qemu/hw/intc/arm_gicv3.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3
   3 *
   4 * Copyright (c) 2015 Huawei.
   5 * Copyright (c) 2016 Linaro Limited
   6 * Written by Shlomo Pongratz, Peter Maydell
   7 *
   8 * This code is licensed under the GPL, version 2 or (at your option)
   9 * any later version.
  10 */
  11
  12/* This file contains implementation code for an interrupt controller
  13 * which implements the GICv3 architecture. Specifically this is where
  14 * the device class itself and the functions for handling interrupts
  15 * coming in and going out live.
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qapi/error.h"
  20#include "hw/sysbus.h"
  21#include "hw/intc/arm_gicv3.h"
  22#include "gicv3_internal.h"
  23
  24static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
  25{
  26    /* Return true if this IRQ at this priority should take
  27     * precedence over the current recorded highest priority
  28     * pending interrupt for this CPU. We also return true if
  29     * the current recorded highest priority pending interrupt
  30     * is the same as this one (a property which the calling code
  31     * relies on).
  32     */
  33    if (prio < cs->hppi.prio) {
  34        return true;
  35    }
  36    /* If multiple pending interrupts have the same priority then it is an
  37     * IMPDEF choice which of them to signal to the CPU. We choose to
  38     * signal the one with the lowest interrupt number.
  39     */
  40    if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
  41        return true;
  42    }
  43    return false;
  44}
  45
  46static uint32_t gicd_int_pending(GICv3State *s, int irq)
  47{
  48    /* Recalculate which distributor interrupts are actually pending
  49     * in the group of 32 interrupts starting at irq (which should be a multiple
  50     * of 32), and return a 32-bit integer which has a bit set for each
  51     * interrupt that is eligible to be signaled to the CPU interface.
  52     *
  53     * An interrupt is pending if:
  54     *  + the PENDING latch is set OR it is level triggered and the input is 1
  55     *  + its ENABLE bit is set
  56     *  + the GICD enable bit for its group is set
  57     * Conveniently we can bulk-calculate this with bitwise operations.
  58     */
  59    uint32_t pend, grpmask;
  60    uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
  61    uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
  62    uint32_t level = *gic_bmp_ptr32(s->level, irq);
  63    uint32_t group = *gic_bmp_ptr32(s->group, irq);
  64    uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
  65    uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
  66
  67    pend = pending | (~edge_trigger & level);
  68    pend &= enable;
  69
  70    if (s->gicd_ctlr & GICD_CTLR_DS) {
  71        grpmod = 0;
  72    }
  73
  74    grpmask = 0;
  75    if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
  76        grpmask |= group;
  77    }
  78    if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
  79        grpmask |= (~group & grpmod);
  80    }
  81    if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
  82        grpmask |= (~group & ~grpmod);
  83    }
  84    pend &= grpmask;
  85
  86    return pend;
  87}
  88
  89static uint32_t gicr_int_pending(GICv3CPUState *cs)
  90{
  91    /* Recalculate which redistributor interrupts are actually pending,
  92     * and return a 32-bit integer which has a bit set for each interrupt
  93     * that is eligible to be signaled to the CPU interface.
  94     *
  95     * An interrupt is pending if:
  96     *  + the PENDING latch is set OR it is level triggered and the input is 1
  97     *  + its ENABLE bit is set
  98     *  + the GICD enable bit for its group is set
  99     * Conveniently we can bulk-calculate this with bitwise operations.
 100     */
 101    uint32_t pend, grpmask, grpmod;
 102
 103    pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
 104    pend &= cs->gicr_ienabler0;
 105
 106    if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
 107        grpmod = 0;
 108    } else {
 109        grpmod = cs->gicr_igrpmodr0;
 110    }
 111
 112    grpmask = 0;
 113    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
 114        grpmask |= cs->gicr_igroupr0;
 115    }
 116    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
 117        grpmask |= (~cs->gicr_igroupr0 & grpmod);
 118    }
 119    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
 120        grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
 121    }
 122    pend &= grpmask;
 123
 124    return pend;
 125}
 126
 127/* Update the interrupt status after state in a redistributor
 128 * or CPU interface has changed, but don't tell the CPU i/f.
 129 */
 130static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
 131{
 132    /* Find the highest priority pending interrupt among the
 133     * redistributor interrupts (SGIs and PPIs).
 134     */
 135    bool seenbetter = false;
 136    uint8_t prio;
 137    int i;
 138    uint32_t pend;
 139
 140    /* Find out which redistributor interrupts are eligible to be
 141     * signaled to the CPU interface.
