_loaded);
1266
1267    /* The maximum number of CPUs depends on the GIC version, or on how
1268     * many redistributors we can fit into the memory map.
1269     */
1270    if (gic_version == 3) {
1271        virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1272        clustersz = GICV3_TARGETLIST_BITS;
1273    } else {
1274        virt_max_cpus = GIC_NCPU;
1275        clustersz = GIC_TARGETLIST_BITS;
1276    }
1277
1278    if (max_cpus > virt_max_cpus) {
1279        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1280                     "supported by machine 'mach-virt' (%d)",
1281                     max_cpus, virt_max_cpus);
1282        exit(1);
1283    }
1284
1285    vbi->smp_cpus = smp_cpus;
1286
1287    if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1288        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1289        exit(1);
1290    }
1291
1292    if (vms->secure) {
1293        if (kvm_enabled()) {
1294            error_report("mach-virt: KVM does not support Security extensions");
1295            exit(1);
1296        }
1297
1298        /* The Secure view of the world is the same as the NonSecure,
1299         * but with a few extra devices. Create it as a container region
1300         * containing the system memory at low priority; any secure-only
1301         * devices go in at higher priority and take precedence.
1302         */
1303        secure_sysmem = g_new(MemoryRegion, 1);
1304        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1305                           UINT64_MAX);
1306        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1307    }
1308
1309    create_fdt(vbi);
1310
1311    oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1312    if (!oc) {
1313        error_report("Unable to find CPU definition");
1314        exit(1);
1315    }
1316    typename = object_class_get_name(oc);
1317
1318    /* convert -smp CPU options specified by the user into global props */
1319    cc = CPU_CLASS(oc);
1320    cc->parse_features(typename, cpustr[1], &err);
1321    g_strfreev(cpustr);
1322    if (err) {
1323        error_report_err(err);
1324        exit(1);
1325    }
1326
1327    for (n = 0; n < smp_cpus; n++) {
1328        Object *cpuobj = object_new(typename);
1329        if (!vmc->disallow_affinity_adjustment) {
1330            /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1331             * GIC's target-list limitations. 32-bit KVM hosts currently
1332             * always create clusters of 4 CPUs, but that is expected to
1333             * change when they gain support for gicv3. When KVM is enabled
1334             * it will override the changes we make here, therefore our
1335             * purposes are to make TCG consistent (with 64-bit KVM hosts)
1336             * and to improve SGI efficiency.
1337             */
1338            uint8_t aff1 = n / clustersz;
1339            uint8_t aff0 = n % clustersz;
1340            object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1341                                    "mp-affinity", NULL);
1342        }
1343
1344        if (!vms->secure) {
1345            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1346        }
1347
1348        if (vbi->using_psci) {
1349            object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1350                                    "psci-conduit", NULL);
1351
1352            /* Secondary CPUs start in PSCI powered-down state */
1353            if (n > 0) {
1354                object_property_set_bool(cpuobj, true,
1355                                         "start-powered-off", NULL);
1356            }
1357        }
1358
1359        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1360            object_property_set_bool(cpuobj, false, "pmu", NULL);
1361        }
1362
1363        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1364            object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1365                                    "reset-cbar", &error_abort);
1366        }
1367
1368        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1369                                 &error_abort);
1370        if (vms->secure) {
1371            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1372                                     "secure-memory", &error_abort);
1373        }
1374
1375        object_property_set_bool(cpuobj, true, "realized", NULL);
1376    }
1377    fdt_add_timer_nodes(vbi, gic_version);
1378    fdt_add_cpu_nodes(vbi);
1379    fdt_add_psci_node(vbi);
1380
1381    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1382                                         machine->ram_size);
1383    memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1384
1385    create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1386
1387    create_gic(vbi, pic, gic_version, vms->secure, vmc->no_its);
1388
1389    fdt_add_pmu_nodes(vbi, gic_version);
1390
1391    create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1392
1393    if (vms->secure) {
1394        create_secure_ram(vbi, secure_sysmem);
1395        create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1396    }
1397
1398    create_rtc(vbi, pic);
1399
1400    create_pcie(vbi, pic, vms->highmem);
1401
1402    create_gpio(vbi, pic);
1403
1404    /* Create mmio transports, so the user can create virtio backends
1405     * (which will be automatically plugged in to the transports). If
1406     * no backend is created the transport will just sit harmlessly idle.
1407     */
1408    create_virtio_devices(vbi, pic);
1409
1410    create_fw_cfg(vbi, &address_space_memory);
1411    rom_set_fw(fw_cfg_find());
1412
1413    guest_info->smp_cpus = smp_cpus;
1414    guest_info->fw_cfg = fw_cfg_find();
1415    guest_info->memmap = vbi->memmap;
1416    guest_info->irqmap = vbi->irqmap;
1417    guest_info->use_highmem = vms->highmem;
1418    guest_info->gic_version = gic_version;
1419    guest_info->no_its = vmc->no_its;
1420    guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1421    qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1422
1423    vbi->bootinfo.ram_size = machine->ram_size;
1424    vbi->bootinfo.kernel_filename = machine->kernel_filename;
1425    vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1426    vbi->bootinfo.initrd_filename = machine->initrd_filename;
1427    vbi->bootinfo.nb_cpus = smp_cpus;
1428    vbi->bootinfo.board_id = -1;
1429    vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1430    vbi->bootinfo.get_dtb = machvirt_dtb;
1431    vbi->bootinfo.firmware_loaded = firmware_loaded;
1432    arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1433
1434    /*
1435     * arm_load_kernel machine init done notifier registration must
1436     * happen before the platform_bus_create call. In this latter,
1437     * another notifier is registered which adds platform bus nodes.
