qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "sysemu/block-backend.h"
  27#include "sysemu/blockdev.h"
  28#include "hw/ssi/ssi.h"
  29#include "qemu/bitops.h"
  30#include "qemu/log.h"
  31#include "qapi/error.h"
  32
  33#ifndef M25P80_ERR_DEBUG
  34#define M25P80_ERR_DEBUG 0
  35#endif
  36
  37#define DB_PRINT_L(level, ...) do { \
  38    if (M25P80_ERR_DEBUG > (level)) { \
  39        fprintf(stderr,  ": %s: ", __func__); \
  40        fprintf(stderr, ## __VA_ARGS__); \
  41    } \
  42} while (0);
  43
  44/* Fields for FlashPartInfo->flags */
  45
  46/* erase capabilities */
  47#define ER_4K 1
  48#define ER_32K 2
  49/* set to allow the page program command to write 0s back to 1. Useful for
  50 * modelling EEPROM with SPI flash command set
  51 */
  52#define EEPROM 0x100
  53
  54/* 16 MiB max in 3 byte address mode */
  55#define MAX_3BYTES_SIZE 0x1000000
  56
  57#define SPI_NOR_MAX_ID_LEN 6
  58
  59typedef struct FlashPartInfo {
  60    const char *part_name;
  61    /*
  62     * This array stores the ID bytes.
  63     * The first three bytes are the JEDIC ID.
  64     * JEDEC ID zero means "no ID" (mostly older chips).
  65     */
  66    uint8_t id[SPI_NOR_MAX_ID_LEN];
  67    uint8_t id_len;
  68    /* there is confusion between manufacturers as to what a sector is. In this
  69     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  70     * command (opcode 0xd8).
  71     */
  72    uint32_t sector_size;
  73    uint32_t n_sectors;
  74    uint32_t page_size;
  75    uint16_t flags;
  76} FlashPartInfo;
  77
  78/* adapted from linux */
  79/* Used when the "_ext_id" is two bytes at most */
  80#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  81    .part_name = _part_name,\
  82    .id = {\
  83        ((_jedec_id) >> 16) & 0xff,\
  84        ((_jedec_id) >> 8) & 0xff,\
  85        (_jedec_id) & 0xff,\
  86        ((_ext_id) >> 8) & 0xff,\
  87        (_ext_id) & 0xff,\
  88          },\
  89    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
  90    .sector_size = (_sector_size),\
  91    .n_sectors = (_n_sectors),\
  92    .page_size = 256,\
  93    .flags = (_flags),
  94
  95#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  96    .part_name = _part_name,\
  97    .id = {\
  98        ((_jedec_id) >> 16) & 0xff,\
  99        ((_jedec_id) >> 8) & 0xff,\
 100        (_jedec_id) & 0xff,\
 101        ((_ext_id) >> 16) & 0xff,\
 102        ((_ext_id) >> 8) & 0xff,\
 103        (_ext_id) & 0xff,\
 104          },\
 105    .id_len = 6,\
 106    .sector_size = (_sector_size),\
 107    .n_sectors = (_n_sectors),\
 108    .page_size = 256,\
 109    .flags = (_flags),\
 110
 111#define JEDEC_NUMONYX 0x20
 112#define JEDEC_WINBOND 0xEF
 113#define JEDEC_SPANSION 0x01
 114
 115/* Numonyx (Micron) Configuration register macros */
 116#define VCFG_DUMMY 0x1
 117#define VCFG_WRAP_SEQUENTIAL 0x2
 118#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 119#define NVCFG_XIP_MODE_MASK (7 << 9)
 120#define VCFG_XIP_MODE_ENABLED (1 << 3)
 121#define CFG_DUMMY_CLK_LEN 4
 122#define NVCFG_DUMMY_CLK_POS 12
 123#define VCFG_DUMMY_CLK_POS 4
 124#define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
 125#define EVCFG_VPP_ACCELERATOR (1 << 3)
 126#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 127#define NVCFG_DUAL_IO_MASK (1 << 2)
 128#define EVCFG_DUAL_IO_ENABLED (1 << 6)
 129#define NVCFG_QUAD_IO_MASK (1 << 3)
 130#define EVCFG_QUAD_IO_ENABLED (1 << 7)
 131#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 132#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 133
 134/* Numonyx (Micron) Flag Status Register macros */
 135#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 136#define FSR_FLASH_READY (1 << 7)
 137
 138/* Spansion configuration registers macros. */
 139#define SPANSION_QUAD_CFG_POS 0
 140#define SPANSION_QUAD_CFG_LEN 1
 141#define SPANSION_DUMMY_CLK_POS 0
 142#define SPANSION_DUMMY_CLK_LEN 4
 143#define SPANSION_ADDR_LEN_POS 7
 144#define SPANSION_ADDR_LEN_LEN 1
 145
 146/*
 147 * Spansion read mode command length in bytes,
 148 * the mode is currently not supported.