 142     */
 143    pend = gicr_int_pending(cs);
 144
 145    if (pend) {
 146        for (i = 0; i < GIC_INTERNAL; i++) {
 147            if (!(pend & (1 << i))) {
 148                continue;
 149            }
 150            prio = cs->gicr_ipriorityr[i];
 151            if (irqbetter(cs, i, prio)) {
 152                cs->hppi.irq = i;
 153                cs->hppi.prio = prio;
 154                seenbetter = true;
 155            }
 156        }
 157    }
 158
 159    if (seenbetter) {
 160        cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
 161    }
 162
 163    /* If the best interrupt we just found would preempt whatever
 164     * was the previous best interrupt before this update, then
 165     * we know it's definitely the best one now.
 166     * If we didn't find an interrupt that would preempt the previous
 167     * best, and the previous best is outside our range (or there was no
 168     * previous pending interrupt at all), then that is still valid, and
 169     * we leave it as the best.
 170     * Otherwise, we need to do a full update (because the previous best
 171     * interrupt has reduced in priority and any other interrupt could
 172     * now be the new best one).
 173     */
 174    if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) {
 175        gicv3_full_update_noirqset(cs->gic);
 176    }
 177}
 178
 179/* Update the GIC status after state in a redistributor or
 180 * CPU interface has changed, and inform the CPU i/f of
 181 * its new highest priority pending interrupt.
 182 */
 183void gicv3_redist_update(GICv3CPUState *cs)
 184{
 185    gicv3_redist_update_noirqset(cs);
 186    gicv3_cpuif_update(cs);
 187}
 188
 189/* Update the GIC status after state in the distributor has
 190 * changed affecting @len interrupts starting at @start,
 191 * but don't tell the CPU i/f.
 192 */
 193static void gicv3_update_noirqset(GICv3State *s, int start, int len)
 194{
 195    int i;
 196    uint8_t prio;
 197    uint32_t pend = 0;
 198
 199    assert(start >= GIC_INTERNAL);
 200    assert(len > 0);
 201
 202    for (i = 0; i < s->num_cpu; i++) {
 203        s->cpu[i].seenbetter = false;
 204    }
 205
 206    /* Find the highest priority pending interrupt in this range. */
 207    for (i = start; i < start + len; i++) {
 208        GICv3CPUState *cs;
 209
 210        if (i == start || (i & 0x1f) == 0) {
 211            /* Calculate the next 32 bits worth of pending status */
 212            pend = gicd_int_pending(s, i & ~0x1f);
 213        }
 214
 215        if (!(pend & (1 << (i & 0x1f)))) {
 216            continue;
 217        }
 218        cs = s->gicd_irouter_target[i];
 219        if (!cs) {
 220            /* Interrupts targeting no implemented CPU should remain pending
 221             * and not be forwarded to any CPU.
 222             */
 223            continue;
 224        }
 225        prio = s->gicd_ipriority[i];
 226        if (irqbetter(cs, i, prio)) {
 227            cs->hppi.irq = i;
 228            cs->hppi.prio = prio;
 229            cs->seenbetter = true;
 230        }
 231    }
 232
 233    /* If the best interrupt we just found would preempt whatever
 234     * was the previous best interrupt before this update, then
 235     * we know it's definitely the best one now.
 236     * If we didn't find an interrupt that would preempt the previous
 237     * best, and the previous best is outside our range (or there was
 238     * no previous pending interrupt at all), then that
 239     * is still valid, and we leave it as the best.
 240     * Otherwise, we need to do a full update (because the previous best
 241     * interrupt has reduced in priority and any other interrupt could
 242     * now be the new best one).
 243     */
 244    for (i = 0; i < s->num_cpu; i++) {
 245        GICv3CPUState *cs = &s->cpu[i];
 246
 247        if (cs->seenbetter) {
 248            cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
 249        }
 250
 251        if (!cs->seenbetter && cs->hppi.prio != 0xff &&
 252            cs->hppi.irq >= start && cs->hppi.irq < start + len) {
 253            gicv3_full_update_noirqset(s);
 254            break;
 255        }
 256    }
 257}
 258
 259void gicv3_update(GICv3State *s, int start, int len)
 260{
 261    int i;
 262
 263    gicv3_update_noirqset(s, start, len);
 264    for (i = 0; i < s->num_cpu; i++) {
 265        gicv3_cpuif_update(&s->cpu[i]);
 266    }
 267}
 268
 269void gicv3_full_update_noirqset(GICv3State *s)
 270{
 271    /* Completely recalculate the GIC status from scratch, but
 272     * don't update any outbound IRQ lines.