1438     * Notifiers are executed in registration reverse order.
1439     */
1440    create_platform_bus(vbi, pic);
1441}
1442
1443static bool virt_get_secure(Object *obj, Error **errp)
1444{
1445    VirtMachineState *vms = VIRT_MACHINE(obj);
1446
1447    return vms->secure;
1448}
1449
1450static void virt_set_secure(Object *obj, bool value, Error **errp)
1451{
1452    VirtMachineState *vms = VIRT_MACHINE(obj);
1453
1454    vms->secure = value;
1455}
1456
1457static bool virt_get_highmem(Object *obj, Error **errp)
1458{
1459    VirtMachineState *vms = VIRT_MACHINE(obj);
1460
1461    return vms->highmem;
1462}
1463
1464static void virt_set_highmem(Object *obj, bool value, Error **errp)
1465{
1466    VirtMachineState *vms = VIRT_MACHINE(obj);
1467
1468    vms->highmem = value;
1469}
1470
1471static char *virt_get_gic_version(Object *obj, Error **errp)
1472{
1473    VirtMachineState *vms = VIRT_MACHINE(obj);
1474    const char *val = vms->gic_version == 3 ? "3" : "2";
1475
1476    return g_strdup(val);
1477}
1478
1479static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1480{
1481    VirtMachineState *vms = VIRT_MACHINE(obj);
1482
1483    if (!strcmp(value, "3")) {
1484        vms->gic_version = 3;
1485    } else if (!strcmp(value, "2")) {
1486        vms->gic_version = 2;
1487    } else if (!strcmp(value, "host")) {
1488        vms->gic_version = 0; /* Will probe later */
1489    } else {
1490        error_setg(errp, "Invalid gic-version value");
1491        error_append_hint(errp, "Valid values are 3, 2, host.\n");
1492    }
1493}
1494
1495static void virt_machine_class_init(ObjectClass *oc, void *data)
1496{
1497    MachineClass *mc = MACHINE_CLASS(oc);
1498
1499    mc->init = machvirt_init;
1500    /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1501     * it later in machvirt_init, where we have more information about the
1502     * configuration of the particular instance.
1503     */
1504    mc->max_cpus = 255;
1505    mc->has_dynamic_sysbus = true;
1506    mc->block_default_type = IF_VIRTIO;
1507    mc->no_cdrom = 1;
1508    mc->pci_allow_0_address = true;
1509    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1510    mc->minimum_page_bits = 12;
1511}
1512
1513static const TypeInfo virt_machine_info = {
1514    .name          = TYPE_VIRT_MACHINE,
1515    .parent        = TYPE_MACHINE,
1516    .abstract      = true,
1517    .instance_size = sizeof(VirtMachineState),
1518    .class_size    = sizeof(VirtMachineClass),
1519    .class_init    = virt_machine_class_init,
1520};
1521
1522static void machvirt_machine_init(void)
1523{
1524    type_register_static(&virt_machine_info);
1525}
1526type_init(machvirt_machine_init);
1527
1528static void virt_2_8_instance_init(Object *obj)
1529{
1530    VirtMachineState *vms = VIRT_MACHINE(obj);
1531
1532    /* EL3 is disabled by default on virt: this makes us consistent
1533     * between KVM and TCG for this board, and it also allows us to
1534     * boot UEFI blobs which assume no TrustZone support.
1535     */
1536    vms->secure = false;
1537    object_property_add_bool(obj, "secure", virt_get_secure,
1538                             virt_set_secure, NULL);
1539    object_property_set_description(obj, "secure",
1540                                    "Set on/off to enable/disable the ARM "
1541                                    "Security Extensions (TrustZone)",
1542                                    NULL);
1543
1544    /* High memory is enabled by default */
1545    vms->highmem = true;
1546    object_property_add_bool(obj, "highmem", virt_get_highmem,
1547                             virt_set_highmem, NULL);
1548    object_property_set_description(obj, "highmem",
1549                                    "Set on/off to enable/disable using "
1550                                    "physical address space above 32 bits",
1551                                    NULL);
1552    /* Default GIC type is v2 */
1553    vms->gic_version = 2;
1554    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1555                        virt_set_gic_version, NULL);
1556    object_property_set_description(obj, "gic-version",
1557                                    "Set GIC version. "
1558                                    "Valid values are 2, 3 and host", NULL);
1559}
1560
1561static void virt_machine_2_8_options(MachineClass *mc)
1562{
1563}
1564DEFINE_VIRT_MACHINE_AS_LATEST(2, 8)
1565
1566#define VIRT_COMPAT_2_7 \
1567    HW_COMPAT_2_7
1568
1569static void virt_2_7_instance_init(Object *obj)
1570{
1571    virt_2_8_instance_init(obj);
1572}
1573
1574static void virt_machine_2_7_options(MachineClass *mc)
1575{
1576    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1577
1578    virt_machine_2_8_options(mc);
1579    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1580    /* ITS was introduced with 2.8 */
1581    vmc->no_its = true;
1582    /* Stick with 1K pages for migration compatibility */
1583    mc->minimum_page_bits = 0;
1584}
1585DEFINE_VIRT_MACHINE(2, 7)
1586
1587#define VIRT_COMPAT_2_6 \
1588    HW_COMPAT_2_6
1589
1590static void virt_2_6_instance_init(Object *obj)
1591{
1592    virt_2_7_instance_init(obj);
1593}
1594
1595static void virt_machine_2_6_options(MachineClass *mc)
1596{
1597    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1598
1599    virt_machine_2_7_options(mc);
1600    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1601    vmc->disallow_affinity_adjustment = true;
1602    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1603    vmc->no_pmu = true;
1604}
1605DEFINE_VIRT_MACHINE(2, 6)
1606