 149*/
 150
 151#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
 152#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
 153
 154static const FlashPartInfo known_devices[] = {
 155    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 156    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
 157    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
 158
 159    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
 160    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
 161    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
 162
 163    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
 164    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
 165    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
 166    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
 167
 168    { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
 169
 170    /* Atmel EEPROMS - it is assumed, that don't care bit in command
 171     * is set to 0. Block protection is not supported.
 172     */
 173    { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
 174    { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
 175
 176    /* EON -- en25xxx */
 177    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
 178    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
 179    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
 180    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
 181    { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
 182
 183    /* GigaDevice */
 184    { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
 185    { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
 186
 187    /* Intel/Numonyx -- xxxs33b */
 188    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
 189    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
 190    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
 191    { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
 192
 193    /* Macronix */
 194    { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
 195    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
 196    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
 197    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
 198    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
 199    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
 200    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
 201    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
 202    { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
 203    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
 204    { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 205    { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 206
 207    /* Micron */
 208    { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
 209    { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
 210    { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
 211    { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
 212    { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
 213    { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
 214    { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
 215    { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
 216    { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
 217    { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
 218    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 219    { INFO("mt25ql01g",   0x20ba21,      0,  64 << 10, 2048, ER_4K) },
 220    { INFO("mt25qu01g",   0x20bb21,      0,  64 << 10, 2048, ER_4K) },
 221
 222    /* Spansion -- single (large) sector size only, at least
 223     * for the chips listed here (without boot sectors).
 224     */
 225    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
 226    { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
 227    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
 228    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
 229    { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
 230    { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
 231    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
 232    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
 233    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
 234    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
 235    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
 236    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
 237    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
 238    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
 239    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
 240    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
 241    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
 242
 243    /* Spansion --  boot sectors support  */
 244    { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
 245    { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
 246
 247    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 248    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
 249    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
 250    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
 251    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
 252    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
 253    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
 254    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
 255    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
 256    { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
 257
 258    /* ST Microelectronics -- newer production may have feature updates */
 259    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
 260    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