 273     */
 274    int i;
 275
 276    for (i = 0; i < s->num_cpu; i++) {
 277        s->cpu[i].hppi.prio = 0xff;
 278    }
 279
 280    /* Note that we can guarantee that these functions will not
 281     * recursively call back into gicv3_full_update(), because
 282     * at each point the "previous best" is always outside the
 283     * range we ask them to update.
 284     */
 285    gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);
 286
 287    for (i = 0; i < s->num_cpu; i++) {
 288        gicv3_redist_update_noirqset(&s->cpu[i]);
 289    }
 290}
 291
 292void gicv3_full_update(GICv3State *s)
 293{
 294    /* Completely recalculate the GIC status from scratch, including
 295     * updating outbound IRQ lines.
 296     */
 297    int i;
 298
 299    gicv3_full_update_noirqset(s);
 300    for (i = 0; i < s->num_cpu; i++) {
 301        gicv3_cpuif_update(&s->cpu[i]);
 302    }
 303}
 304
 305/* Process a change in an external IRQ input. */
 306static void gicv3_set_irq(void *opaque, int irq, int level)
 307{
 308    /* Meaning of the 'irq' parameter:
 309     *  [0..N-1] : external interrupts
 310     *  [N..N+31] : PPI (internal) interrupts for CPU 0
 311     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 312     *  ...
 313     */
 314    GICv3State *s = opaque;
 315
 316    if (irq < (s->num_irq - GIC_INTERNAL)) {
 317        /* external interrupt (SPI) */
 318        gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level);
 319    } else {
 320        /* per-cpu interrupt (PPI) */
 321        int cpu;
 322
 323        irq -= (s->num_irq - GIC_INTERNAL);
 324        cpu = irq / GIC_INTERNAL;
 325        irq %= GIC_INTERNAL;
 326        assert(cpu < s->num_cpu);
 327        /* Raising SGIs via this function would be a bug in how the board
 328         * model wires up interrupts.
 329         */
 330        assert(irq >= GIC_NR_SGIS);
 331        gicv3_redist_set_irq(&s->cpu[cpu], irq, level);
 332    }
 333}
 334
 335static void arm_gicv3_post_load(GICv3State *s)
 336{
 337    /* Recalculate our cached idea of the current highest priority
 338     * pending interrupt, but don't set IRQ or FIQ lines.
 339     */
 340    gicv3_full_update_noirqset(s);
 341    /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
 342    gicv3_cache_all_target_cpustates(s);
 343}
 344
 345static const MemoryRegionOps gic_ops[] = {
 346    {
 347        .read_with_attrs = gicv3_dist_read,
 348        .write_with_attrs = gicv3_dist_write,
 349        .endianness = DEVICE_NATIVE_ENDIAN,
 350    },
 351    {
 352        .read_with_attrs = gicv3_redist_read,
 353        .write_with_attrs = gicv3_redist_write,
 354        .endianness = DEVICE_NATIVE_ENDIAN,
 355    }
 356};
 357
 358static void arm_gic_realize(DeviceState *dev, Error **errp)
 359{
 360    /* Device instance realize function for the GIC sysbus device */
 361    GICv3State *s = ARM_GICV3(dev);
 362    ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
 363    Error *local_err = NULL;
 364
 365    agc->parent_realize(dev, &local_err);
 366    if (local_err) {
 367        error_propagate(errp, local_err);
 368        return;
 369    }
 370
 371    gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops);
 372
 373    gicv3_init_cpuif(s);
 374}
 375
 376static void arm_gicv3_class_init(ObjectClass *klass, void *data)
 377{
 378    DeviceClass *dc = DEVICE_CLASS(klass);
 379    ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
 380    ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);
 381
 382    agcc->post_load = arm_gicv3_post_load;
 383    agc->parent_realize = dc->realize;
 384    dc->realize = arm_gic_realize;
 385}
 386
 387static const TypeInfo arm_gicv3_info = {
 388    .name = TYPE_ARM_GICV3,
 389    .parent = TYPE_ARM_GICV3_COMMON,
 390    .instance_size = sizeof(GICv3State),
 391    .class_init = arm_gicv3_class_init,
 392    .class_size = sizeof(ARMGICv3Class),
 393};
 394
 395static void arm_gicv3_register_types(void)
 396{
 397    type_register_static(&arm_gicv3_info);
 398}
 399
 400type_init(arm_gicv3_register_types)
 401