 261    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
 262    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
 263    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
 264    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
 265    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
 266    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
 267    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
 268    { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
 269
 270    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
 271    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
 272    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
 273
 274    { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
 275    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
 276    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
 277
 278    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
 279    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
 280    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
 281    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
 282
 283    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 284    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
 285    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
 286    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
 287    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
 288    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
 289    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
 290    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
 291    { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
 292    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
 293    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
 294    { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
 295    { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
 296    { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
 297};
 298
 299typedef enum {
 300    NOP = 0,
 301    WRSR = 0x1,
 302    WRDI = 0x4,
 303    RDSR = 0x5,
 304    WREN = 0x6,
 305    JEDEC_READ = 0x9f,
 306    BULK_ERASE = 0xc7,
 307    READ_FSR = 0x70,
 308    RDCR = 0x15,
 309
 310    READ = 0x03,
 311    READ4 = 0x13,
 312    FAST_READ = 0x0b,
 313    FAST_READ4 = 0x0c,
 314    DOR = 0x3b,
 315    DOR4 = 0x3c,
 316    QOR = 0x6b,
 317    QOR4 = 0x6c,
 318    DIOR = 0xbb,
 319    DIOR4 = 0xbc,
 320    QIOR = 0xeb,
 321    QIOR4 = 0xec,
 322
 323    PP = 0x02,
 324    PP4 = 0x12,
 325    PP4_4 = 0x3e,
 326    DPP = 0xa2,
 327    QPP = 0x32,
 328
 329    ERASE_4K = 0x20,
 330    ERASE4_4K = 0x21,
 331    ERASE_32K = 0x52,
 332    ERASE4_32K = 0x5c,
 333    ERASE_SECTOR = 0xd8,
 334    ERASE4_SECTOR = 0xdc,
 335
 336    EN_4BYTE_ADDR = 0xB7,
 337    EX_4BYTE_ADDR = 0xE9,
 338
 339    EXTEND_ADDR_READ = 0xC8,
 340    EXTEND_ADDR_WRITE = 0xC5,
 341
 342    RESET_ENABLE = 0x66,
 343    RESET_MEMORY = 0x99,
 344
 345    /*
 346     * Micron: 0x35 - enable QPI
 347     * Spansion: 0x35 - read control register
 348     */
 349    RDCR_EQIO = 0x35,
 350    RSTQIO = 0xf5,
 351
 352    RNVCR = 0xB5,
 353    WNVCR = 0xB1,
 354
 355    RVCR = 0x85,
 356    WVCR = 0x81,
 357
 358    REVCR = 0x65,
 359    WEVCR = 0x61,
 360} FlashCMD;
 361
 362typedef enum {
 363    STATE_IDLE,
 364    STATE_PAGE_PROGRAM,
 365    STATE_READ,
 366    STATE_COLLECTING_DATA,
 367    STATE_COLLECTING_VAR_LEN_DATA,
 368    STATE_READING_DATA,
 369} CMDState;
 370
 371typedef enum {
 372    MAN_SPANSION,
 373    MAN_MACRONIX,
 374    MAN_NUMONYX,
 375    MAN_WINBOND,
 376    MAN_GENERIC,
 377} Manufacturer;
 378
 379typedef struct Flash {
 380    SSISlave parent_obj;
 381
 382    BlockBackend *blk;
 383
 384    uint8_t *storage;
 385    uint32_t size;
 386    int page_size;
 387
 388    uint8_t state;
 389    uint8_t data[16];
 390    uint32_t len;
 391    uint32_t pos;
 392    uint8_t needed_bytes;
 393    uint8_t cmd_in_progress;
 394    uint32_t cur_addr;
 395    uint32_t nonvolatile_cfg;
 396    /* Configuration register for Macronix */
 397    uint32_t volatile_cfg;
 398    uint32_t enh_volatile_cfg;
 399    /* Spansion cfg registers. */
 400    uint8_t spansion_cr1nv;
 401    uint8_t spansion_cr2nv;
 402    uint8_t spansion_cr3nv;
 403    uint8_t spansion_cr4nv;
 404    uint8_t spansion_cr1v;
 405    uint8_t spansion_cr2v;
 406    uint8_t spansion_cr3v;
 407    uint8_t spansion_cr4v;
 408    bool write_enable;
 409    bool four_bytes_address_mode;
 410    bool reset_enable;
 411    bool quad_enable;
 412    uint8_t ear;
 413
 414    int64_t dirty_page;
 415
 416    const FlashPartInfo *pi;
 417
 418} Flash;
 419
 420typedef struct M25P80Class {
 421    SSISlaveClass parent_class;
 422    FlashPartInfo *pi;
 423} M25P80Class;
 424
 425#define TYPE_M25P80 "m25p80-generic"
 426#define M25P80(obj) \
 427     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
 428#define M25P80_CLASS(klass) \
 429     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
 430#define M25P80_GET_CLASS(obj) \
 431     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
 432
 433static inline Manufacturer get_man(Flash *s)
 434{
 435    switch (s->pi->id[0]) {
 436    case 0x20:
 437        return MAN_NUMONYX;
 438    case 0xEF:
 439        return MAN_WINBOND;
 440    case 0x01:
 441        return MAN_SPANSION;
 442    case 0xC2:
 443        return MAN_MACRONIX;
 444    default:
 445        return MAN_GENERIC;
 446    }
 447}
 448
 449static void blk_sync_complete(void *opaque, int ret)
 450{
 451    QEMUIOVector *iov = opaque;
 452
 453    qemu_iovec_destroy(iov);
 454    g_free(iov);
 455
 456    /* do nothing. Masters do not directly interact with the backing store,
 457     * only the working copy so no mutexing required.
 458     */
 459}
 460
 461static void flash_sync_page(Flash *s, int page)
 462{
 463    QEMUIOVector *iov;
 464
 465    if (!s->blk || blk_is_read_only(s->blk)) {
 466        return;
 467    }
 468
 469    iov = g_new(QEMUIOVector, 1);
 470    qemu_iovec_init(iov, 1);
 471    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 472                   s->pi->page_size);
 473    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 474                    blk_sync_complete, iov);
 475}
 476
 477static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 478{
 479    QEMUIOVector *iov;
 480
 481    if (!s->blk || blk_is_read_only(s->blk)) {
 482        return;
 483    }
 484
 485    assert(!(len % BDRV_SECTOR_SIZE));
 486    iov = g_new(QEMUIOVector, 1);
 487    qemu_iovec_init(iov, 1);
 488    qemu_iovec_add(iov, s->storage + off, len);
 489    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 490}
 491
 492static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 493{
 494    uint32_t len;
 495    uint8_t capa_to_assert = 0;
 496
 497    switch (cmd) {
 498    case ERASE_4K:
 499    case ERASE4_4K:
 500        len = 4 << 10;
 501        capa_to_assert = ER_4K;
 502        break;
 503    case ERASE_32K:
 504    case ERASE4_32K:
 505        len = 32 << 10;
 506        capa_to_assert = ER_32K;
 507        break;
 508    case ERASE_SECTOR:
 509    case ERASE4_SECTOR:
 510        len = s->pi->sector_size;
 511        break;
 512    case BULK_ERASE:
 513        len = s->size;
 514        break;
 515    default:
 516        abort();
 517    }
 518
 519    DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
 520    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 521        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 522                      " device\n", len);
 523    }
 524
 525    if (!s->write_enable) {
 526        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 527        return;
 528    }
 529    memset(s->storage + offset, 0xff, len);
 530    flash_sync_area(s, offset, len);
 531}
 532
 533static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 534{
 535    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 536        flash_sync_page(s, s->dirty_page);
 537        s->dirty_page = newpage;
 538    }
 539}
 540
 541static inline
 542void flash_write8(Flash *s, uint32_t addr, uint8_t data)
 543{
 544    uint32_t page = addr / s->pi->page_size;
 545    uint8_t prev = s->storage[s->cur_addr];
 546
 547    if (!s->write_enable) {
 548        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 549    }
 550
 551    if ((prev ^ data) & data) {
 552        DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
 553                   " -> %" PRIx8 "\n", addr, prev, data);
 554    }
 555
 556    if (s->pi->flags & EEPROM) {
 557        s->storage[s->cur_addr] = data;
 558    } else {
 559        s->storage[s->cur_addr] &= data;
 560    }
 561
 562    flash_sync_dirty(s, page);
 563    s->dirty_page = page;
 564}
 565
 566static inline int get_addr_length(Flash *s)
 567{
 568   /* check if eeprom is in use */
 569    if (s->pi->flags == EEPROM) {
 570        return 2;
 571    }
 572
 573   switch (s->cmd_in_progress) {
 574   case PP4:
 575   case PP4_4:
 576   case READ4:
 577   case QIOR4:
 578   case ERASE4_4K:
 579   case ERASE4_32K:
 580   case ERASE4_SECTOR:
 581   case FAST_READ4:
 582   case DOR4:
 583   case QOR4:
 584   case DIOR4:
 585       return 4;
 586   default:
 587       return s->four_bytes_address_mode ? 4 : 3;
 588   }
 589}
 590
 591static void complete_collecting_data(Flash *s)
 592{
 593    int i, n;
 594
 595    n = get_addr_length(s);
 596    s->cur_addr = (n == 3 ? s->ear : 0);
 597    for (i = 0; i < n; ++i) {
 598        s->cur_addr <<= 8;
 599        s->cur_addr |= s->data[i];
 600    }
 601
 602    s->cur_addr &= s->size - 1;
 603
 604    s->state = STATE_IDLE;
 605
 606    switch (s->cmd_in_progress) {
 607    case DPP:
 608    case QPP:
 609    case PP:
 610    case PP4:
 611    case PP4_4:
 612        s->state = STATE_PAGE_PROGRAM;
 613        break;
 614    case READ:
 615    case READ4:
 616    case FAST_READ:
 617    case FAST_READ4:
 618    case DOR:
 619    case DOR4:
 620    case QOR:
 621    case QOR4:
 622    case DIOR:
 623    case DIOR4:
 624    case QIOR:
 625    case QIOR4:
 626        s->state = STATE_READ;
 627        break;
 628    case ERASE_4K:
 629    case ERASE4_4K:
 630    case ERASE_32K:
 631    case ERASE4_32K:
 632    case ERASE_SECTOR:
 633    case ERASE4_SECTOR:
 634        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 635        break;
 636    case WRSR:
 637        switch (get_man(s)) {
 638        case MAN_SPANSION:
 639            s->quad_enable = !!(s->data[1] & 0x02);
 640            break;
 641        case MAN_MACRONIX:
 642            s->quad_enable = extract32(s->data[0], 6, 1);
 643            if (s->len > 1) {
 644                s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
 645            }
 646            break;
 647        default:
 648            break;
 649        }
 650        if (s->write_enable) {
 651            s->write_enable = false;
 652        }
 653        break;
 654    case EXTEND_ADDR_WRITE:
 655        s->ear = s->data[0];
 656        break;
 657    case WNVCR:
 658        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 659        break;
 660    case WVCR:
 661        s->volatile_cfg = s->data[0];
 662        break;
 663    case WEVCR:
 664        s->enh_volatile_cfg = s->data[0];
 665        break;
 666    default:
 667        break;
 668    }
 669}
 670
 671static void reset_memory(Flash *s)
 672{
 673    s->cmd_in_progress = NOP;
 674    s->cur_addr = 0;
 675    s->ear = 0;
 676    s->four_bytes_address_mode = false;
 677    s->len = 0;
 678    s->needed_bytes = 0;
 679    s->pos = 0;
 680    s->state = STATE_IDLE;
 681    s->write_enable = false;
 682    s->reset_enable = false;
 683    s->quad_enable = false;
 684
 685    switch (get_man(s)) {
 686    case MAN_NUMONYX:
 687        s->volatile_cfg = 0;
 688        s->volatile_cfg |= VCFG_DUMMY;
 689        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 690        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 691                                != NVCFG_XIP_MODE_DISABLED) {
 692            s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
 693        }
 694        s->volatile_cfg |= deposit32(s->volatile_cfg,
 695                            VCFG_DUMMY_CLK_POS,
 696                            CFG_DUMMY_CLK_LEN,
 697                            extract32(s->nonvolatile_cfg,
 698                                        NVCFG_DUMMY_CLK_POS,
 699                                        CFG_DUMMY_CLK_LEN)
 700                            );
 701
 702        s->enh_volatile_cfg = 0;
 703        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
 704        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 705        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 706        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 707            s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
 708        }
 709        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 710            s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
 711        }
 712        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 713            s->four_bytes_address_mode = true;
 714        }
 715        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 716            s->ear = s->size / MAX_3BYTES_SIZE - 1;
 717        }
 718        break;
 719    case MAN_MACRONIX:
 720        s->volatile_cfg = 0x7;
 721        break;
 722    case MAN_SPANSION:
 723        s->spansion_cr1v = s->spansion_cr1nv;
 724        s->spansion_cr2v = s->spansion_cr2nv;
 725        s->spansion_cr3v = s->spansion_cr3nv;
 726        s->spansion_cr4v = s->spansion_cr4nv;
 727        s->quad_enable = extract32(s->spansion_cr1v,
 728                                   SPANSION_QUAD_CFG_POS,
 729                                   SPANSION_QUAD_CFG_LEN
 730                                   );
 731        s->four_bytes_address_mode = extract32(s->spansion_cr2v,
 732                SPANSION_ADDR_LEN_POS,
 733                SPANSION_ADDR_LEN_LEN
 734                );
 735        break;
 736    default:
 737        break;
 738    }
 739
 740    DB_PRINT_L(0, "Reset done.\n");
 741}
 742
 743static void decode_fast_read_cmd(Flash *s)
 744{
 745    s->needed_bytes = get_addr_length(s);
 746    switch (get_man(s)) {
 747    /* Dummy cycles - modeled with bytes writes instead of bits */
 748    case MAN_WINBOND:
 749        s->needed_bytes += 8;
 750        break;
 751    case MAN_NUMONYX:
 752        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 753        break;
 754    case MAN_MACRONIX:
 755        if (extract32(s->volatile_cfg, 6, 2) == 1) {
 756            s->needed_bytes += 6;
 757        } else {
 758            s->needed_bytes += 8;
 759        }
 760        break;
 761    case MAN_SPANSION:
 762        s->needed_bytes += extract32(s->spansion_cr2v,
 763                                    SPANSION_DUMMY_CLK_POS,
 764                                    SPANSION_DUMMY_CLK_LEN
 765                                    );
 766        break;
 767    default:
 768        break;
 769    }
 770    s->pos = 0;
 771    s->len = 0;
 772    s->state = STATE_COLLECTING_DATA;
 773}
 774
 775static void decode_dio_read_cmd(Flash *s)
 776{
 777    s->needed_bytes = get_addr_length(s);
 778    /* Dummy cycles modeled with bytes writes instead of bits */
 779    switch (get_man(s)) {
 780    case MAN_WINBOND:
 781        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 782        break;
 783    case MAN_SPANSION:
 784        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 785        s->needed_bytes += extract32(s->spansion_cr2v,
 786                                    SPANSION_DUMMY_CLK_POS,
 787                                    SPANSION_DUMMY_CLK_LEN
 788                                    );
 789        break;
 790    case MAN_NUMONYX:
 791        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 792        break;
 793    case MAN_MACRONIX:
 794        switch (extract32(s->volatile_cfg, 6, 2)) {
 795        case 1:
 796            s->needed_bytes += 6;
 797            break;
 798        case 2:
 799            s->needed_bytes += 8;
 800            break;
 801        default:
 802            s->needed_bytes += 4;
 803            break;
 804        }
 805        break;
 806    default:
 807        break;
 808    }
 809    s->pos = 0;
 810    s->len = 0;
 811    s->state = STATE_COLLECTING_DATA;
 812}
 813
 814static void decode_qio_read_cmd(Flash *s)
 815{
 816    s->needed_bytes = get_addr_length(s);
 817    /* Dummy cycles modeled with bytes writes instead of bits */
 818    switch (get_man(s)) {
 819    case MAN_WINBOND:
 820        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 821        s->needed_bytes += 4;
 822        break;
 823    case MAN_SPANSION:
 824        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 825        s->needed_bytes += extract32(s->spansion_cr2v,
 826                                    SPANSION_DUMMY_CLK_POS,
 827                                    SPANSION_DUMMY_CLK_LEN
 828                                    );
 829        break;
 830    case MAN_NUMONYX:
 831        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 832        break;
 833    case MAN_MACRONIX:
 834        switch (extract32(s->volatile_cfg, 6, 2)) {
 835        case 1:
 836            s->needed_bytes += 4;
 837            break;
 838        case 2:
 839            s->needed_bytes += 8;
 840            break;
 841        default:
 842            s->needed_bytes += 6;
 843            break;
 844        }
 845        break;
 846    default:
 847        break;
 848    }
 849    s->pos = 0;
 850    s->len = 0;
 851    s->state = STATE_COLLECTING_DATA;
 852}
 853
 854static void decode_new_cmd(Flash *s, uint32_t value)
 855{
 856    s->cmd_in_progress = value;
 857    int i;
 858    DB_PRINT_L(0, "decoded new command:%x\n", value);
 859
 860    if (value != RESET_MEMORY) {
 861        s->reset_enable = false;
 862    }
 863
 864    switch (value) {
 865
 866    case ERASE_4K:
 867    case ERASE4_4K:
 868    case ERASE_32K:
 869    case ERASE4_32K:
 870    case ERASE_SECTOR:
 871    case ERASE4_SECTOR:
 872    case READ:
 873    case READ4:
 874    case DPP:
 875    case QPP:
 876    case PP:
 877    case PP4:
 878    case PP4_4:
 879        s->needed_bytes = get_addr_length(s);
 880        s->pos = 0;
 881        s->len = 0;
 882        s->state = STATE_COLLECTING_DATA;
 883        break;
 884
 885    case FAST_READ:
 886    case FAST_READ4:
 887    case DOR:
 888    case DOR4:
 889    case QOR:
 890    case QOR4:
 891        decode_fast_read_cmd(s);
 892        break;
 893
 894    case DIOR:
 895    case DIOR4:
 896        decode_dio_read_cmd(s);
 897        break;
 898
 899    case QIOR:
 900    case QIOR4:
 901        decode_qio_read_cmd(s);
 902        break;
 903
 904    case WRSR:
 905        if (s->write_enable) {
 906            switch (get_man(s)) {
 907            case MAN_SPANSION:
 908                s->needed_bytes = 2;
 909                s->state = STATE_COLLECTING_DATA;
 910                break;
 911            case MAN_MACRONIX:
 912                s->needed_bytes = 2;
 913                s->state = STATE_COLLECTING_VAR_LEN_DATA;
 914                break;
 915            default:
 916                s->needed_bytes = 1;
 917                s->state = STATE_COLLECTING_DATA;
 918            }
 919            s->pos = 0;
 920        }
 921        break;
 922
 923    case WRDI:
 924        s->write_enable = false;
 925        break;
 926    case WREN:
 927        s->write_enable = true;
 928        break;
 929
 930    case RDSR:
 931        s->data[0] = (!!s->write_enable) << 1;
 932        if (get_man(s) == MAN_MACRONIX) {
 933            s->data[0] |= (!!s->quad_enable) << 6;
 934        }
 935        s->pos = 0;
 936        s->len = 1;
 937        s->state = STATE_READING_DATA;
 938        break;
 939
 940    case READ_FSR:
 941        s->data[0] = FSR_FLASH_READY;
 942        if (s->four_bytes_address_mode) {
 943            s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
 944        }
 945        s->pos = 0;
 946        s->len = 1;
 947        s->state = STATE_READING_DATA;
 948        break;
 949
 950    case JEDEC_READ:
 951        DB_PRINT_L(0, "populated jedec code\n");
 952        for (i = 0; i < s->pi->id_len; i++) {
 953            s->data[i] = s->pi->id[i];
 954        }
 955
 956        s->len = s->pi->id_len;
 957        s->pos = 0;
 958        s->state = STATE_READING_DATA;
 959        break;
 960
 961    case RDCR:
 962        s->data[0] = s->volatile_cfg & 0xFF;
 963        s->data[0] |= (!!s->four_bytes_address_mode) << 5;
 964        s->pos = 0;
 965        s->len = 1;
 966        s->state = STATE_READING_DATA;
 967        break;
 968
 969    case BULK_ERASE:
 970        if (s->write_enable) {
 971            DB_PRINT_L(0, "chip erase\n");
 972            flash_erase(s, 0, BULK_ERASE);
 973        } else {
 974            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
 975                          "protect!\n");
 976        }
 977        break;
 978    case NOP:
 979        break;
 980    case EN_4BYTE_ADDR:
 981        s->four_bytes_address_mode = true;
 982        break;
 983    case EX_4BYTE_ADDR:
 984        s->four_bytes_address_mode = false;
 985        break;
 986    case EXTEND_ADDR_READ:
 987        s->data[0] = s->ear;
 988        s->pos = 0;
 989        s->len = 1;
 990        s->state = STATE_READING_DATA;
 991        break;
 992    case EXTEND_ADDR_WRITE:
 993        if (s->write_enable) {
 994            s->needed_bytes = 1;
 995            s->pos = 0;
 996            s->len = 0;
 997            s->state = STATE_COLLECTING_DATA;
 998        }
 999        break;
1000    case RNVCR:
1001        s->data[0] = s->nonvolatile_cfg & 0xFF;
1002        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1003        s->pos = 0;
1004        s->len = 2;
1005        s->state = STATE_READING_DATA;
1006        break;
1007    case WNVCR:
1008        if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1009            s->needed_bytes = 2;
1010            s->pos = 0;
1011            s->len = 0;
1012            s->state = STATE_COLLECTING_DATA;
1013        }
1014        break;
1015    case RVCR:
1016        s->data[0] = s->volatile_cfg & 0xFF;
1017        s->pos = 0;
1018        s->len = 1;
1019        s->state = STATE_READING_DATA;
1020        break;
1021    case WVCR:
1022        if (s->write_enable) {
1023            s->needed_bytes = 1;
1024            s->pos = 0;
1025            s->len = 0;
1026            s->state = STATE_COLLECTING_DATA;
1027        }
1028        break;
1029    case REVCR:
1030        s->data[0] = s->enh_volatile_cfg & 0xFF;
1031        s->pos = 0;
1032        s->len = 1;
1033        s->state = STATE_READING_DATA;
1034        break;
1035    case WEVCR:
1036        if (s->write_enable) {
1037            s->needed_bytes = 1;
1038            s->pos = 0;
1039            s->len = 0;
1040            s->state = STATE_COLLECTING_DATA;
1041        }
1042        break;
1043    case RESET_ENABLE:
1044        s->reset_enable = true;
1045        break;
1046    case RESET_MEMORY:
1047        if (s->reset_enable) {
1048            reset_memory(s);
1049        }
1050        break;
1051    case RDCR_EQIO:
1052        switch (get_man(s)) {
1053        case MAN_SPANSION:
1054            s->data[0] = (!!s->quad_enable) << 1;
1055            s->pos = 0;
1056            s->len = 1;
1057            s->state = STATE_READING_DATA;
1058            break;
1059        case MAN_MACRONIX:
1060            s->quad_enable = true;
1061            break;
1062        default:
1063            break;
1064        }
1065        break;
1066    case RSTQIO:
1067        s->quad_enable = false;
1068        break;
1069    default:
1070        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1071        break;
1072    }
1073}
1074
1075static int m25p80_cs(SSISlave *ss, bool select)
1076{
1077    Flash *s = M25P80(ss);
1078
1079    if (select) {
1080        if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1081            complete_collecting_data(s);
1082        }
1083        s->len = 0;
1084        s->pos = 0;
1085        s->state = STATE_IDLE;
1086        flash_sync_dirty(s, -1);
1087    }
1088
1089    DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1090
1091    return 0;
1092}
1093
1094static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1095{
1096    Flash *s = M25P80(ss);
1097    uint32_t r = 0;
1098
1099    switch (s->state) {
1100
1101    case STATE_PAGE_PROGRAM:
1102        DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1103                   s->cur_addr, (uint8_t)tx);
1104        flash_write8(s, s->cur_addr, (uint8_t)tx);
1105        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1106        break;
1107
1108    case STATE_READ:
1109        r = s->storage[s->cur_addr];
1110        DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1111                   (uint8_t)r);
1112        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1113        break;
1114
1115    case STATE_COLLECTING_DATA:
1116    case STATE_COLLECTING_VAR_LEN_DATA:
1117        s->data[s->len] = (uint8_t)tx;
1118        s->len++;
1119
1120        if (s->len == s->needed_bytes) {
1121            complete_collecting_data(s);
1122        }
1123        break;
1124
1125    case STATE_READING_DATA:
1126        r = s->data[s->pos];
1127        s->pos++;
1128        if (s->pos == s->len) {
1129            s->pos = 0;
1130            s->state = STATE_IDLE;
1131        }
1132        break;
1133
1134    default:
1135    case STATE_IDLE:
1136        decode_new_cmd(s, (uint8_t)tx);
1137        break;
1138    }
1139
1140    return r;
1141}
1142
1143static void m25p80_realize(SSISlave *ss, Error **errp)
1144{
1145    Flash *s = M25P80(ss);
1146    M25P80Class *mc = M25P80_GET_CLASS(s);
1147
1148    s->pi = mc->pi;
1149
1150    s->size = s->pi->sector_size * s->pi->n_sectors;
1151    s->dirty_page = -1;
1152
1153    if (s->blk) {
1154        DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1155        s->storage = blk_blockalign(s->blk, s->size);
1156
1157        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1158            error_setg(errp, "failed to read the initial flash content");
1159            return;
1160        }
1161    } else {
1162        DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1163        s->storage = blk_blockalign(NULL, s->size);
1164        memset(s->storage, 0xFF, s->size);
1165    }
1166}
1167
1168static void m25p80_reset(DeviceState *d)
1169{
1170    Flash *s = M25P80(d);
1171
1172    reset_memory(s);
1173}
1174
1175static void m25p80_pre_save(void *opaque)
1176{
1177    flash_sync_dirty((Flash *)opaque, -1);
1178}
1179
1180static Property m25p80_properties[] = {
1181    /* This is default value for Micron flash */
1182    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1183    DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1184    DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1185    DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1186    DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1187    DEFINE_PROP_DRIVE("drive", Flash, blk),
1188    DEFINE_PROP_END_OF_LIST(),
1189};
1190
1191static const VMStateDescription vmstate_m25p80 = {
1192    .name = "m25p80",
1193    .version_id = 0,
1194    .minimum_version_id = 0,
1195    .pre_save = m25p80_pre_save,
1196    .fields = (VMStateField[]) {
1197        VMSTATE_UINT8(state, Flash),
1198        VMSTATE_UINT8_ARRAY(data, Flash, 16),
1199        VMSTATE_UINT32(len, Flash),
1200        VMSTATE_UINT32(pos, Flash),
1201        VMSTATE_UINT8(needed_bytes, Flash),
1202        VMSTATE_UINT8(cmd_in_progress, Flash),
1203        VMSTATE_UINT32(cur_addr, Flash),
1204        VMSTATE_BOOL(write_enable, Flash),
1205        VMSTATE_BOOL(reset_enable, Flash),
1206        VMSTATE_UINT8(ear, Flash),
1207        VMSTATE_BOOL(four_bytes_address_mode, Flash),
1208        VMSTATE_UINT32(nonvolatile_cfg, Flash),
1209        VMSTATE_UINT32(volatile_cfg, Flash),
1210        VMSTATE_UINT32(enh_volatile_cfg, Flash),
1211        VMSTATE_BOOL(quad_enable, Flash),
1212        VMSTATE_UINT8(spansion_cr1nv, Flash),
1213        VMSTATE_UINT8(spansion_cr2nv, Flash),
1214        VMSTATE_UINT8(spansion_cr3nv, Flash),
1215        VMSTATE_UINT8(spansion_cr4nv, Flash),
1216        VMSTATE_END_OF_LIST()
1217    }
1218};
1219
1220static void m25p80_class_init(ObjectClass *klass, void *data)
1221{
1222    DeviceClass *dc = DEVICE_CLASS(klass);
1223    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1224    M25P80Class *mc = M25P80_CLASS(klass);
1225
1226    k->realize = m25p80_realize;
1227    k->transfer = m25p80_transfer8;
1228    k->set_cs = m25p80_cs;
1229    k->cs_polarity = SSI_CS_LOW;
1230    dc->vmsd = &vmstate_m25p80;
1231    dc->props = m25p80_properties;
1232    dc->reset = m25p80_reset;
1233    mc->pi = data;
1234}
1235
1236static const TypeInfo m25p80_info = {
1237    .name           = TYPE_M25P80,
1238    .parent         = TYPE_SSI_SLAVE,
1239    .instance_size  = sizeof(Flash),
1240    .class_size     = sizeof(M25P80Class),
1241    .abstract       = true,
1242};
1243
1244static void m25p80_register_types(void)
1245{
1246    int i;
1247
1248    type_register_static(&m25p80_info);
1249    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1250        TypeInfo ti = {
1251            .name       = known_devices[i].part_name,
1252            .parent     = TYPE_M25P80,
1253            .class_init = m25p80_class_init,
1254            .class_data = (void *)&known_devices[i],
1255        };
1256        type_register(&ti);
1257    }
1258}
1259
1260type_init(m25p80_register_types)
1261